summaryrefslogtreecommitdiff
path: root/src/backend/access/nbtree/nbtsort.c
blob: 67b7b1710c6d9c37781a2cfcea9976d6644d3f69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
/*-------------------------------------------------------------------------
 *
 * nbtsort.c
 *		Build a btree from sorted input by loading leaf pages sequentially.
 *
 * NOTES
 *
 * We use tuplesort.c to sort the given index tuples into order.
 * Then we scan the index tuples in order and build the btree pages
 * for each level.  We load source tuples into leaf-level pages.
 * Whenever we fill a page at one level, we add a link to it to its
 * parent level (starting a new parent level if necessary).  When
 * done, we write out each final page on each level, adding it to
 * its parent level.  When we have only one page on a level, it must be
 * the root -- it can be attached to the btree metapage and we are done.
 *
 * It is not wise to pack the pages entirely full, since then *any*
 * insertion would cause a split (and not only of the leaf page; the need
 * for a split would cascade right up the tree).  The steady-state load
 * factor for btrees is usually estimated at 70%.  We choose to pack leaf
 * pages to the user-controllable fill factor (default 90%) while upper pages
 * are always packed to 70%.  This gives us reasonable density (there aren't
 * many upper pages if the keys are reasonable-size) without risking a lot of
 * cascading splits during early insertions.
 *
 * Formerly the index pages being built were kept in shared buffers, but
 * that is of no value (since other backends have no interest in them yet)
 * and it created locking problems for CHECKPOINT, because the upper-level
 * pages were held exclusive-locked for long periods.  Now we just build
 * the pages in local memory and smgrwrite or smgrextend them as we finish
 * them.  They will need to be re-read into shared buffers on first use after
 * the build finishes.
 *
 * This code isn't concerned about the FSM at all. The caller is responsible
 * for initializing that.
 *
 * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 * IDENTIFICATION
 *	  src/backend/access/nbtree/nbtsort.c
 *
 *-------------------------------------------------------------------------
 */

#include "postgres.h"

#include "access/nbtree.h"
#include "access/parallel.h"
#include "access/relscan.h"
#include "access/table.h"
#include "access/xact.h"
#include "access/xlog.h"
#include "access/xloginsert.h"
#include "catalog/index.h"
#include "commands/progress.h"
#include "executor/instrument.h"
#include "miscadmin.h"
#include "pgstat.h"
#include "storage/smgr.h"
#include "tcop/tcopprot.h"		/* pgrminclude ignore */
#include "utils/rel.h"
#include "utils/sortsupport.h"
#include "utils/tuplesort.h"


/* Magic numbers for parallel state sharing */
#define PARALLEL_KEY_BTREE_SHARED		UINT64CONST(0xA000000000000001)
#define PARALLEL_KEY_TUPLESORT			UINT64CONST(0xA000000000000002)
#define PARALLEL_KEY_TUPLESORT_SPOOL2	UINT64CONST(0xA000000000000003)
#define PARALLEL_KEY_QUERY_TEXT			UINT64CONST(0xA000000000000004)
#define PARALLEL_KEY_WAL_USAGE			UINT64CONST(0xA000000000000005)
#define PARALLEL_KEY_BUFFER_USAGE		UINT64CONST(0xA000000000000006)

/*
 * DISABLE_LEADER_PARTICIPATION disables the leader's participation in
 * parallel index builds.  This may be useful as a debugging aid.
#undef DISABLE_LEADER_PARTICIPATION
 */

/*
 * Status record for spooling/sorting phase.  (Note we may have two of
 * these due to the special requirements for uniqueness-checking with
 * dead tuples.)
 */
typedef struct BTSpool
{
	Tuplesortstate *sortstate;	/* state data for tuplesort.c */
	Relation	heap;
	Relation	index;
	bool		isunique;
	bool		nulls_not_distinct;
} BTSpool;

/*
 * Status for index builds performed in parallel.  This is allocated in a
 * dynamic shared memory segment.  Note that there is a separate tuplesort TOC
 * entry, private to tuplesort.c but allocated by this module on its behalf.
 */
typedef struct BTShared
{
	/*
	 * These fields are not modified during the sort.  They primarily exist
	 * for the benefit of worker processes that need to create BTSpool state
	 * corresponding to that used by the leader.
	 */
	Oid			heaprelid;
	Oid			indexrelid;
	bool		isunique;
	bool		nulls_not_distinct;
	bool		isconcurrent;
	int			scantuplesortstates;

	/*
	 * workersdonecv is used to monitor the progress of workers.  All parallel
	 * participants must indicate that they are done before leader can use
	 * mutable state that workers maintain during scan (and before leader can
	 * proceed to tuplesort_performsort()).
	 */
	ConditionVariable workersdonecv;

	/*
	 * mutex protects all fields before heapdesc.
	 *
	 * These fields contain status information of interest to B-Tree index
	 * builds that must work just the same when an index is built in parallel.
	 */
	slock_t		mutex;

	/*
	 * Mutable state that is maintained by workers, and reported back to
	 * leader at end of parallel scan.
	 *
	 * nparticipantsdone is number of worker processes finished.
	 *
	 * reltuples is the total number of input heap tuples.
	 *
	 * havedead indicates if RECENTLY_DEAD tuples were encountered during
	 * build.
	 *
	 * indtuples is the total number of tuples that made it into the index.
	 *
	 * brokenhotchain indicates if any worker detected a broken HOT chain
	 * during build.
	 */
	int			nparticipantsdone;
	double		reltuples;
	bool		havedead;
	double		indtuples;
	bool		brokenhotchain;

	/*
	 * ParallelTableScanDescData data follows. Can't directly embed here, as
	 * implementations of the parallel table scan desc interface might need
	 * stronger alignment.
	 */
} BTShared;

/*
 * Return pointer to a BTShared's parallel table scan.
 *
 * c.f. shm_toc_allocate as to why BUFFERALIGN is used, rather than just
 * MAXALIGN.
 */
#define ParallelTableScanFromBTShared(shared) \
	(ParallelTableScanDesc) ((char *) (shared) + BUFFERALIGN(sizeof(BTShared)))

/*
 * Status for leader in parallel index build.
 */
typedef struct BTLeader
{
	/* parallel context itself */
	ParallelContext *pcxt;

	/*
	 * nparticipanttuplesorts is the exact number of worker processes
	 * successfully launched, plus one leader process if it participates as a
	 * worker (only DISABLE_LEADER_PARTICIPATION builds avoid leader
	 * participating as a worker).
	 */
	int			nparticipanttuplesorts;

	/*
	 * Leader process convenience pointers to shared state (leader avoids TOC
	 * lookups).
	 *
	 * btshared is the shared state for entire build.  sharedsort is the
	 * shared, tuplesort-managed state passed to each process tuplesort.
	 * sharedsort2 is the corresponding btspool2 shared state, used only when
	 * building unique indexes.  snapshot is the snapshot used by the scan iff
	 * an MVCC snapshot is required.
	 */
	BTShared   *btshared;
	Sharedsort *sharedsort;
	Sharedsort *sharedsort2;
	Snapshot	snapshot;
	WalUsage   *walusage;
	BufferUsage *bufferusage;
} BTLeader;

/*
 * Working state for btbuild and its callback.
 *
 * When parallel CREATE INDEX is used, there is a BTBuildState for each
 * participant.
 */
typedef struct BTBuildState
{
	bool		isunique;
	bool		nulls_not_distinct;
	bool		havedead;
	Relation	heap;
	BTSpool    *spool;

	/*
	 * spool2 is needed only when the index is a unique index. Dead tuples are
	 * put into spool2 instead of spool in order to avoid uniqueness check.
	 */
	BTSpool    *spool2;
	double		indtuples;

	/*
	 * btleader is only present when a parallel index build is performed, and
	 * only in the leader process. (Actually, only the leader has a
	 * BTBuildState.  Workers have their own spool and spool2, though.)
	 */
	BTLeader   *btleader;
} BTBuildState;

/*
 * Status record for a btree page being built.  We have one of these
 * for each active tree level.
 */
typedef struct BTPageState
{
	Page		btps_page;		/* workspace for page building */
	BlockNumber btps_blkno;		/* block # to write this page at */
	IndexTuple	btps_lowkey;	/* page's strict lower bound pivot tuple */
	OffsetNumber btps_lastoff;	/* last item offset loaded */
	Size		btps_lastextra; /* last item's extra posting list space */
	uint32		btps_level;		/* tree level (0 = leaf) */
	Size		btps_full;		/* "full" if less than this much free space */
	struct BTPageState *btps_next;	/* link to parent level, if any */
} BTPageState;

