summaryrefslogtreecommitdiff
path: root/src/backend/executor/execProcnode.c
blob: 36406c3af57e6642428ea3a436abc3448d95c8e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
/*-------------------------------------------------------------------------
 *
 * execProcnode.c
 *	 contains dispatch functions which call the appropriate "initialize",
 *	 "get a tuple", and "cleanup" routines for the given node type.
 *	 If the node has children, then it will presumably call ExecInitNode,
 *	 ExecProcNode, or ExecEndNode on its subnodes and do the appropriate
 *	 processing.
 *
 * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/executor/execProcnode.c
 *
 *-------------------------------------------------------------------------
 */
/*
 *	 NOTES
 *		This used to be three files.  It is now all combined into
 *		one file so that it is easier to keep the dispatch routines
 *		in sync when new nodes are added.
 *
 *	 EXAMPLE
 *		Suppose we want the age of the manager of the shoe department and
 *		the number of employees in that department.  So we have the query:
 *
 *				select DEPT.no_emps, EMP.age
 *				from DEPT, EMP
 *				where EMP.name = DEPT.mgr and
 *					  DEPT.name = "shoe"
 *
 *		Suppose the planner gives us the following plan:
 *
 *						Nest Loop (DEPT.mgr = EMP.name)
 *						/		\
 *					   /		 \
 *				   Seq Scan		Seq Scan
 *					DEPT		  EMP
 *				(name = "shoe")
 *
 *		ExecutorStart() is called first.
 *		It calls InitPlan() which calls ExecInitNode() on
 *		the root of the plan -- the nest loop node.
 *
 *	  * ExecInitNode() notices that it is looking at a nest loop and
 *		as the code below demonstrates, it calls ExecInitNestLoop().
 *		Eventually this calls ExecInitNode() on the right and left subplans
 *		and so forth until the entire plan is initialized.  The result
 *		of ExecInitNode() is a plan state tree built with the same structure
 *		as the underlying plan tree.
 *
 *	  * Then when ExecutorRun() is called, it calls ExecutePlan() which calls
 *		ExecProcNode() repeatedly on the top node of the plan state tree.
 *		Each time this happens, ExecProcNode() will end up calling
 *		ExecNestLoop(), which calls ExecProcNode() on its subplans.
 *		Each of these subplans is a sequential scan so ExecSeqScan() is
 *		called.  The slots returned by ExecSeqScan() may contain
 *		tuples which contain the attributes ExecNestLoop() uses to
 *		form the tuples it returns.
 *
 *	  * Eventually ExecSeqScan() stops returning tuples and the nest
 *		loop join ends.  Lastly, ExecutorEnd() calls ExecEndNode() which
 *		calls ExecEndNestLoop() which in turn calls ExecEndNode() on
 *		its subplans which result in ExecEndSeqScan().
 *
 *		This should show how the executor works by having
 *		ExecInitNode(), ExecProcNode() and ExecEndNode() dispatch
 *		their work to the appropriate node support routines which may
 *		in turn call these routines themselves on their subplans.
 */
#include "postgres.h"

#include "executor/executor.h"
#include "executor/nodeAgg.h"
#include "executor/nodeAppend.h"
#include "executor/nodeBitmapAnd.h"
#include "executor/nodeBitmapHeapscan.h"
#include "executor/nodeBitmapIndexscan.h"
#include "executor/nodeBitmapOr.h"
#include "executor/nodeCtescan.h"
#include "executor/nodeCustom.h"
#include "executor/nodeForeignscan.h"
#include "executor/nodeFunctionscan.h"
#include "executor/nodeGather.h"
#include "executor/nodeGatherMerge.h"
#include "executor/nodeGroup.h"
#include "executor/nodeHash.h"
#include "executor/nodeHashjoin.h"
#include "executor/nodeIncrementalSort.h"
#include "executor/nodeIndexonlyscan.h"
#include "executor/nodeIndexscan.h"
#include "executor/nodeLimit.h"
#include "executor/nodeLockRows.h"
#include "executor/nodeMaterial.h"
#include "executor/nodeMemoize.h"
#include "executor/nodeMergeAppend.h"
#include "executor/nodeMergejoin.h"
#include "executor/nodeModifyTable.h"
#include "executor/nodeNamedtuplestorescan.h"
#include "executor/nodeNestloop.h"
#include "executor/nodeProjectSet.h"
#include "executor/nodeRecursiveunion.h"
#include "executor/nodeResult.h"
#include "executor/nodeSamplescan.h"
#include "executor/nodeSeqscan.h"
#include "executor/nodeSetOp.h"
#include "executor/nodeSort.h"
#include "executor/nodeSubplan.h"
#include "executor/nodeSubqueryscan.h"
#include "executor/nodeTableFuncscan.h"
#include "executor/nodeTidrangescan.h"
#include "executor/nodeTidscan.h"
#include "executor/nodeUnique.h"
#include "executor/nodeValuesscan.h"
#include "executor/nodeWindowAgg.h"
#include "executor/nodeWorktablescan.h"
#include "miscadmin.h"
#include "nodes/nodeFuncs.h"

