1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
|
/*-------------------------------------------------------------------------
*
* nodeNestloop.c
* routines to support nest-loop joins
*
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/executor/nodeNestloop.c
*
*-------------------------------------------------------------------------
*/
/*
* INTERFACE ROUTINES
* ExecNestLoop - process a nestloop join of two plans
* ExecInitNestLoop - initialize the join
* ExecEndNestLoop - shut down the join
*/
#include "postgres.h"
#include "executor/execdebug.h"
#include "executor/nodeNestloop.h"
#include "miscadmin.h"
#include "utils/memutils.h"
/* ----------------------------------------------------------------
* ExecNestLoop(node)
*
* old comments
* Returns the tuple joined from inner and outer tuples which
* satisfies the qualification clause.
*
* It scans the inner relation to join with current outer tuple.
*
* If none is found, next tuple from the outer relation is retrieved
* and the inner relation is scanned from the beginning again to join
* with the outer tuple.
*
* NULL is returned if all the remaining outer tuples are tried and
* all fail to join with the inner tuples.
*
* NULL is also returned if there is no tuple from inner relation.
*
* Conditions:
* -- outerTuple contains current tuple from outer relation and
* the right son(inner relation) maintains "cursor" at the tuple
* returned previously.
* This is achieved by maintaining a scan position on the outer
* relation.
*
* Initial States:
* -- the outer child and the inner child
* are prepared to return the first tuple.
* ----------------------------------------------------------------
*/
static TupleTableSlot *
ExecNestLoop(PlanState *pstate)
{
NestLoopState *node = castNode(NestLoopState, pstate);
NestLoop *nl;
PlanState *innerPlan;
PlanState *outerPlan;
TupleTableSlot *outerTupleSlot;
TupleTableSlot *innerTupleSlot;
ExprState *joinqual;
ExprState *otherqual;
ExprContext *econtext;
ListCell *lc;
CHECK_FOR_INTERRUPTS();
/*
* get information from the node
*/
ENL1_printf("getting info from node");
nl = (NestLoop *) node->js.ps.plan;
joinqual = node->js.joinqual;
otherqual = node->js.ps.qual;
outerPlan = outerPlanState(node);
innerPlan = innerPlanState(node);
econtext = node->js.ps.ps_ExprContext;
/*
* Reset per-tuple memory context to free any expression evaluation
* storage allocated in the previous tuple cycle.
*/
ResetExprContext(econtext);
/*
* Ok, everything is setup for the join so now loop until we return a
* qualifying join tuple.
*/
ENL1_printf("entering main loop");
for (;;)
{
/*
* If we don't have an outer tuple, get the next one and reset the
* inner scan.
*/
if (node->nl_NeedNewOuter)
{
ENL1_printf("getting new outer tuple");
outerTupleSlot = ExecProcNode(outerPlan);
/*
* if there are no more outer tuples, then the join is complete..
*/
if (TupIsNull(outerTupleSlot))
{
ENL1_printf("no outer tuple, ending join");
return NULL;
}
ENL1_printf("saving new outer tuple information");
econtext->ecxt_outertuple = outerTupleSlot;
node->nl_NeedNewOuter = false;
node->nl_MatchedOuter = false;
/*
* fetch the values of any outer Vars that must be passed to the
* inner scan, and store them in the appropriate PARAM_EXEC slots.
*/
foreach(lc, nl->nestParams)
{
NestLoopParam *nlp = (NestLoopParam *) lfirst(lc);
int paramno = nlp->paramno;
ParamExecData *prm;
prm = &(econtext->ecxt_param_exec_vals[paramno]);
/* Param value should be an OUTER_VAR var */
Assert(IsA(nlp->paramval, Var));
Assert(nlp->paramval->varno == OUTER_VAR);
Assert(nlp->paramval->varattno > 0);
prm->value = slot_getattr(outerTupleSlot,
nlp->paramval->varattno,
&(prm->isnull));
/* Flag parameter value as changed */
innerPlan->chgParam = bms_add_member(innerPlan->chgParam,
paramno);
}
/*
* now rescan the inner plan
*/
ENL1_printf("rescanning inner plan");
ExecReScan(innerPlan);
}
/*
* we have an outerTuple, try to get the next inner tuple.
*/
ENL1_printf("getting new inner tuple");
innerTupleSlot = ExecProcNode(innerPlan);
econtext->ecxt_innertuple = innerTupleSlot;
if (TupIsNull(innerTupleSlot))
{
ENL1_printf("no inner tuple, need new outer tuple");
node->nl_NeedNewOuter = true;
if (!node->nl_MatchedOuter &&
(node->js.jointype == JOIN_LEFT ||
node->js.jointype == JOIN_ANTI))
{
/*
* We are doing an outer join and there were no join matches
* for this outer tuple. Generate a fake join tuple with
* nulls for the inner tuple, and return it if it passes the
* non-join quals.
*/
econtext->ecxt_innertuple = node->nl_NullInnerTupleSlot;
ENL1_printf("testing qualification for outer-join tuple");
if (otherqual == NULL || ExecQual(otherqual, econtext))
{
/*
* qualification was satisfied so we project and return
* the slot containing the result tuple using
* ExecProject().
*/
ENL1_printf("qualification succeeded, projecting tuple");
return ExecProject(node->js.ps.ps_ProjInfo);
}
else
InstrCountFiltered2(node, 1);
}
/*
* Otherwise just return to top of loop for a new outer tuple.