/*
 * Overall status record for index writing phase.
 */
typedef struct BTWriteState
{
	Relation	heap;
	Relation	index;
	BTScanInsert inskey;		/* generic insertion scankey */
	bool		btws_use_wal;	/* dump pages to WAL? */
	BlockNumber btws_pages_alloced; /* # pages allocated */
	BlockNumber btws_pages_written; /* # pages written out */
	Page		btws_zeropage;	/* workspace for filling zeroes */
} BTWriteState;


static double _bt_spools_heapscan(Relation heap, Relation index,
								  BTBuildState *buildstate, IndexInfo *indexInfo);
static void _bt_spooldestroy(BTSpool *btspool);
static void _bt_spool(BTSpool *btspool, ItemPointer self,
					  Datum *values, bool *isnull);
static void _bt_leafbuild(BTSpool *btspool, BTSpool *btspool2);
static void _bt_build_callback(Relation index, ItemPointer tid, Datum *values,
							   bool *isnull, bool tupleIsAlive, void *state);
static Page _bt_blnewpage(uint32 level);
static BTPageState *_bt_pagestate(BTWriteState *wstate, uint32 level);
static void _bt_slideleft(Page rightmostpage);
static void _bt_sortaddtup(Page page, Size itemsize,
						   IndexTuple itup, OffsetNumber itup_off,
						   bool newfirstdataitem);
static void _bt_buildadd(BTWriteState *wstate, BTPageState *state,
						 IndexTuple itup, Size truncextra);
static void _bt_sort_dedup_finish_pending(BTWriteState *wstate,
										  BTPageState *state,
										  BTDedupState dstate);
static void _bt_uppershutdown(BTWriteState *wstate, BTPageState *state);
static void _bt_load(BTWriteState *wstate,
					 BTSpool *btspool, BTSpool *btspool2);
static void _bt_begin_parallel(BTBuildState *buildstate, bool isconcurrent,
							   int request);
static void _bt_end_parallel(BTLeader *btleader);
static Size _bt_parallel_estimate_shared(Relation heap, Snapshot snapshot);
static double _bt_parallel_heapscan(BTBuildState *buildstate,
									bool *brokenhotchain);
static void _bt_leader_participate_as_worker(BTBuildState *buildstate);
static void _bt_parallel_scan_and_sort(BTSpool *btspool, BTSpool *btspool2,
									   BTShared *btshared, Sharedsort *sharedsort,
									   Sharedsort *sharedsort2, int sortmem,
									   bool progress);


/*
 *	btbuild() -- build a new btree index.
 */
IndexBuildResult *
btbuild(Relation heap, Relation index, IndexInfo *indexInfo)
{
	IndexBuildResult *result;
	BTBuildState buildstate;
	double		reltuples;

#ifdef BTREE_BUILD_STATS
	if (log_btree_build_stats)
		ResetUsage();
#endif							/* BTREE_BUILD_STATS */

	buildstate.isunique = indexInfo->ii_Unique;
	buildstate.nulls_not_distinct = indexInfo->ii_NullsNotDistinct;
	buildstate.havedead = false;
	buildstate.heap = heap;
	buildstate.spool = NULL;
	buildstate.spool2 = NULL;
	buildstate.indtuples = 0;
	buildstate.btleader = NULL;

	/*
	 * We expect to be called exactly once for any index relation. If that's
	 * not the case, big trouble's what we have.
	 */
	if (RelationGetNumberOfBlocks(index) != 0)
		elog(ERROR, "index \"%s\" already contains data",
			 RelationGetRelationName(index));

	reltuples = _bt_spools_heapscan(heap, index, &buildstate, indexInfo);

	/*
	 * Finish the build by (1) completing the sort of the spool file, (2)
	 * inserting the sorted tuples into btree pages and (3) building the upper
	 * levels.  Finally, it may also be necessary to end use of parallelism.
	 */
	_bt_leafbuild(buildstate.spool, buildstate.spool2);
	_bt_spooldestroy(buildstate.spool);
	if (buildstate.spool2)
		_bt_spooldestroy(buildstate.spool2);
	if (buildstate.btleader)
		_bt_end_parallel(buildstate.btleader);

	result = (IndexBuildResult *) palloc(sizeof(IndexBuildResult));

	result->heap_tuples = reltuples;
	result->index_tuples = buildstate.indtuples;

#ifdef BTREE_BUILD_STATS
	if (log_btree_build_stats)
	{
		ShowUsage("BTREE BUILD STATS");
		ResetUsage();
	}
#endif							/* BTREE_BUILD_STATS */

	return result;
}

/*
 * Create and initialize one or two spool structures, and save them in caller's
 * buildstate argument.  May also fill-in fields within indexInfo used by index
 * builds.
 *
 * Scans the heap, possibly in parallel, filling spools with IndexTuples.  This
 * routine encapsulates all aspects of managing parallelism.  Caller need only
 * call _bt_end_parallel() in parallel case after it is done with spool/spool2.
 *
 * Returns the total number of heap tuples scanned.
 */
static double
_bt_spools_heapscan(Relation heap, Relation index, BTBuildState *buildstate,
					IndexInfo *indexInfo)
{
	BTSpool    *btspool = (BTSpool *) palloc0(sizeof(BTSpool));
	SortCoordinate coordinate = NULL;
	double		reltuples = 0;

	/*
	 * We size the sort area as maintenance_work_mem rather than work_mem to
	 * speed index creation.  This should be OK since a single backend can't
	 * run multiple index creations in parallel (see also: notes on
	 * parallelism and maintenance_work_mem below).
	 */
	btspool->heap = heap;
	btspool->index = index;
	btspool->isunique = indexInfo->ii_Unique;
	btspool->nulls_not_distinct = indexInfo->ii_NullsNotDistinct;

	/* Save as primary spool */
	buildstate->spool = btspool;

	/* Report table scan phase started */
	pgstat_progress_update_param(PROGRESS_CREATEIDX_SUBPHASE,
								 PROGRESS_BTREE_PHASE_INDEXBUILD_TABLESCAN);

	/* Attempt to launch parallel worker scan when required */
	if (indexInfo->ii_ParallelWorkers > 0)
		_bt_begin_parallel(buildstate, indexInfo->ii_Concurrent,
						   indexInfo->ii_ParallelWorkers);

	/*
	 * If parallel build requested and at least one worker process was
	 * successfully launched, set up coordination state
	 */
	if (buildstate->btleader)
	{
		coordinate = (SortCoordinate) palloc0(sizeof(SortCoordinateData));
		coordinate->isWorker = false;
		coordinate->nParticipants =
			buildstate->btleader->nparticipanttuplesorts;
		coordinate->sharedsort = buildstate->btleader->sharedsort;
	}

	/*
	 * Begin serial/leader tuplesort.
	 *
	 * In cases where parallelism is involved, the leader receives the same
	 * share of maintenance_work_mem as a serial sort (it is generally treated
	 * in the same way as a serial sort once we return).  Parallel worker
	 * Tuplesortstates will have received only a fraction of
	 * maintenance_work_mem, though.
	 *
	 * We rely on the lifetime of the Leader Tuplesortstate almost not
	 * overlapping with any worker Tuplesortstate's lifetime.  There may be
	 * some small overlap, but that's okay because we rely on leader
	 * Tuplesortstate only allocating a small, fixed amount of memory here.
	 * When its tuplesort_performsort() is called (by our caller), and
	 * significant amounts of memory are likely to be used, all workers must
	 * have already freed almost all memory held by their Tuplesortstates
	 * (they are about to go away completely, too).  The overall effect is
	 * that maintenance_work_mem always represents an absolute high watermark
	 * on the amount of memory used by a CREATE INDEX operation, regardless of
	 * the use of parallelism or any other factor.
	 */
	buildstate->spool->sortstate =
		tuplesort_begin_index_btree(heap, index, buildstate->isunique,
									buildstate->nulls_not_distinct,
									maintenance_work_mem, coordinate,
									TUPLESORT_NONE);

	/*
	 * If building a unique index, put dead tuples in a second spool to keep
	 * them out of the uniqueness check.  We expect that the second spool (for
	 * dead tuples) won't get very full, so we give it only work_mem.
	 */
	if (indexInfo->ii_Unique)
	{
		BTSpool    *btspool2 = (BTSpool *) palloc0(sizeof(BTSpool));
		SortCoordinate coordinate2 = NULL;

		/* Initialize secondary spool */
		btspool2->heap = heap;
		btspool2->index = index;
		btspool2->isunique = false;
		/* Save as secondary spool */
		buildstate->spool2 = btspool2;

		if (buildstate->btleader)
		{
			/*
			 * Set up non-private state that is passed to
			 * tuplesort_begin_index_btree() about the basic high level
			 * coordination of a parallel sort.
			 */
			coordinate2 = (SortCoordinate) palloc0(sizeof(SortCoordinateData));
			coordinate2->isWorker = false;
			coordinate2->nParticipants =
				buildstate->btleader->nparticipanttuplesorts;
			coordinate2->sharedsort = buildstate->btleader->sharedsort2;
		}