static TupleTableSlot *ExecProcNodeFirst(PlanState *node);
static TupleTableSlot *ExecProcNodeInstr(PlanState *node);
static bool ExecShutdownNode_walker(PlanState *node, void *context);


/* ------------------------------------------------------------------------
 *		ExecInitNode
 *
 *		Recursively initializes all the nodes in the plan tree rooted
 *		at 'node'.
 *
 *		Inputs:
 *		  'node' is the current node of the plan produced by the query planner
 *		  'estate' is the shared execution state for the plan tree
 *		  'eflags' is a bitwise OR of flag bits described in executor.h
 *
 *		Returns a PlanState node corresponding to the given Plan node.
 * ------------------------------------------------------------------------
 */
PlanState *
ExecInitNode(Plan *node, EState *estate, int eflags)
{
	PlanState  *result;
	List	   *subps;
	ListCell   *l;

	/*
	 * do nothing when we get to the end of a leaf on tree.
	 */
	if (node == NULL)
		return NULL;

	/*
	 * Make sure there's enough stack available. Need to check here, in
	 * addition to ExecProcNode() (via ExecProcNodeFirst()), to ensure the
	 * stack isn't overrun while initializing the node tree.
	 */
	check_stack_depth();

	switch (nodeTag(node))
	{
			/*
			 * control nodes
			 */
		case T_Result:
			result = (PlanState *) ExecInitResult((Result *) node,
												  estate, eflags);
			break;

		case T_ProjectSet:
			result = (PlanState *) ExecInitProjectSet((ProjectSet *) node,
													  estate, eflags);
			break;

		case T_ModifyTable:
			result = (PlanState *) ExecInitModifyTable((ModifyTable *) node,
													   estate, eflags);
			break;

		case T_Append:
			result = (PlanState *) ExecInitAppend((Append *) node,
												  estate, eflags);
			break;

		case T_MergeAppend:
			result = (PlanState *) ExecInitMergeAppend((MergeAppend *) node,
													   estate, eflags);
			break;

		case T_RecursiveUnion:
			result = (PlanState *) ExecInitRecursiveUnion((RecursiveUnion *) node,
														  estate, eflags);
			break;

		case T_BitmapAnd:
			result = (PlanState *) ExecInitBitmapAnd((BitmapAnd *) node,
													 estate, eflags);
			break;

		case T_BitmapOr:
			result = (PlanState *) ExecInitBitmapOr((BitmapOr *) node,
													estate, eflags);
			break;

			/*
			 * scan nodes
			 */
		case T_SeqScan:
			result = (PlanState *) ExecInitSeqScan((SeqScan *) node,
												   estate, eflags);
			break;

		case T_SampleScan:
			result = (PlanState *) ExecInitSampleScan((SampleScan *) node,
													  estate, eflags);
			break;

		case T_IndexScan:
			result = (PlanState *) ExecInitIndexScan((IndexScan *) node,
													 estate, eflags);
			break;

		case T_IndexOnlyScan:
			result = (PlanState *) ExecInitIndexOnlyScan((IndexOnlyScan *) node,
														 estate, eflags);
			break;

		case T_BitmapIndexScan:
			result = (PlanState *) ExecInitBitmapIndexScan((BitmapIndexScan *) node,
														   estate, eflags);
			break;

		case T_BitmapHeapScan:
			result = (PlanState *) ExecInitBitmapHeapScan((BitmapHeapScan *) node,
														  estate, eflags);
			break;