*/
continue;
}
/*
* at this point we have a new pair of inner and outer tuples so we
* test the inner and outer tuples to see if they satisfy the node's
* qualification.
*
* Only the joinquals determine MatchedOuter status, but all quals
* must pass to actually return the tuple.
*/
ENL1_printf("testing qualification");
if (ExecQual(joinqual, econtext))
{
node->nl_MatchedOuter = true;
/* In an antijoin, we never return a matched tuple */
if (node->js.jointype == JOIN_ANTI)
{
node->nl_NeedNewOuter = true;
continue; /* return to top of loop */
}
/*
* If we only need to join to the first matching inner tuple, then
* consider returning this one, but after that continue with next
* outer tuple.
*/
if (node->js.single_match)
node->nl_NeedNewOuter = true;
if (otherqual == NULL || ExecQual(otherqual, econtext))
{
/*
* qualification was satisfied so we project and return the
* slot containing the result tuple using ExecProject().
*/
ENL1_printf("qualification succeeded, projecting tuple");
return ExecProject(node->js.ps.ps_ProjInfo);
}
else
InstrCountFiltered2(node, 1);
}
else
InstrCountFiltered1(node, 1);
/*
* Tuple fails qual, so free per-tuple memory and try again.
*/
ResetExprContext(econtext);
ENL1_printf("qualification failed, looping");
}
}
/* ----------------------------------------------------------------
* ExecInitNestLoop
* ----------------------------------------------------------------
*/
NestLoopState *
ExecInitNestLoop(NestLoop *node, EState *estate, int eflags)
{
NestLoopState *nlstate;
/* check for unsupported flags */
Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
NL1_printf("ExecInitNestLoop: %s\n",
"initializing node");
/*
* create state structure
*/
nlstate = makeNode(NestLoopState);
nlstate->js.ps.plan = (Plan *) node;
nlstate->js.ps.state = estate;
nlstate->js.ps.ExecProcNode = ExecNestLoop;
/*
* Miscellaneous initialization
*
* create expression context for node
*/
ExecAssignExprContext(estate, &nlstate->js.ps);
/*
* initialize child nodes
*
* If we have no parameters to pass into the inner rel from the outer,
* tell the inner child that cheap rescans would be good. If we do have
* such parameters, then there is no point in REWIND support at all in the
* inner child, because it will always be rescanned with fresh parameter
* values.
*/
outerPlanState(nlstate) = ExecInitNode(outerPlan(node), estate, eflags);
if (node->nestParams == NIL)
eflags |= EXEC_FLAG_REWIND;
else
eflags &= ~EXEC_FLAG_REWIND;
innerPlanState(nlstate) = ExecInitNode(innerPlan(node), estate, eflags);
/*
* Initialize result slot, type and projection.
*/
ExecInitResultTupleSlotTL(&nlstate->js.ps, &TTSOpsVirtual);
ExecAssignProjectionInfo(&nlstate->js.ps, NULL);
/*
* initialize child expressions
*/
nlstate->js.ps.qual =
ExecInitQual(node->join.plan.qual, (PlanState *) nlstate);
nlstate->js.jointype = node->join.jointype;
nlstate->js.joinqual =
ExecInitQual(node->join.joinqual, (PlanState *) nlstate);
/*
* detect whether we need only consider the first matching inner tuple
*/
nlstate->js.single_match = (node->join.inner_unique ||
node->join.jointype == JOIN_SEMI);
/* set up null tuples for outer joins, if needed */
switch (node->join.jointype)
{
case JOIN_INNER:
case JOIN_SEMI:
break;
case JOIN_LEFT:
case JOIN_ANTI:
nlstate->nl_NullInnerTupleSlot =
ExecInitNullTupleSlot(estate,
ExecGetResultType(innerPlanState(nlstate)),
&TTSOpsVirtual);
break;
default:
elog(ERROR, "unrecognized join type: %d",
(int) node->join.jointype);
}
/*
* finally, wipe the current outer tuple clean.
*/
nlstate->nl_NeedNewOuter = true;
nlstate->nl_MatchedOuter = false;
NL1_printf("ExecInitNestLoop: %s\n",
"node initialized");
return nlstate;
}
/* ----------------------------------------------------------------
* ExecEndNestLoop
*
* closes down scans and frees allocated storage
* ----------------------------------------------------------------
*/
void
ExecEndNestLoop(NestLoopState *node)
{
NL1_printf("ExecEndNestLoop: %s\n",
"ending node processing");
/*
* Free the exprcontext
*/
ExecFreeExprContext(&node->js.ps);
/*
* clean out the tuple table
*/
ExecClearTuple(node->js.ps.ps_ResultTupleSlot);
/*
* close down subplans
*/
ExecEndNode(outerPlanState(node));
ExecEndNode(innerPlanState(node));
NL1_printf("ExecEndNestLoop: %s\n",
"node processing ended");
}
/* ----------------------------------------------------------------
* ExecReScanNestLoop
* ----------------------------------------------------------------
*/
void
ExecReScanNestLoop(NestLoopState *node)
{
PlanState *outerPlan = outerPlanState(node);
/*
* If outerPlan->chgParam is not null then plan will be automatically
* re-scanned by first ExecProcNode.
*/
if (outerPlan->chgParam == NULL)
ExecReScan(outerPlan);
/*
* innerPlan is re-scanned for each new outer tuple and MUST NOT be
* re-scanned from here or you'll get troubles from inner index scans when
* outer Vars are used as run-time keys...
*/
node->nl_NeedNewOuter = true;
node->nl_MatchedOuter = false;
}
|