		/*
		 * We expect that the second one (for dead tuples) won't get very
		 * full, so we give it only work_mem
		 */
		buildstate->spool2->sortstate =
			tuplesort_begin_index_btree(heap, index, false, false, work_mem,
										coordinate2, TUPLESORT_NONE);
	}

	/* Fill spool using either serial or parallel heap scan */
	if (!buildstate->btleader)
		reltuples = table_index_build_scan(heap, index, indexInfo, true, true,
										   _bt_build_callback, (void *) buildstate,
										   NULL);
	else
		reltuples = _bt_parallel_heapscan(buildstate,
										  &indexInfo->ii_BrokenHotChain);

	/*
	 * Set the progress target for the next phase.  Reset the block number
	 * values set by table_index_build_scan
	 */
	{
		const int	progress_index[] = {
			PROGRESS_CREATEIDX_TUPLES_TOTAL,
			PROGRESS_SCAN_BLOCKS_TOTAL,
			PROGRESS_SCAN_BLOCKS_DONE
		};
		const int64 progress_vals[] = {
			buildstate->indtuples,
			0, 0
		};

		pgstat_progress_update_multi_param(3, progress_index, progress_vals);
	}

	/* okay, all heap tuples are spooled */
	if (buildstate->spool2 && !buildstate->havedead)
	{
		/* spool2 turns out to be unnecessary */
		_bt_spooldestroy(buildstate->spool2);
		buildstate->spool2 = NULL;
	}

	return reltuples;
}

/*
 * clean up a spool structure and its substructures.
 */
static void
_bt_spooldestroy(BTSpool *btspool)
{
	tuplesort_end(btspool->sortstate);
	pfree(btspool);
}

/*
 * spool an index entry into the sort file.
 */
static void
_bt_spool(BTSpool *btspool, ItemPointer self, Datum *values, bool *isnull)
{
	tuplesort_putindextuplevalues(btspool->sortstate, btspool->index,
								  self, values, isnull);
}

/*
 * given a spool loaded by successive calls to _bt_spool,
 * create an entire btree.
 */
static void
_bt_leafbuild(BTSpool *btspool, BTSpool *btspool2)
{
	BTWriteState wstate;

#ifdef BTREE_BUILD_STATS
	if (log_btree_build_stats)
	{
		ShowUsage("BTREE BUILD (Spool) STATISTICS");
		ResetUsage();
	}
#endif							/* BTREE_BUILD_STATS */

	/* Execute the sort */
	pgstat_progress_update_param(PROGRESS_CREATEIDX_SUBPHASE,
								 PROGRESS_BTREE_PHASE_PERFORMSORT_1);
	tuplesort_performsort(btspool->sortstate);
	if (btspool2)
	{
		pgstat_progress_update_param(PROGRESS_CREATEIDX_SUBPHASE,
									 PROGRESS_BTREE_PHASE_PERFORMSORT_2);
		tuplesort_performsort(btspool2->sortstate);
	}

	wstate.heap = btspool->heap;
	wstate.index = btspool->index;
	wstate.inskey = _bt_mkscankey(wstate.index, NULL);
	/* _bt_mkscankey() won't set allequalimage without metapage */
	wstate.inskey->allequalimage = _bt_allequalimage(wstate.index, true);
	wstate.btws_use_wal = RelationNeedsWAL(wstate.index);

	/* reserve the metapage */
	wstate.btws_pages_alloced = BTREE_METAPAGE + 1;
	wstate.btws_pages_written = 0;
	wstate.btws_zeropage = NULL;	/* until needed */

	pgstat_progress_update_param(PROGRESS_CREATEIDX_SUBPHASE,
								 PROGRESS_BTREE_PHASE_LEAF_LOAD);
	_bt_load(&wstate, btspool, btspool2);
}

/*
 * Per-tuple callback for table_index_build_scan
 */
static void
_bt_build_callback(Relation index,
				   ItemPointer tid,
				   Datum *values,
				   bool *isnull,
				   bool tupleIsAlive,
				   void *state)
{
	BTBuildState *buildstate = (BTBuildState *) state;

	/*
	 * insert the index tuple into the appropriate spool file for subsequent
	 * processing
	 */
	if (tupleIsAlive || buildstate->spool2 == NULL)
		_bt_spool(buildstate->spool, tid, values, isnull);
	else
	{
		/* dead tuples are put into spool2 */
		buildstate->havedead = true;
		_bt_spool(buildstate->spool2, tid, values, isnull);
	}

	buildstate->indtuples += 1;
}

/*
 * allocate workspace for a new, clean btree page, not linked to any siblings.
 */
static Page
_bt_blnewpage(uint32 level)
{
	Page		page;
	BTPageOpaque opaque;

	page = (Page) palloc(BLCKSZ);

	/* Zero the page and set up standard page header info */
	_bt_pageinit(page, BLCKSZ);

	/* Initialize BT opaque state */
	opaque = BTPageGetOpaque(page);
	opaque->btpo_prev = opaque->btpo_next = P_NONE;
	opaque->btpo_level = level;
	opaque->btpo_flags = (level > 0) ? 0 : BTP_LEAF;
	opaque->btpo_cycleid = 0;

	/* Make the P_HIKEY line pointer appear allocated */
	((PageHeader) page)->pd_lower += sizeof(ItemIdData);

	return page;
}

/*
 * emit a completed btree page, and release the working storage.
 */
static void
_bt_blwritepage(BTWriteState *wstate, Page page, BlockNumber blkno)
{
	/* XLOG stuff */
	if (wstate->btws_use_wal)
	{
		/* We use the XLOG_FPI record type for this */
		log_newpage(&wstate->index->rd_locator, MAIN_FORKNUM, blkno, page, true);
	}

	/*
	 * If we have to write pages nonsequentially, fill in the space with
	 * zeroes until we come back and overwrite.  This is not logically
	 * necessary on standard Unix filesystems (unwritten space will read as
	 * zeroes anyway), but it should help to avoid fragmentation. The dummy
	 * pages aren't WAL-logged though.
	 */
	while (blkno > wstate->btws_pages_written)
	{
		if (!wstate->btws_zeropage)
			wstate->btws_zeropage = (Page) palloc0(BLCKSZ);
		/* don't set checksum for all-zero page */
		smgrextend(RelationGetSmgr(wstate->index), MAIN_FORKNUM,
				   wstate->btws_pages_written++,
				   (char *) wstate->btws_zeropage,
				   true);
	}

	PageSetChecksumInplace(page, blkno);

	/*
	 * Now write the page.  There's no need for smgr to schedule an fsync for
	 * this write; we'll do it ourselves before ending the build.
	 */
	if (blkno == wstate->btws_pages_written)
	{
		/* extending the file... */
		smgrextend(RelationGetSmgr(wstate->index), MAIN_FORKNUM, blkno,
				   (char *) page, true);
		wstate->btws_pages_written++;
	}
	else
	{
		/* overwriting a block we zero-filled before */
		smgrwrite(RelationGetSmgr(wstate->index), MAIN_FORKNUM, blkno,
				  (char *) page, true);
	}

	pfree(page);
}

/*
 * allocate and initialize a new BTPageState.  the returned structure
 * is suitable for immediate use by _bt_buildadd.
 */
static BTPageState *
_bt_pagestate(BTWriteState *wstate, uint32 level)
{
	BTPageState *state = (BTPageState *) palloc0(sizeof(BTPageState));

	/* create initial page for level */
	state->btps_page = _bt_blnewpage(level);

	/* and assign it a page position */
	state->btps_blkno = wstate->btws_pages_alloced++;

	state->btps_lowkey = NULL;
	/* initialize lastoff so first item goes into P_FIRSTKEY */
	state->btps_lastoff = P_HIKEY;
	state->btps_lastextra = 0;
	state->btps_level = level;
	/* set "full" threshold based on level.  See notes at head of file. */
	if (level > 0)
		state->btps_full = (BLCKSZ * (100 - BTREE_NONLEAF_FILLFACTOR) / 100);
	else
		state->btps_full = BTGetTargetPageFreeSpace(wstate->index);

	/* no parent level, yet */
	state->btps_next = NULL;

	return state;
}

/*
 * Slide the array of ItemIds from the page back one slot (from P_FIRSTKEY to
 * P_HIKEY, overwriting P_HIKEY).
 *
 * _bt_blnewpage() makes the P_HIKEY line pointer appear allocated, but the
 * rightmost page on its level is not supposed to get a high key.  Now that
 * it's clear that this page is a rightmost page, remove the unneeded empty
 * P_HIKEY line pointer space.
 */
static void
_bt_slideleft(Page rightmostpage)
{
	OffsetNumber off;
	OffsetNumber maxoff;
	ItemId		previi;

	maxoff = PageGetMaxOffsetNumber(rightmostpage);
	Assert(maxoff >= P_FIRSTKEY);
	previi = PageGetItemId(rightmostpage, P_HIKEY);
	for (off = P_FIRSTKEY; off <= maxoff; off = OffsetNumberNext(off))
	{
		ItemId		thisii = PageGetItemId(rightmostpage, off);