		case T_TidScan:
			result = (PlanState *) ExecInitTidScan((TidScan *) node,
												   estate, eflags);
			break;

		case T_TidRangeScan:
			result = (PlanState *) ExecInitTidRangeScan((TidRangeScan *) node,
														estate, eflags);
			break;

		case T_SubqueryScan:
			result = (PlanState *) ExecInitSubqueryScan((SubqueryScan *) node,
														estate, eflags);
			break;

		case T_FunctionScan:
			result = (PlanState *) ExecInitFunctionScan((FunctionScan *) node,
														estate, eflags);
			break;

		case T_TableFuncScan:
			result = (PlanState *) ExecInitTableFuncScan((TableFuncScan *) node,
														 estate, eflags);
			break;

		case T_ValuesScan:
			result = (PlanState *) ExecInitValuesScan((ValuesScan *) node,
													  estate, eflags);
			break;

		case T_CteScan:
			result = (PlanState *) ExecInitCteScan((CteScan *) node,
												   estate, eflags);
			break;

		case T_NamedTuplestoreScan:
			result = (PlanState *) ExecInitNamedTuplestoreScan((NamedTuplestoreScan *) node,
															   estate, eflags);
			break;

		case T_WorkTableScan:
			result = (PlanState *) ExecInitWorkTableScan((WorkTableScan *) node,
														 estate, eflags);
			break;

		case T_ForeignScan:
			result = (PlanState *) ExecInitForeignScan((ForeignScan *) node,
													   estate, eflags);
			break;

		case T_CustomScan:
			result = (PlanState *) ExecInitCustomScan((CustomScan *) node,
													  estate, eflags);
			break;

			/*
			 * join nodes
			 */
		case T_NestLoop:
			result = (PlanState *) ExecInitNestLoop((NestLoop *) node,
													estate, eflags);
			break;

		case T_MergeJoin:
			result = (PlanState *) ExecInitMergeJoin((MergeJoin *) node,
													 estate, eflags);
			break;

		case T_HashJoin:
			result = (PlanState *) ExecInitHashJoin((HashJoin *) node,
													estate, eflags);
			break;

			/*
			 * materialization nodes
			 */
		case T_Material:
			result = (PlanState *) ExecInitMaterial((Material *) node,
													estate, eflags);
			break;

		case T_Sort:
			result = (PlanState *) ExecInitSort((Sort *) node,
												estate, eflags);
			break;

		case T_IncrementalSort:
			result = (PlanState *) ExecInitIncrementalSort((IncrementalSort *) node,
														   estate, eflags);
			break;

		case T_Memoize:
			result = (PlanState *) ExecInitMemoize((Memoize *) node, estate,
												   eflags);
			break;

		case T_Group:
			result = (PlanState *) ExecInitGroup((Group *) node,
												 estate, eflags);
			break;

		case T_Agg:
			result = (PlanState *) ExecInitAgg((Agg *) node,
											   estate, eflags);
			break;

		case T_WindowAgg:
			result = (PlanState *) ExecInitWindowAgg((WindowAgg *) node,
													 estate, eflags);
			break;

		case T_Unique:
			result = (PlanState *) ExecInitUnique((Unique *) node,
												  estate, eflags);
			break;

		case T_Gather:
			result = (PlanState *) ExecInitGather((Gather *) node,
												  estate, eflags);
			break;

		case T_GatherMerge:
			result = (PlanState *) ExecInitGatherMerge((GatherMerge *) node,
													   estate, eflags);
			break;

		case T_Hash:
			result = (PlanState *) ExecInitHash((Hash *) node,
												estate, eflags);
			break;

		case T_SetOp:
			result = (PlanState *) ExecInitSetOp((SetOp *) node,
												 estate, eflags);
			break;

		case T_LockRows:
			result = (PlanState *) ExecInitLockRows((LockRows *) node,
													estate, eflags);
			break;

		case T_Limit:
			result = (PlanState *) ExecInitLimit((Limit *) node,
												 estate, eflags);
			break;

		default:
			elog(ERROR, "unrecognized node type: %d", (int) nodeTag(node));
			result = NULL;		/* keep compiler quiet */
			break;
	}

