summaryrefslogtreecommitdiff
path: root/src/backend/lib/pairingheap.c
blob: d561df07430504bbbfd11b6d56c4ca98209b9061 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
/*-------------------------------------------------------------------------
 *
 * pairingheap.c
 *	  A Pairing Heap implementation
 *
 * A pairing heap is a data structure that's useful for implementing
 * priority queues. It is simple to implement, and provides amortized O(1)
 * insert and find-min operations, and amortized O(log n) delete-min.
 *
 * The pairing heap was first described in this paper:
 *
 *	Michael L. Fredman, Robert Sedgewick, Daniel D. Sleator, and Robert E.
 *	 Tarjan. 1986.
 *	The pairing heap: a new form of self-adjusting heap.
 *	Algorithmica 1, 1 (January 1986), pages 111-129. DOI: 10.1007/BF01840439
 *
 * Portions Copyright (c) 2012-2022, PostgreSQL Global Development Group
 *
 * IDENTIFICATION
 *	  src/backend/lib/pairingheap.c
 *
 *-------------------------------------------------------------------------
 */

#include "postgres.h"

#include "lib/pairingheap.h"

static pairingheap_node *merge(pairingheap *heap, pairingheap_node *a,
							   pairingheap_node *b);
static pairingheap_node *merge_children(pairingheap *heap,
										pairingheap_node *children);

/*
 * pairingheap_allocate
 *
 * Returns a pointer to a newly-allocated heap, with the heap property defined
 * by the given comparator function, which will be invoked with the additional
 * argument specified by 'arg'.
 */
pairingheap *
pairingheap_allocate(pairingheap_comparator compare, void *arg)
{
	pairingheap *heap;

	heap = (pairingheap *) palloc(sizeof(pairingheap));
	heap->ph_compare = compare;
	heap->ph_arg = arg;

	heap->ph_root = NULL;

	return heap;
}

/*
 * pairingheap_free
 *
 * Releases memory used by the given pairingheap.
 *
 * Note: The nodes in the heap are not freed!
 */
void
pairingheap_free(pairingheap *heap)
{
	pfree(heap);
}

/*
 * A helper function to merge two subheaps into one.
 *
 * The subheap with smaller value is put as a child of the other one (assuming
 * a max-heap).
 *
 * The next_sibling and prev_or_parent pointers of the input nodes are
 * ignored. On return, the returned node's next_sibling and prev_or_parent
 * pointers are garbage.
 */
static pairingheap_node *
merge(pairingheap *heap, pairingheap_node *a, pairingheap_node *b)
{
	if (a == NULL)
		return b;
	if (b == NULL)
		return a;

	/* swap 'a' and 'b' so that 'a' is the one with larger value */
	if (heap->ph_compare(a, b, heap->ph_arg) < 0)
	{
		pairingheap_node *tmp;

		tmp = a;
		a = b;
		b = tmp;
	}

	/* and put 'b' as a child of 'a' */
	if (a->first_child)
		a->first_child->prev_or_parent = b;
	b->prev_or_parent = a;
	b->next_sibling = a->first_child;
	a->first_child = b;

	return a;
}

/*
 * pairingheap_add
 *
 * Adds the given node to the heap in O(1) time.
 */
void
pairingheap_add(pairingheap *heap, pairingheap_node *node)
{
	node->first_child = NULL;

	/* Link the new node as a new tree */
	heap->ph_root = merge(heap, heap->ph_root, node);
	heap->ph_root->prev_or_parent = NULL;
	heap->ph_root->next_sibling = NULL;
}

/*
 * pairingheap_first
 *
 * Returns a pointer to the first (root, topmost) node in the heap without
 * modifying the heap. The caller must ensure that this routine is not used on
 * an empty heap. Always O(1).
 */
pairingheap_node *
pairingheap_first(pairingheap *heap)
{
	Assert(!pairingheap_is_empty(heap));

	return heap->ph_root;
}

/*
 * pairingheap_remove_first
 *
 * Removes the first (root, topmost) node in the heap and returns a pointer to
 * it after rebalancing the heap. The caller must ensure that this routine is
 * not used on an empty heap. O(log n) amortized.
 */
pairingheap_node *
pairingheap_remove_first(pairingheap *heap)
{
	pairingheap_node *result;
	pairingheap_node *children;

	Assert(!pairingheap_is_empty(heap));