		*previi = *thisii;
		previi = thisii;
	}
	((PageHeader) rightmostpage)->pd_lower -= sizeof(ItemIdData);
}

/*
 * Add an item to a page being built.
 *
 * This is very similar to nbtinsert.c's _bt_pgaddtup(), but this variant
 * raises an error directly.
 *
 * Note that our nbtsort.c caller does not know yet if the page will be
 * rightmost.  Offset P_FIRSTKEY is always assumed to be the first data key by
 * caller.  Page that turns out to be the rightmost on its level is fixed by
 * calling _bt_slideleft().
 */
static void
_bt_sortaddtup(Page page,
			   Size itemsize,
			   IndexTuple itup,
			   OffsetNumber itup_off,
			   bool newfirstdataitem)
{
	IndexTupleData trunctuple;

	if (newfirstdataitem)
	{
		trunctuple = *itup;
		trunctuple.t_info = sizeof(IndexTupleData);
		BTreeTupleSetNAtts(&trunctuple, 0, false);
		itup = &trunctuple;
		itemsize = sizeof(IndexTupleData);
	}

	if (PageAddItem(page, (Item) itup, itemsize, itup_off,
					false, false) == InvalidOffsetNumber)
		elog(ERROR, "failed to add item to the index page");
}

/*----------
 * Add an item to a disk page from the sort output (or add a posting list
 * item formed from the sort output).
 *
 * We must be careful to observe the page layout conventions of nbtsearch.c:
 * - rightmost pages start data items at P_HIKEY instead of at P_FIRSTKEY.
 * - on non-leaf pages, the key portion of the first item need not be
 *	 stored, we should store only the link.
 *
 * A leaf page being built looks like:
 *
 * +----------------+---------------------------------+
 * | PageHeaderData | linp0 linp1 linp2 ...           |
 * +-----------+----+---------------------------------+
 * | ... linpN |									  |
 * +-----------+--------------------------------------+
 * |	 ^ last										  |
 * |												  |
 * +-------------+------------------------------------+
 * |			 | itemN ...                          |
 * +-------------+------------------+-----------------+
 * |		  ... item3 item2 item1 | "special space" |
 * +--------------------------------+-----------------+
 *
 * Contrast this with the diagram in bufpage.h; note the mismatch
 * between linps and items.  This is because we reserve linp0 as a
 * placeholder for the pointer to the "high key" item; when we have
 * filled up the page, we will set linp0 to point to itemN and clear
 * linpN.  On the other hand, if we find this is the last (rightmost)
 * page, we leave the items alone and slide the linp array over.  If
 * the high key is to be truncated, offset 1 is deleted, and we insert
 * the truncated high key at offset 1.
 *
 * 'last' pointer indicates the last offset added to the page.
 *
 * 'truncextra' is the size of the posting list in itup, if any.  This
 * information is stashed for the next call here, when we may benefit
 * from considering the impact of truncating away the posting list on
 * the page before deciding to finish the page off.  Posting lists are
 * often relatively large, so it is worth going to the trouble of
 * accounting for the saving from truncating away the posting list of
 * the tuple that becomes the high key (that may be the only way to
 * get close to target free space on the page).  Note that this is
 * only used for the soft fillfactor-wise limit, not the critical hard
 * limit.
 *----------
 */
static void
_bt_buildadd(BTWriteState *wstate, BTPageState *state, IndexTuple itup,
			 Size truncextra)
{
	Page		npage;
	BlockNumber nblkno;
	OffsetNumber last_off;
	Size		last_truncextra;
	Size		pgspc;
	Size		itupsz;
	bool		isleaf;

	/*
	 * This is a handy place to check for cancel interrupts during the btree
	 * load phase of index creation.
	 */
	CHECK_FOR_INTERRUPTS();

	npage = state->btps_page;
	nblkno = state->btps_blkno;
	last_off = state->btps_lastoff;
	last_truncextra = state->btps_lastextra;
	state->btps_lastextra = truncextra;

	pgspc = PageGetFreeSpace(npage);
	itupsz = IndexTupleSize(itup);
	itupsz = MAXALIGN(itupsz);
	/* Leaf case has slightly different rules due to suffix truncation */
	isleaf = (state->btps_level == 0);

	/*
	 * Check whether the new item can fit on a btree page on current level at
	 * all.
	 *
	 * Every newly built index will treat heap TID as part of the keyspace,
	 * which imposes the requirement that new high keys must occasionally have
	 * a heap TID appended within _bt_truncate().  That may leave a new pivot
	 * tuple one or two MAXALIGN() quantums larger than the original
	 * firstright tuple it's derived from.  v4 deals with the problem by
	 * decreasing the limit on the size of tuples inserted on the leaf level
	 * by the same small amount.  Enforce the new v4+ limit on the leaf level,
	 * and the old limit on internal levels, since pivot tuples may need to
	 * make use of the reserved space.  This should never fail on internal
	 * pages.
	 */
	if (unlikely(itupsz > BTMaxItemSize(npage)))
		_bt_check_third_page(wstate->index, wstate->heap, isleaf, npage,
							 itup);

	/*
	 * Check to see if current page will fit new item, with space left over to
	 * append a heap TID during suffix truncation when page is a leaf page.
	 *
	 * It is guaranteed that we can fit at least 2 non-pivot tuples plus a
	 * high key with heap TID when finishing off a leaf page, since we rely on
	 * _bt_check_third_page() rejecting oversized non-pivot tuples.  On
	 * internal pages we can always fit 3 pivot tuples with larger internal
	 * page tuple limit (includes page high key).
	 *
	 * Most of the time, a page is only "full" in the sense that the soft
	 * fillfactor-wise limit has been exceeded.  However, we must always leave
	 * at least two items plus a high key on each page before starting a new
	 * page.  Disregard fillfactor and insert on "full" current page if we
	 * don't have the minimum number of items yet.  (Note that we deliberately
	 * assume that suffix truncation neither enlarges nor shrinks new high key
	 * when applying soft limit, except when last tuple has a posting list.)
	 */
	Assert(last_truncextra == 0 || isleaf);
	if (pgspc < itupsz + (isleaf ? MAXALIGN(sizeof(ItemPointerData)) : 0) ||
		(pgspc + last_truncextra < state->btps_full && last_off > P_FIRSTKEY))
	{
		/*
		 * Finish off the page and write it out.
		 */
		Page		opage = npage;
		BlockNumber oblkno = nblkno;
		ItemId		ii;
		ItemId		hii;
		IndexTuple	oitup;

		/* Create new page of same level */
		npage = _bt_blnewpage(state->btps_level);

		/* and assign it a page position */
		nblkno = wstate->btws_pages_alloced++;

		/*
		 * We copy the last item on the page into the new page, and then
		 * rearrange the old page so that the 'last item' becomes its high key
		 * rather than a true data item.  There had better be at least two
		 * items on the page already, else the page would be empty of useful
		 * data.
		 */
		Assert(last_off > P_FIRSTKEY);
		ii = PageGetItemId(opage, last_off);
		oitup = (IndexTuple) PageGetItem(opage, ii);
		_bt_sortaddtup(npage, ItemIdGetLength(ii), oitup, P_FIRSTKEY,
					   !isleaf);

		/*
		 * Move 'last' into the high key position on opage.  _bt_blnewpage()
		 * allocated empty space for a line pointer when opage was first
		 * created, so this is a matter of rearranging already-allocated space
		 * on page, and initializing high key line pointer. (Actually, leaf
		 * pages must also swap oitup with a truncated version of oitup, which
		 * is sometimes larger than oitup, though never by more than the space
		 * needed to append a heap TID.)
		 */
		hii = PageGetItemId(opage, P_HIKEY);
		*hii = *ii;
		ItemIdSetUnused(ii);	/* redundant */
		((PageHeader) opage)->pd_lower -= sizeof(ItemIdData);

		if (isleaf)
		{
			IndexTuple	lastleft;
			IndexTuple	truncated;

			/*
			 * Truncate away any unneeded attributes from high key on leaf
			 * level.  This is only done at the leaf level because downlinks
			 * in internal pages are either negative infinity items, or get
			 * their contents from copying from one level down.  See also:
			 * _bt_split().
			 *
			 * We don't try to bias our choice of split point to make it more
			 * likely that _bt_truncate() can truncate away more attributes,
			 * whereas the split point used within _bt_split() is chosen much
			 * more delicately.  Even still, the lastleft and firstright
			 * tuples passed to _bt_truncate() here are at least not fully
			 * equal to each other when deduplication is used, unless there is
			 * a large group of duplicates (also, unique index builds usually
			 * have few or no spool2 duplicates).  When the split point is
			 * between two unequal tuples, _bt_truncate() will avoid including
			 * a heap TID in the new high key, which is the most important
			 * benefit of suffix truncation.
			 *
			 * Overwrite the old item with new truncated high key directly.
			 * oitup is already located at the physical beginning of tuple
			 * space, so this should directly reuse the existing tuple space.
			 */
			ii = PageGetItemId(opage, OffsetNumberPrev(last_off));
			lastleft = (IndexTuple) PageGetItem(opage, ii);