	ExecSetExecProcNode(result, result->ExecProcNode);

	/*
	 * Initialize any initPlans present in this node.  The planner put them in
	 * a separate list for us.
	 */
	subps = NIL;
	foreach(l, node->initPlan)
	{
		SubPlan    *subplan = (SubPlan *) lfirst(l);
		SubPlanState *sstate;

		Assert(IsA(subplan, SubPlan));
		sstate = ExecInitSubPlan(subplan, result);
		subps = lappend(subps, sstate);
	}
	result->initPlan = subps;

	/* Set up instrumentation for this node if requested */
	if (estate->es_instrument)
		result->instrument = InstrAlloc(1, estate->es_instrument,
										result->async_capable);

	return result;
}


/*
 * If a node wants to change its ExecProcNode function after ExecInitNode()
 * has finished, it should do so with this function.  That way any wrapper
 * functions can be reinstalled, without the node having to know how that
 * works.
 */
void
ExecSetExecProcNode(PlanState *node, ExecProcNodeMtd function)
{
	/*
	 * Add a wrapper around the ExecProcNode callback that checks stack depth
	 * during the first execution and maybe adds an instrumentation wrapper.
	 * When the callback is changed after execution has already begun that
	 * means we'll superfluously execute ExecProcNodeFirst, but that seems ok.
	 */
	node->ExecProcNodeReal = function;
	node->ExecProcNode = ExecProcNodeFirst;
}


/*
 * ExecProcNode wrapper that performs some one-time checks, before calling
 * the relevant node method (possibly via an instrumentation wrapper).
 */
static TupleTableSlot *
ExecProcNodeFirst(PlanState *node)
{
	/*
	 * Perform stack depth check during the first execution of the node.  We
	 * only do so the first time round because it turns out to not be cheap on
	 * some common architectures (eg. x86).  This relies on the assumption
	 * that ExecProcNode calls for a given plan node will always be made at
	 * roughly the same stack depth.
	 */
	check_stack_depth();

	/*
	 * If instrumentation is required, change the wrapper to one that just
	 * does instrumentation.  Otherwise we can dispense with all wrappers and
	 * have ExecProcNode() directly call the relevant function from now on.
	 */
	if (node->instrument)
		node->ExecProcNode = ExecProcNodeInstr;
	else
		node->ExecProcNode = node->ExecProcNodeReal;

	return node->ExecProcNode(node);
}


/*
 * ExecProcNode wrapper that performs instrumentation calls.  By keeping
 * this a separate function, we avoid overhead in the normal case where
 * no instrumentation is wanted.
 */
static TupleTableSlot *
ExecProcNodeInstr(PlanState *node)
{
	TupleTableSlot *result;

	InstrStartNode(node->instrument);

	result = node->ExecProcNodeReal(node);

	InstrStopNode(node->instrument, TupIsNull(result) ? 0.0 : 1.0);

	return result;
}


/* ----------------------------------------------------------------
 *		MultiExecProcNode
 *
 *		Execute a node that doesn't return individual tuples
 *		(it might return a hashtable, bitmap, etc).  Caller should
 *		check it got back the expected kind of Node.
 *
 * This has essentially the same responsibilities as ExecProcNode,
 * but it does not do InstrStartNode/InstrStopNode (mainly because
 * it can't tell how many returned tuples to count).  Each per-node
 * function must provide its own instrumentation support.
 * ----------------------------------------------------------------
 */
Node *
MultiExecProcNode(PlanState *node)
{
	Node	   *result;

	check_stack_depth();

	CHECK_FOR_INTERRUPTS();

	if (node->chgParam != NULL) /* something changed */
		ExecReScan(node);		/* let ReScan handle this */

	switch (nodeTag(node))
	{
			/*
			 * Only node types that actually support multiexec will be listed
			 */

		case T_HashState:
			result = MultiExecHash((HashState *) node);
			break;

		case T_BitmapIndexScanState:
			result = MultiExecBitmapIndexScan((BitmapIndexScanState *) node);
			break;

		case T_BitmapAndState:
			result = MultiExecBitmapAnd((BitmapAndState *) node);
			break;

		case T_BitmapOrState:
			result = MultiExecBitmapOr((BitmapOrState *) node);
			break;

		default:
			elog(ERROR, "unrecognized node type: %d", (int) nodeTag(node));
			result = NULL;
			break;
	}

	return result;
}


/* ----------------------------------------------------------------
 *		ExecEndNode
 *
 *		Recursively cleans up all the nodes in the plan rooted
 *		at 'node'.
 *
 *		After this operation, the query plan will not be able to be
 *		processed any further.  This should be called only after
 *		the query plan has been fully executed.
 * ----------------------------------------------------------------
 */
void
ExecEndNode(PlanState *node)
{
	/*
	 * do nothing when we get to the end of a leaf on tree.
	 */
	if (node == NULL)
		return;