	/* Remove the root, and form a new heap of its children. */
	result = heap->ph_root;
	children = result->first_child;

	heap->ph_root = merge_children(heap, children);
	if (heap->ph_root)
	{
		heap->ph_root->prev_or_parent = NULL;
		heap->ph_root->next_sibling = NULL;
	}

	return result;
}

/*
 * Remove 'node' from the heap. O(log n) amortized.
 */
void
pairingheap_remove(pairingheap *heap, pairingheap_node *node)
{
	pairingheap_node *children;
	pairingheap_node *replacement;
	pairingheap_node *next_sibling;
	pairingheap_node **prev_ptr;

	/*
	 * If the removed node happens to be the root node, do it with
	 * pairingheap_remove_first().
	 */
	if (node == heap->ph_root)
	{
		(void) pairingheap_remove_first(heap);
		return;
	}

	/*
	 * Before we modify anything, remember the removed node's first_child and
	 * next_sibling pointers.
	 */
	children = node->first_child;
	next_sibling = node->next_sibling;

	/*
	 * Also find the pointer to the removed node in its previous sibling, or
	 * if this is the first child of its parent, in its parent.
	 */
	if (node->prev_or_parent->first_child == node)
		prev_ptr = &node->prev_or_parent->first_child;
	else
		prev_ptr = &node->prev_or_parent->next_sibling;
	Assert(*prev_ptr == node);

	/*
	 * If this node has children, make a new subheap of the children and link
	 * the subheap in place of the removed node. Otherwise just unlink this
	 * node.
	 */
	if (children)
	{
		replacement = merge_children(heap, children);

		replacement->prev_or_parent = node->prev_or_parent;
		replacement->next_sibling = node->next_sibling;
		*prev_ptr = replacement;
		if (next_sibling)
			next_sibling->prev_or_parent = replacement;
	}
	else
	{
		*prev_ptr = next_sibling;
		if (next_sibling)
			next_sibling->prev_or_parent = node->prev_or_parent;
	}
}

/*
 * Merge a list of subheaps into a single heap.
 *
 * This implements the basic two-pass merging strategy, first forming pairs
 * from left to right, and then merging the pairs.
 */
static pairingheap_node *
merge_children(pairingheap *heap, pairingheap_node *children)
{
	pairingheap_node *curr,
			   *next;
	pairingheap_node *pairs;
	pairingheap_node *newroot;

	if (children == NULL || children->next_sibling == NULL)
		return children;

	/* Walk the subheaps from left to right, merging in pairs */
	next = children;
	pairs = NULL;
	for (;;)
	{
		curr = next;

		if (curr == NULL)
			break;

		if (curr->next_sibling == NULL)
		{
			/* last odd node at the end of list */
			curr->next_sibling = pairs;
			pairs = curr;
			break;
		}

		next = curr->next_sibling->next_sibling;

		/* merge this and the next subheap, and add to 'pairs' list. */

		curr = merge(heap, curr, curr->next_sibling);
		curr->next_sibling = pairs;
		pairs = curr;
	}

	/*
	 * Merge all the pairs together to form a single heap.
	 */
	newroot = pairs;
	next = pairs->next_sibling;
	while (next)
	{
		curr = next;
		next = curr->next_sibling;

		newroot = merge(heap, newroot, curr);
	}

	return newroot;
}

/*
 * A debug function to dump the contents of the heap as a string.
 *
 * The 'dumpfunc' callback appends a string representation of a single node
 * to the StringInfo. 'opaque' can be used to pass more information to the
 * callback.
 */
#ifdef PAIRINGHEAP_DEBUG
static void
pairingheap_dump_recurse(StringInfo buf,
						 pairingheap_node *node,
						 void (*dumpfunc) (pairingheap_node *node, StringInfo buf, void *opaque),
						 void *opaque,
						 int depth,
						 pairingheap_node *prev_or_parent)
{
	while (node)
	{
		Assert(node->prev_or_parent == prev_or_parent);

		appendStringInfoSpaces(buf, depth * 4);
		dumpfunc(node, buf, opaque);
		appendStringInfoChar(buf, '\n');
		if (node->first_child)
			pairingheap_dump_recurse(buf, node->first_child, dumpfunc, opaque, depth + 1, node);
		prev_or_parent = node;
		node = node->next_sibling;
	}
}

char *
pairingheap_dump(pairingheap *heap,
				 void (*dumpfunc) (pairingheap_node *node, StringInfo buf, void *opaque),
				 void *opaque)
{
	StringInfoData buf;

	if (!heap->ph_root)
		return pstrdup("(empty)");

	initStringInfo(&buf);

	pairingheap_dump_recurse(&buf, heap->ph_root, dumpfunc, opaque, 0, NULL);

	return buf.data;
}
#endif