			Assert(IndexTupleSize(oitup) > last_truncextra);
			truncated = _bt_truncate(wstate->index, lastleft, oitup,
									 wstate->inskey);
			if (!PageIndexTupleOverwrite(opage, P_HIKEY, (Item) truncated,
										 IndexTupleSize(truncated)))
				elog(ERROR, "failed to add high key to the index page");
			pfree(truncated);

			/* oitup should continue to point to the page's high key */
			hii = PageGetItemId(opage, P_HIKEY);
			oitup = (IndexTuple) PageGetItem(opage, hii);
		}

		/*
		 * Link the old page into its parent, using its low key.  If we don't
		 * have a parent, we have to create one; this adds a new btree level.
		 */
		if (state->btps_next == NULL)
			state->btps_next = _bt_pagestate(wstate, state->btps_level + 1);

		Assert((BTreeTupleGetNAtts(state->btps_lowkey, wstate->index) <=
				IndexRelationGetNumberOfKeyAttributes(wstate->index) &&
				BTreeTupleGetNAtts(state->btps_lowkey, wstate->index) > 0) ||
			   P_LEFTMOST(BTPageGetOpaque(opage)));
		Assert(BTreeTupleGetNAtts(state->btps_lowkey, wstate->index) == 0 ||
			   !P_LEFTMOST(BTPageGetOpaque(opage)));
		BTreeTupleSetDownLink(state->btps_lowkey, oblkno);
		_bt_buildadd(wstate, state->btps_next, state->btps_lowkey, 0);
		pfree(state->btps_lowkey);

		/*
		 * Save a copy of the high key from the old page.  It is also the low
		 * key for the new page.
		 */
		state->btps_lowkey = CopyIndexTuple(oitup);

		/*
		 * Set the sibling links for both pages.
		 */
		{
			BTPageOpaque oopaque = BTPageGetOpaque(opage);
			BTPageOpaque nopaque = BTPageGetOpaque(npage);

			oopaque->btpo_next = nblkno;
			nopaque->btpo_prev = oblkno;
			nopaque->btpo_next = P_NONE;	/* redundant */
		}

		/*
		 * Write out the old page.  We never need to touch it again, so we can
		 * free the opage workspace too.
		 */
		_bt_blwritepage(wstate, opage, oblkno);

		/*
		 * Reset last_off to point to new page
		 */
		last_off = P_FIRSTKEY;
	}

	/*
	 * By here, either original page is still the current page, or a new page
	 * was created that became the current page.  Either way, the current page
	 * definitely has space for new item.
	 *
	 * If the new item is the first for its page, it must also be the first
	 * item on its entire level.  On later same-level pages, a low key for a
	 * page will be copied from the prior page in the code above.  Generate a
	 * minus infinity low key here instead.
	 */
	if (last_off == P_HIKEY)
	{
		Assert(state->btps_lowkey == NULL);
		state->btps_lowkey = palloc0(sizeof(IndexTupleData));
		state->btps_lowkey->t_info = sizeof(IndexTupleData);
		BTreeTupleSetNAtts(state->btps_lowkey, 0, false);
	}

	/*
	 * Add the new item into the current page.
	 */
	last_off = OffsetNumberNext(last_off);
	_bt_sortaddtup(npage, itupsz, itup, last_off,
				   !isleaf && last_off == P_FIRSTKEY);

	state->btps_page = npage;
	state->btps_blkno = nblkno;
	state->btps_lastoff = last_off;
}

/*
 * Finalize pending posting list tuple, and add it to the index.  Final tuple
 * is based on saved base tuple, and saved list of heap TIDs.
 *
 * This is almost like _bt_dedup_finish_pending(), but it adds a new tuple
 * using _bt_buildadd().
 */
static void
_bt_sort_dedup_finish_pending(BTWriteState *wstate, BTPageState *state,
							  BTDedupState dstate)
{
	Assert(dstate->nitems > 0);

	if (dstate->nitems == 1)
		_bt_buildadd(wstate, state, dstate->base, 0);
	else
	{
		IndexTuple	postingtuple;
		Size		truncextra;

		/* form a tuple with a posting list */
		postingtuple = _bt_form_posting(dstate->base,
										dstate->htids,
										dstate->nhtids);
		/* Calculate posting list overhead */
		truncextra = IndexTupleSize(postingtuple) -
			BTreeTupleGetPostingOffset(postingtuple);

		_bt_buildadd(wstate, state, postingtuple, truncextra);
		pfree(postingtuple);
	}

	dstate->nmaxitems = 0;
	dstate->nhtids = 0;
	dstate->nitems = 0;
	dstate->phystupsize = 0;
}

/*
 * Finish writing out the completed btree.
 */
static void
_bt_uppershutdown(BTWriteState *wstate, BTPageState *state)
{
	BTPageState *s;
	BlockNumber rootblkno = P_NONE;
	uint32		rootlevel = 0;
	Page		metapage;

	/*
	 * Each iteration of this loop completes one more level of the tree.
	 */
	for (s = state; s != NULL; s = s->btps_next)
	{
		BlockNumber blkno;
		BTPageOpaque opaque;

		blkno = s->btps_blkno;
		opaque = BTPageGetOpaque(s->btps_page);

		/*
		 * We have to link the last page on this level to somewhere.
		 *
		 * If we're at the top, it's the root, so attach it to the metapage.
		 * Otherwise, add an entry for it to its parent using its low key.
		 * This may cause the last page of the parent level to split, but
		 * that's not a problem -- we haven't gotten to it yet.
		 */
		if (s->btps_next == NULL)
		{
			opaque->btpo_flags |= BTP_ROOT;
			rootblkno = blkno;
			rootlevel = s->btps_level;
		}
		else
		{
			Assert((BTreeTupleGetNAtts(s->btps_lowkey, wstate->index) <=
					IndexRelationGetNumberOfKeyAttributes(wstate->index) &&
					BTreeTupleGetNAtts(s->btps_lowkey, wstate->index) > 0) ||
				   P_LEFTMOST(opaque));
			Assert(BTreeTupleGetNAtts(s->btps_lowkey, wstate->index) == 0 ||
				   !P_LEFTMOST(opaque));
			BTreeTupleSetDownLink(s->btps_lowkey, blkno);
			_bt_buildadd(wstate, s->btps_next, s->btps_lowkey, 0);
			pfree(s->btps_lowkey);
			s->btps_lowkey = NULL;
		}

		/*
		 * This is the rightmost page, so the ItemId array needs to be slid
		 * back one slot.  Then we can dump out the page.
		 */
		_bt_slideleft(s->btps_page);
		_bt_blwritepage(wstate, s->btps_page, s->btps_blkno);
		s->btps_page = NULL;	/* writepage freed the workspace */
	}

	/*
	 * As the last step in the process, construct the metapage and make it
	 * point to the new root (unless we had no data at all, in which case it's
	 * set to point to "P_NONE").  This changes the index to the "valid" state
	 * by filling in a valid magic number in the metapage.
	 */
	metapage = (Page) palloc(BLCKSZ);
	_bt_initmetapage(metapage, rootblkno, rootlevel,
					 wstate->inskey->allequalimage);
	_bt_blwritepage(wstate, metapage, BTREE_METAPAGE);
}

/*
 * Read tuples in correct sort order from tuplesort, and load them into
 * btree leaves.
 */
static void
_bt_load(BTWriteState *wstate, BTSpool *btspool, BTSpool *btspool2)
{
	BTPageState *state = NULL;
	bool		merge = (btspool2 != NULL);
	IndexTuple	itup,
				itup2 = NULL;
	bool		load1;
	TupleDesc	tupdes = RelationGetDescr(wstate->index);
	int			i,
				keysz = IndexRelationGetNumberOfKeyAttributes(wstate->index);
	SortSupport sortKeys;
	int64		tuples_done = 0;
	bool		deduplicate;

	deduplicate = wstate->inskey->allequalimage && !btspool->isunique &&
		BTGetDeduplicateItems(wstate->index);

	if (merge)
	{
		/*
		 * Another BTSpool for dead tuples exists. Now we have to merge
		 * btspool and btspool2.
		 */

		/* the preparation of merge */
		itup = tuplesort_getindextuple(btspool->sortstate, true);
		itup2 = tuplesort_getindextuple(btspool2->sortstate, true);