	/*
	 * Make sure there's enough stack available. Need to check here, in
	 * addition to ExecProcNode() (via ExecProcNodeFirst()), because it's not
	 * guaranteed that ExecProcNode() is reached for all nodes.
	 */
	check_stack_depth();

	if (node->chgParam != NULL)
	{
		bms_free(node->chgParam);
		node->chgParam = NULL;
	}

	switch (nodeTag(node))
	{
			/*
			 * control nodes
			 */
		case T_ResultState:
			ExecEndResult((ResultState *) node);
			break;

		case T_ProjectSetState:
			ExecEndProjectSet((ProjectSetState *) node);
			break;

		case T_ModifyTableState:
			ExecEndModifyTable((ModifyTableState *) node);
			break;

		case T_AppendState:
			ExecEndAppend((AppendState *) node);
			break;

		case T_MergeAppendState:
			ExecEndMergeAppend((MergeAppendState *) node);
			break;

		case T_RecursiveUnionState:
			ExecEndRecursiveUnion((RecursiveUnionState *) node);
			break;

		case T_BitmapAndState:
			ExecEndBitmapAnd((BitmapAndState *) node);
			break;

		case T_BitmapOrState:
			ExecEndBitmapOr((BitmapOrState *) node);
			break;

			/*
			 * scan nodes
			 */
		case T_SeqScanState:
			ExecEndSeqScan((SeqScanState *) node);
			break;

		case T_SampleScanState:
			ExecEndSampleScan((SampleScanState *) node);
			break;

		case T_GatherState:
			ExecEndGather((GatherState *) node);
			break;

		case T_GatherMergeState:
			ExecEndGatherMerge((GatherMergeState *) node);
			break;

		case T_IndexScanState:
			ExecEndIndexScan((IndexScanState *) node);
			break;

		case T_IndexOnlyScanState:
			ExecEndIndexOnlyScan((IndexOnlyScanState *) node);
			break;

		case T_BitmapIndexScanState:
			ExecEndBitmapIndexScan((BitmapIndexScanState *) node);
			break;

		case T_BitmapHeapScanState:
			ExecEndBitmapHeapScan((BitmapHeapScanState *) node);
			break;

		case T_TidScanState:
			ExecEndTidScan((TidScanState *) node);
			break;

		case T_TidRangeScanState:
			ExecEndTidRangeScan((TidRangeScanState *) node);
			break;

		case T_SubqueryScanState:
			ExecEndSubqueryScan((SubqueryScanState *) node);
			break;

		case T_FunctionScanState:
			ExecEndFunctionScan((FunctionScanState *) node);
			break;

		case T_TableFuncScanState:
			ExecEndTableFuncScan((TableFuncScanState *) node);
			break;

		case T_ValuesScanState:
			ExecEndValuesScan((ValuesScanState *) node);
			break;

		case T_CteScanState:
			ExecEndCteScan((CteScanState *) node);
			break;

		case T_NamedTuplestoreScanState:
			ExecEndNamedTuplestoreScan((NamedTuplestoreScanState *) node);
			break;

		case T_WorkTableScanState:
			ExecEndWorkTableScan((WorkTableScanState *) node);
			break;

		case T_ForeignScanState:
			ExecEndForeignScan((ForeignScanState *) node);
			break;

		case T_CustomScanState:
			ExecEndCustomScan((CustomScanState *) node);
			break;

			/*
			 * join nodes
			 */
		case T_NestLoopState:
			ExecEndNestLoop((NestLoopState *) node);
			break;

		case T_MergeJoinState:
			ExecEndMergeJoin((MergeJoinState *) node);
			break;

		case T_HashJoinState:
			ExecEndHashJoin((HashJoinState *) node);
			break;

			/*
			 * materialization nodes
			 */
		case T_MaterialState:
			ExecEndMaterial((MaterialState *) node);
			break;

		case T_SortState:
			ExecEndSort((SortState *) node);
			break;

		case T_IncrementalSortState:
			ExecEndIncrementalSort((IncrementalSortState *) node);
			break;

		case T_MemoizeState:
			ExecEndMemoize((MemoizeState *) node);
			break;

		case T_GroupState:
			ExecEndGroup((GroupState *) node);
			break;

		case T_AggState:
			ExecEndAgg((AggState *) node);
			break;

		case T_WindowAggState:
			ExecEndWindowAgg((WindowAggState *) node);
			break;

		case T_UniqueState:
			ExecEndUnique((UniqueState *) node);
			break;

		case T_HashState:
			ExecEndHash((HashState *) node);
			break;

		case T_SetOpState:
			ExecEndSetOp((SetOpState *) node);
			break;

		case T_LockRowsState:
			ExecEndLockRows((LockRowsState *) node);
			break;

		case T_LimitState:
			ExecEndLimit((LimitState *) node);
			break;

		default:
			elog(ERROR, "unrecognized node type: %d", (int) nodeTag(node));
			break;
	}
}

/*
 * ExecShutdownNode
 *
 * Give execution nodes a chance to stop asynchronous resource consumption
 * and release any resources still held.
 */
void
ExecShutdownNode(PlanState *node)
{
	(void) ExecShutdownNode_walker(node, NULL);
}

static bool
ExecShutdownNode_walker(PlanState *node, void *context)
{
	if (node == NULL)
		return false;

	check_stack_depth();

	/*
	 * Treat the node as running while we shut it down, but only if it's run
	 * at least once already.  We don't expect much CPU consumption during
	 * node shutdown, but in the case of Gather or Gather Merge, we may shut
	 * down workers at this stage.  If so, their buffer usage will get
	 * propagated into pgBufferUsage at this point, and we want to make sure
	 * that it gets associated with the Gather node.  We skip this if the node
	 * has never been executed, so as to avoid incorrectly making it appear
	 * that it has.
	 */
	if (node->instrument && node->instrument->running)
		InstrStartNode(node->instrument);

	planstate_tree_walker(node, ExecShutdownNode_walker, context);

	switch (nodeTag(node))
	{
		case T_GatherState:
			ExecShutdownGather((GatherState *) node);
			break;
		case T_ForeignScanState:
			ExecShutdownForeignScan((ForeignScanState *) node);
			break;
		case T_CustomScanState:
			ExecShutdownCustomScan((CustomScanState *) node);
			break;
		case T_GatherMergeState:
			ExecShutdownGatherMerge((GatherMergeState *) node);
			break;
		case T_HashState:
			ExecShutdownHash((HashState *) node);
			break;
		case T_HashJoinState:
			ExecShutdownHashJoin((HashJoinState *) node);
			break;
		default:
			break;
	}

	/* Stop the node if we started it above, reporting 0 tuples. */
	if (node->instrument && node->instrument->running)
		InstrStopNode(node->instrument, 0);

	return false;
}

/*
 * ExecSetTupleBound
 *
 * Set a tuple bound for a planstate node.  This lets child plan nodes
 * optimize based on the knowledge that the maximum number of tuples that
 * their parent will demand is limited.  The tuple bound for a node may
 * only be changed between scans (i.e., after node initialization or just
 * before an ExecReScan call).
 *
 * Any negative tuples_needed value means "no limit", which should be the
 * default assumption when this is not called at all for a particular node.
 *
 * Note: if this is called repeatedly on a plan tree, the exact same set
 * of nodes must be updated with the new limit each time; be careful that
 * only unchanging conditions are tested here.
 */
void
ExecSetTupleBound(int64 tuples_needed, PlanState *child_node)
{
	/*
	 * Since this function recurses, in principle we should check stack depth
	 * here.  In practice, it's probably pointless since the earlier node
	 * initialization tree traversal would surely have consumed more stack.
	 */