		/* Prepare SortSupport data for each column */
		sortKeys = (SortSupport) palloc0(keysz * sizeof(SortSupportData));

		for (i = 0; i < keysz; i++)
		{
			SortSupport sortKey = sortKeys + i;
			ScanKey		scanKey = wstate->inskey->scankeys + i;
			int16		strategy;

			sortKey->ssup_cxt = CurrentMemoryContext;
			sortKey->ssup_collation = scanKey->sk_collation;
			sortKey->ssup_nulls_first =
				(scanKey->sk_flags & SK_BT_NULLS_FIRST) != 0;
			sortKey->ssup_attno = scanKey->sk_attno;
			/* Abbreviation is not supported here */
			sortKey->abbreviate = false;

			Assert(sortKey->ssup_attno != 0);

			strategy = (scanKey->sk_flags & SK_BT_DESC) != 0 ?
				BTGreaterStrategyNumber : BTLessStrategyNumber;

			PrepareSortSupportFromIndexRel(wstate->index, strategy, sortKey);
		}

		for (;;)
		{
			load1 = true;		/* load BTSpool next ? */
			if (itup2 == NULL)
			{
				if (itup == NULL)
					break;
			}
			else if (itup != NULL)
			{
				int32		compare = 0;

				for (i = 1; i <= keysz; i++)
				{
					SortSupport entry;
					Datum		attrDatum1,
								attrDatum2;
					bool		isNull1,
								isNull2;

					entry = sortKeys + i - 1;
					attrDatum1 = index_getattr(itup, i, tupdes, &isNull1);
					attrDatum2 = index_getattr(itup2, i, tupdes, &isNull2);

					compare = ApplySortComparator(attrDatum1, isNull1,
												  attrDatum2, isNull2,
												  entry);
					if (compare > 0)
					{
						load1 = false;
						break;
					}
					else if (compare < 0)
						break;
				}

				/*
				 * If key values are equal, we sort on ItemPointer.  This is
				 * required for btree indexes, since heap TID is treated as an
				 * implicit last key attribute in order to ensure that all
				 * keys in the index are physically unique.
				 */
				if (compare == 0)
				{
					compare = ItemPointerCompare(&itup->t_tid, &itup2->t_tid);
					Assert(compare != 0);
					if (compare > 0)
						load1 = false;
				}
			}
			else
				load1 = false;

			/* When we see first tuple, create first index page */
			if (state == NULL)
				state = _bt_pagestate(wstate, 0);

			if (load1)
			{
				_bt_buildadd(wstate, state, itup, 0);
				itup = tuplesort_getindextuple(btspool->sortstate, true);
			}
			else
			{
				_bt_buildadd(wstate, state, itup2, 0);
				itup2 = tuplesort_getindextuple(btspool2->sortstate, true);
			}

			/* Report progress */
			pgstat_progress_update_param(PROGRESS_CREATEIDX_TUPLES_DONE,
										 ++tuples_done);
		}
		pfree(sortKeys);
	}
	else if (deduplicate)
	{
		/* merge is unnecessary, deduplicate into posting lists */
		BTDedupState dstate;

		dstate = (BTDedupState) palloc(sizeof(BTDedupStateData));
		dstate->deduplicate = true; /* unused */
		dstate->nmaxitems = 0;	/* unused */
		dstate->maxpostingsize = 0; /* set later */
		/* Metadata about base tuple of current pending posting list */
		dstate->base = NULL;
		dstate->baseoff = InvalidOffsetNumber;	/* unused */
		dstate->basetupsize = 0;
		/* Metadata about current pending posting list TIDs */
		dstate->htids = NULL;
		dstate->nhtids = 0;
		dstate->nitems = 0;
		dstate->phystupsize = 0;	/* unused */
		dstate->nintervals = 0; /* unused */

		while ((itup = tuplesort_getindextuple(btspool->sortstate,
											   true)) != NULL)
		{
			/* When we see first tuple, create first index page */
			if (state == NULL)
			{
				state = _bt_pagestate(wstate, 0);

				/*
				 * Limit size of posting list tuples to 1/10 space we want to
				 * leave behind on the page, plus space for final item's line
				 * pointer.  This is equal to the space that we'd like to
				 * leave behind on each leaf page when fillfactor is 90,
				 * allowing us to get close to fillfactor% space utilization
				 * when there happen to be a great many duplicates.  (This
				 * makes higher leaf fillfactor settings ineffective when
				 * building indexes that have many duplicates, but packing
				 * leaf pages full with few very large tuples doesn't seem
				 * like a useful goal.)
				 */
				dstate->maxpostingsize = MAXALIGN_DOWN((BLCKSZ * 10 / 100)) -
					sizeof(ItemIdData);
				Assert(dstate->maxpostingsize <= BTMaxItemSize(state->btps_page) &&
					   dstate->maxpostingsize <= INDEX_SIZE_MASK);
				dstate->htids = palloc(dstate->maxpostingsize);

				/* start new pending posting list with itup copy */
				_bt_dedup_start_pending(dstate, CopyIndexTuple(itup),
										InvalidOffsetNumber);
			}
			else if (_bt_keep_natts_fast(wstate->index, dstate->base,
										 itup) > keysz &&
					 _bt_dedup_save_htid(dstate, itup))
			{
				/*
				 * Tuple is equal to base tuple of pending posting list.  Heap
				 * TID from itup has been saved in state.
				 */
			}
			else
			{
				/*
				 * Tuple is not equal to pending posting list tuple, or
				 * _bt_dedup_save_htid() opted to not merge current item into
				 * pending posting list.
				 */
				_bt_sort_dedup_finish_pending(wstate, state, dstate);
				pfree(dstate->base);

				/* start new pending posting list with itup copy */
				_bt_dedup_start_pending(dstate, CopyIndexTuple(itup),
										InvalidOffsetNumber);
			}

			/* Report progress */
			pgstat_progress_update_param(PROGRESS_CREATEIDX_TUPLES_DONE,
										 ++tuples_done);
		}

		if (state)
		{
			/*
			 * Handle the last item (there must be a last item when the
			 * tuplesort returned one or more tuples)
			 */
			_bt_sort_dedup_finish_pending(wstate, state, dstate);
			pfree(dstate->base);
			pfree(dstate->htids);
		}

		pfree(dstate);
	}
	else
	{
		/* merging and deduplication are both unnecessary */
		while ((itup = tuplesort_getindextuple(btspool->sortstate,
											   true)) != NULL)
		{
			/* When we see first tuple, create first index page */
			if (state == NULL)
				state = _bt_pagestate(wstate, 0);

			_bt_buildadd(wstate, state, itup, 0);

			/* Report progress */
			pgstat_progress_update_param(PROGRESS_CREATEIDX_TUPLES_DONE,
										 ++tuples_done);
		}
	}

	/* Close down final pages and write the metapage */
	_bt_uppershutdown(wstate, state);

	/*
	 * When we WAL-logged index pages, we must nonetheless fsync index files.
	 * Since we're building outside shared buffers, a CHECKPOINT occurring
	 * during the build has no way to flush the previously written data to
	 * disk (indeed it won't know the index even exists).  A crash later on
	 * would replay WAL from the checkpoint, therefore it wouldn't replay our
	 * earlier WAL entries. If we do not fsync those pages here, they might
	 * still not be on disk when the crash occurs.
	 */
	if (wstate->btws_use_wal)
		smgrimmedsync(RelationGetSmgr(wstate->index), MAIN_FORKNUM);
}

/*
 * Create parallel context, and launch workers for leader.
 *
 * buildstate argument should be initialized (with the exception of the
 * tuplesort state in spools, which may later be created based on shared
 * state initially set up here).
 *
 * isconcurrent indicates if operation is CREATE INDEX CONCURRENTLY.
 *
 * request is the target number of parallel worker processes to launch.
 *
 * Sets buildstate's BTLeader, which caller must use to shut down parallel
 * mode by passing it to _bt_end_parallel() at the very end of its index
 * build.  If not even a single worker process can be launched, this is
 * never set, and caller should proceed with a serial index build.
 */
static void
_bt_begin_parallel(BTBuildState *buildstate, bool isconcurrent, int request)
{
	ParallelContext *pcxt;
	int			scantuplesortstates;
	Snapshot	snapshot;
	Size		estbtshared;
	Size		estsort;
	BTShared   *btshared;
	Sharedsort *sharedsort;
	Sharedsort *sharedsort2;
	BTSpool    *btspool = buildstate->spool;
	BTLeader   *btleader = (BTLeader *) palloc0(sizeof(BTLeader));
	WalUsage   *walusage;
	BufferUsage *bufferusage;
	bool		leaderparticipates = true;
	int			querylen;

#ifdef DISABLE_LEADER_PARTICIPATION
	leaderparticipates = false;
#endif

	/*
	 * Enter parallel mode, and create context for parallel build of btree
	 * index
	 */
	EnterParallelMode();
	Assert(request > 0);
	pcxt = CreateParallelContext("postgres", "_bt_parallel_build_main",
								 request);

	scantuplesortstates = leaderparticipates ? request + 1 : request;