	if (IsA(child_node, SortState))
	{
		/*
		 * If it is a Sort node, notify it that it can use bounded sort.
		 *
		 * Note: it is the responsibility of nodeSort.c to react properly to
		 * changes of these parameters.  If we ever redesign this, it'd be a
		 * good idea to integrate this signaling with the parameter-change
		 * mechanism.
		 */
		SortState  *sortState = (SortState *) child_node;

		if (tuples_needed < 0)
		{
			/* make sure flag gets reset if needed upon rescan */
			sortState->bounded = false;
		}
		else
		{
			sortState->bounded = true;
			sortState->bound = tuples_needed;
		}
	}
	else if (IsA(child_node, IncrementalSortState))
	{
		/*
		 * If it is an IncrementalSort node, notify it that it can use bounded
		 * sort.
		 *
		 * Note: it is the responsibility of nodeIncrementalSort.c to react
		 * properly to changes of these parameters.  If we ever redesign this,
		 * it'd be a good idea to integrate this signaling with the
		 * parameter-change mechanism.
		 */
		IncrementalSortState *sortState = (IncrementalSortState *) child_node;

		if (tuples_needed < 0)
		{
			/* make sure flag gets reset if needed upon rescan */
			sortState->bounded = false;
		}
		else
		{
			sortState->bounded = true;
			sortState->bound = tuples_needed;
		}
	}
	else if (IsA(child_node, AppendState))
	{
		/*
		 * If it is an Append, we can apply the bound to any nodes that are
		 * children of the Append, since the Append surely need read no more
		 * than that many tuples from any one input.
		 */
		AppendState *aState = (AppendState *) child_node;
		int			i;

		for (i = 0; i < aState->as_nplans; i++)
			ExecSetTupleBound(tuples_needed, aState->appendplans[i]);
	}
	else if (IsA(child_node, MergeAppendState))
	{
		/*
		 * If it is a MergeAppend, we can apply the bound to any nodes that
		 * are children of the MergeAppend, since the MergeAppend surely need
		 * read no more than that many tuples from any one input.
		 */
		MergeAppendState *maState = (MergeAppendState *) child_node;
		int			i;

		for (i = 0; i < maState->ms_nplans; i++)
			ExecSetTupleBound(tuples_needed, maState->mergeplans[i]);
	}
	else if (IsA(child_node, ResultState))
	{
		/*
		 * Similarly, for a projecting Result, we can apply the bound to its
		 * child node.
		 *
		 * If Result supported qual checking, we'd have to punt on seeing a
		 * qual.  Note that having a resconstantqual is not a showstopper: if
		 * that condition succeeds it affects nothing, while if it fails, no
		 * rows will be demanded from the Result child anyway.
		 */
		if (outerPlanState(child_node))
			ExecSetTupleBound(tuples_needed, outerPlanState(child_node));
	}
	else if (IsA(child_node, SubqueryScanState))
	{
		/*
		 * We can also descend through SubqueryScan, but only if it has no
		 * qual (otherwise it might discard rows).
		 */
		SubqueryScanState *subqueryState = (SubqueryScanState *) child_node;

		if (subqueryState->ss.ps.qual == NULL)
			ExecSetTupleBound(tuples_needed, subqueryState->subplan);
	}
	else if (IsA(child_node, GatherState))
	{
		/*
		 * A Gather node can propagate the bound to its workers.  As with
		 * MergeAppend, no one worker could possibly need to return more
		 * tuples than the Gather itself needs to.
		 *
		 * Note: As with Sort, the Gather node is responsible for reacting
		 * properly to changes to this parameter.
		 */
		GatherState *gstate = (GatherState *) child_node;

		gstate->tuples_needed = tuples_needed;

		/* Also pass down the bound to our own copy of the child plan */
		ExecSetTupleBound(tuples_needed, outerPlanState(child_node));
	}
	else if (IsA(child_node, GatherMergeState))
	{
		/* Same comments as for Gather */
		GatherMergeState *gstate = (GatherMergeState *) child_node;

		gstate->tuples_needed = tuples_needed;

		ExecSetTupleBound(tuples_needed, outerPlanState(child_node));
	}

	/*
	 * In principle we could descend through any plan node type that is
	 * certain not to discard or combine input rows; but on seeing a node that
	 * can do that, we can't propagate the bound any further.  For the moment
	 * it's unclear that any other cases are worth checking here.
	 */
}