	/*
	 * Prepare for scan of the base relation.  In a normal index build, we use
	 * SnapshotAny because we must retrieve all tuples and do our own time
	 * qual checks (because we have to index RECENTLY_DEAD tuples).  In a
	 * concurrent build, we take a regular MVCC snapshot and index whatever's
	 * live according to that.
	 */
	if (!isconcurrent)
		snapshot = SnapshotAny;
	else
		snapshot = RegisterSnapshot(GetTransactionSnapshot());

	/*
	 * Estimate size for our own PARALLEL_KEY_BTREE_SHARED workspace, and
	 * PARALLEL_KEY_TUPLESORT tuplesort workspace
	 */
	estbtshared = _bt_parallel_estimate_shared(btspool->heap, snapshot);
	shm_toc_estimate_chunk(&pcxt->estimator, estbtshared);
	estsort = tuplesort_estimate_shared(scantuplesortstates);
	shm_toc_estimate_chunk(&pcxt->estimator, estsort);

	/*
	 * Unique case requires a second spool, and so we may have to account for
	 * another shared workspace for that -- PARALLEL_KEY_TUPLESORT_SPOOL2
	 */
	if (!btspool->isunique)
		shm_toc_estimate_keys(&pcxt->estimator, 2);
	else
	{
		shm_toc_estimate_chunk(&pcxt->estimator, estsort);
		shm_toc_estimate_keys(&pcxt->estimator, 3);
	}

	/*
	 * Estimate space for WalUsage and BufferUsage -- PARALLEL_KEY_WAL_USAGE
	 * and PARALLEL_KEY_BUFFER_USAGE.
	 *
	 * If there are no extensions loaded that care, we could skip this.  We
	 * have no way of knowing whether anyone's looking at pgWalUsage or
	 * pgBufferUsage, so do it unconditionally.
	 */
	shm_toc_estimate_chunk(&pcxt->estimator,
						   mul_size(sizeof(WalUsage), pcxt->nworkers));
	shm_toc_estimate_keys(&pcxt->estimator, 1);
	shm_toc_estimate_chunk(&pcxt->estimator,
						   mul_size(sizeof(BufferUsage), pcxt->nworkers));
	shm_toc_estimate_keys(&pcxt->estimator, 1);

	/* Finally, estimate PARALLEL_KEY_QUERY_TEXT space */
	if (debug_query_string)
	{
		querylen = strlen(debug_query_string);
		shm_toc_estimate_chunk(&pcxt->estimator, querylen + 1);
		shm_toc_estimate_keys(&pcxt->estimator, 1);
	}
	else
		querylen = 0;			/* keep compiler quiet */

	/* Everyone's had a chance to ask for space, so now create the DSM */
	InitializeParallelDSM(pcxt);

	/* If no DSM segment was available, back out (do serial build) */
	if (pcxt->seg == NULL)
	{
		if (IsMVCCSnapshot(snapshot))
			UnregisterSnapshot(snapshot);
		DestroyParallelContext(pcxt);
		ExitParallelMode();
		return;
	}

	/* Store shared build state, for which we reserved space */
	btshared = (BTShared *) shm_toc_allocate(pcxt->toc, estbtshared);
	/* Initialize immutable state */
	btshared->heaprelid = RelationGetRelid(btspool->heap);
	btshared->indexrelid = RelationGetRelid(btspool->index);
	btshared->isunique = btspool->isunique;
	btshared->nulls_not_distinct = btspool->nulls_not_distinct;
	btshared->isconcurrent = isconcurrent;
	btshared->scantuplesortstates = scantuplesortstates;
	ConditionVariableInit(&btshared->workersdonecv);
	SpinLockInit(&btshared->mutex);
	/* Initialize mutable state */
	btshared->nparticipantsdone = 0;
	btshared->reltuples = 0.0;
	btshared->havedead = false;
	btshared->indtuples = 0.0;
	btshared->brokenhotchain = false;
	table_parallelscan_initialize(btspool->heap,
								  ParallelTableScanFromBTShared(btshared),
								  snapshot);

	/*
	 * Store shared tuplesort-private state, for which we reserved space.
	 * Then, initialize opaque state using tuplesort routine.
	 */
	sharedsort = (Sharedsort *) shm_toc_allocate(pcxt->toc, estsort);
	tuplesort_initialize_shared(sharedsort, scantuplesortstates,
								pcxt->seg);

	shm_toc_insert(pcxt->toc, PARALLEL_KEY_BTREE_SHARED, btshared);
	shm_toc_insert(pcxt->toc, PARALLEL_KEY_TUPLESORT, sharedsort);

	/* Unique case requires a second spool, and associated shared state */
	if (!btspool->isunique)
		sharedsort2 = NULL;
	else
	{
		/*
		 * Store additional shared tuplesort-private state, for which we
		 * reserved space.  Then, initialize opaque state using tuplesort
		 * routine.
		 */
		sharedsort2 = (Sharedsort *) shm_toc_allocate(pcxt->toc, estsort);
		tuplesort_initialize_shared(sharedsort2, scantuplesortstates,
									pcxt->seg);

		shm_toc_insert(pcxt->toc, PARALLEL_KEY_TUPLESORT_SPOOL2, sharedsort2);
	}

	/* Store query string for workers */
	if (debug_query_string)
	{
		char	   *sharedquery;

		sharedquery = (char *) shm_toc_allocate(pcxt->toc, querylen + 1);
		memcpy(sharedquery, debug_query_string, querylen + 1);
		shm_toc_insert(pcxt->toc, PARALLEL_KEY_QUERY_TEXT, sharedquery);
	}

	/*
	 * Allocate space for each worker's WalUsage and BufferUsage; no need to
	 * initialize.
	 */
	walusage = shm_toc_allocate(pcxt->toc,
								mul_size(sizeof(WalUsage), pcxt->nworkers));
	shm_toc_insert(pcxt->toc, PARALLEL_KEY_WAL_USAGE, walusage);
	bufferusage = shm_toc_allocate(pcxt->toc,
								   mul_size(sizeof(BufferUsage), pcxt->nworkers));
	shm_toc_insert(pcxt->toc, PARALLEL_KEY_BUFFER_USAGE, bufferusage);

	/* Launch workers, saving status for leader/caller */
	LaunchParallelWorkers(pcxt);
	btleader->pcxt = pcxt;
	btleader->nparticipanttuplesorts = pcxt->nworkers_launched;
	if (leaderparticipates)
		btleader->nparticipanttuplesorts++;
	btleader->btshared = btshared;
	btleader->sharedsort = sharedsort;
	btleader->sharedsort2 = sharedsort2;
	btleader->snapshot = snapshot;
	btleader->walusage = walusage;
	btleader->bufferusage = bufferusage;

	/* If no workers were successfully launched, back out (do serial build) */
	if (pcxt->nworkers_launched == 0)
	{
		_bt_end_parallel(btleader);
		return;
	}

	/* Save leader state now that it's clear build will be parallel */
	buildstate->btleader = btleader;

	/* Join heap scan ourselves */
	if (leaderparticipates)
		_bt_leader_participate_as_worker(buildstate);

	/*
	 * Caller needs to wait for all launched workers when we return.  Make
	 * sure that the failure-to-start case will not hang forever.
	 */
	WaitForParallelWorkersToAttach(pcxt);
}

/*
 * Shut down workers, destroy parallel context, and end parallel mode.
 */
static void
_bt_end_parallel(BTLeader *btleader)
{
	int			i;

	/* Shutdown worker processes */
	WaitForParallelWorkersToFinish(btleader->pcxt);

	/*
	 * Next, accumulate WAL usage.  (This must wait for the workers to finish,
	 * or we might get incomplete data.)
	 */
	for (i = 0; i < btleader->pcxt->nworkers_launched; i++)
		InstrAccumParallelQuery(&btleader->bufferusage[i], &btleader->walusage[i]);

	/* Free last reference to MVCC snapshot, if one was used */
	if (IsMVCCSnapshot(btleader->snapshot))
		UnregisterSnapshot(btleader->snapshot);
	DestroyParallelContext(btleader->pcxt);
	ExitParallelMode();
}

/*
 * Returns size of shared memory required to store state for a parallel
 * btree index build based on the snapshot its parallel scan will use.
 */
static Size
_bt_parallel_estimate_shared(Relation heap, Snapshot snapshot)
{
	/* c.f. shm_toc_allocate as to why BUFFERALIGN is used */
	return add_size(BUFFERALIGN(sizeof(BTShared)),
					table_parallelscan_estimate(heap, snapshot));
}

/*
 * Within leader, wait for end of heap scan.
 *
 * When called, parallel heap scan started by _bt_begin_parallel() will
 * already be underway within worker processes (when leader participates
 * as a worker, we should end up here just as workers are finishing).
 *
 * Fills in fields needed for ambuild statistics, and lets caller set
 * field indicating that some worker encountered a broken HOT chain.
 *
 * Returns the total number of heap tuples scanned.
 */
static double
_bt_parallel_heapscan(BTBuildState *buildstate, bool *brokenhotchain)
{
	BTShared   *btshared = buildstate->btleader->btshared;
	int			nparticipanttuplesorts;
	double		reltuples;

	nparticipanttuplesorts = buildstate->btleader->nparticipanttuplesorts;
	for (;;)
	{
		SpinLockAcquire(&btshared->mutex);
		if (btshared->nparticipantsdone == nparticipanttuplesorts)
		{
			buildstate->havedead = btshared->havedead;
			buildstate->indtuples = btshared->indtuples;
			*brokenhotchain = btshared->brokenhotchain;
			reltuples = btshared->reltuples;
			SpinLockRelease(&btshared->mutex);
			break;
		}
		SpinLockRelease(&btshared->mutex);

		ConditionVariableSleep(&btshared->workersdonecv,
							   WAIT_EVENT_PARALLEL_CREATE_INDEX_SCAN);
	}

	ConditionVariableCancelSleep();

	return reltuples;
}

/*
 * Within leader, participate as a parallel worker.
 */
static void
_bt_leader_participate_as_worker(BTBuildState *buildstate)
{
	BTLeader   *btleader = buildstate->btleader;
	BTSpool    *leaderworker;
	BTSpool    *leaderworker2;
	int			sortmem;

	/* Allocate memory and initialize private spool */
	leaderworker = (BTSpool *) palloc0(sizeof(BTSpool));
	leaderworker->heap = buildstate->spool->heap;
	leaderworker->index = buildstate->spool->index;
	leaderworker->isunique = buildstate->spool->isunique;
	leaderworker->nulls_not_distinct = buildstate->spool->nulls_not_distinct;

	/* Initialize second spool, if required */
	if (!btleader->btshared->isunique)
		leaderworker2 = NULL;
	else
	{
		/* Allocate memory for worker's own private secondary spool */
		leaderworker2 = (BTSpool *) palloc0(sizeof(BTSpool));

		/* Initialize worker's own secondary spool */
		leaderworker2->heap = leaderworker->heap;
		leaderworker2->index = leaderworker->index;
		leaderworker2->isunique = false;
	}

	/*
	 * Might as well use reliable figure when doling out maintenance_work_mem
	 * (when requested number of workers were not launched, this will be
	 * somewhat higher than it is for other workers).
	 */
	sortmem = maintenance_work_mem / btleader->nparticipanttuplesorts;

	/* Perform work common to all participants */
	_bt_parallel_scan_and_sort(leaderworker, leaderworker2, btleader->btshared,
							   btleader->sharedsort, btleader->sharedsort2,
							   sortmem, true);

#ifdef BTREE_BUILD_STATS
	if (log_btree_build_stats)
	{
		ShowUsage("BTREE BUILD (Leader Partial Spool) STATISTICS");
		ResetUsage();
	}
#endif							/* BTREE_BUILD_STATS */
}

/*
 * Perform work within a launched parallel process.
 */
void
_bt_parallel_build_main(dsm_segment *seg, shm_toc *toc)
{
	char	   *sharedquery;
	BTSpool    *btspool;
	BTSpool    *btspool2;
	BTShared   *btshared;
	Sharedsort *sharedsort;
	Sharedsort *sharedsort2;
	Relation	heapRel;
	Relation	indexRel;
	LOCKMODE	heapLockmode;
	LOCKMODE	indexLockmode;
	WalUsage   *walusage;
	BufferUsage *bufferusage;
	int			sortmem;

#ifdef BTREE_BUILD_STATS
	if (log_btree_build_stats)
		ResetUsage();
#endif							/* BTREE_BUILD_STATS */

	/*
	 * The only possible status flag that can be set to the parallel worker is
	 * PROC_IN_SAFE_IC.
	 */
	Assert((MyProc->statusFlags == 0) ||
		   (MyProc->statusFlags == PROC_IN_SAFE_IC));

	/* Set debug_query_string for individual workers first */
	sharedquery = shm_toc_lookup(toc, PARALLEL_KEY_QUERY_TEXT, true);
	debug_query_string = sharedquery;

	/* Report the query string from leader */
	pgstat_report_activity(STATE_RUNNING, debug_query_string);

	/* Look up nbtree shared state */
	btshared = shm_toc_lookup(toc, PARALLEL_KEY_BTREE_SHARED, false);

	/* Open relations using lock modes known to be obtained by index.c */
	if (!btshared->isconcurrent)
	{
		heapLockmode = ShareLock;
		indexLockmode = AccessExclusiveLock;
	}
	else
	{
		heapLockmode = ShareUpdateExclusiveLock;
		indexLockmode = RowExclusiveLock;
	}

	/* Open relations within worker */
	heapRel = table_open(btshared->heaprelid, heapLockmode);
	indexRel = index_open(btshared->indexrelid, indexLockmode);

	/* Initialize worker's own spool */
	btspool = (BTSpool *) palloc0(sizeof(BTSpool));
	btspool->heap = heapRel;
	btspool->index = indexRel;
	btspool->isunique = btshared->isunique;
	btspool->nulls_not_distinct = btshared->nulls_not_distinct;

	/* Look up shared state private to tuplesort.c */
	sharedsort = shm_toc_lookup(toc, PARALLEL_KEY_TUPLESORT, false);
	tuplesort_attach_shared(sharedsort, seg);
	if (!btshared->isunique)
	{
		btspool2 = NULL;
		sharedsort2 = NULL;
	}
	else
	{
		/* Allocate memory for worker's own private secondary spool */
		btspool2 = (BTSpool *) palloc0(sizeof(BTSpool));

		/* Initialize worker's own secondary spool */
		btspool2->heap = btspool->heap;
		btspool2->index = btspool->index;
		btspool2->isunique = false;
		/* Look up shared state private to tuplesort.c */
		sharedsort2 = shm_toc_lookup(toc, PARALLEL_KEY_TUPLESORT_SPOOL2, false);
		tuplesort_attach_shared(sharedsort2, seg);
	}

	/* Prepare to track buffer usage during parallel execution */
	InstrStartParallelQuery();

	/* Perform sorting of spool, and possibly a spool2 */
	sortmem = maintenance_work_mem / btshared->scantuplesortstates;
	_bt_parallel_scan_and_sort(btspool, btspool2, btshared, sharedsort,
							   sharedsort2, sortmem, false);

	/* Report WAL/buffer usage during parallel execution */
	bufferusage = shm_toc_lookup(toc, PARALLEL_KEY_BUFFER_USAGE, false);
	walusage = shm_toc_lookup(toc, PARALLEL_KEY_WAL_USAGE, false);
	InstrEndParallelQuery(&bufferusage[ParallelWorkerNumber],
						  &walusage[ParallelWorkerNumber]);

#ifdef BTREE_BUILD_STATS
	if (log_btree_build_stats)
	{
		ShowUsage("BTREE BUILD (Worker Partial Spool) STATISTICS");
		ResetUsage();
	}
#endif							/* BTREE_BUILD_STATS */

	index_close(indexRel, indexLockmode);
	table_close(heapRel, heapLockmode);
}

/*
 * Perform a worker's portion of a parallel sort.
 *
 * This generates a tuplesort for passed btspool, and a second tuplesort
 * state if a second btspool is need (i.e. for unique index builds).  All
 * other spool fields should already be set when this is called.
 *
 * sortmem is the amount of working memory to use within each worker,
 * expressed in KBs.
 *
 * When this returns, workers are done, and need only release resources.
 */
static void
_bt_parallel_scan_and_sort(BTSpool *btspool, BTSpool *btspool2,
						   BTShared *btshared, Sharedsort *sharedsort,
						   Sharedsort *sharedsort2, int sortmem, bool progress)
{
	SortCoordinate coordinate;
	BTBuildState buildstate;
	TableScanDesc scan;
	double		reltuples;
	IndexInfo  *indexInfo;

	/* Initialize local tuplesort coordination state */
	coordinate = palloc0(sizeof(SortCoordinateData));
	coordinate->isWorker = true;
	coordinate->nParticipants = -1;
	coordinate->sharedsort = sharedsort;

	/* Begin "partial" tuplesort */
	btspool->sortstate = tuplesort_begin_index_btree(btspool->heap,
													 btspool->index,
													 btspool->isunique,
													 btspool->nulls_not_distinct,
													 sortmem, coordinate,
													 TUPLESORT_NONE);

	/*
	 * Just as with serial case, there may be a second spool.  If so, a
	 * second, dedicated spool2 partial tuplesort is required.
	 */
	if (btspool2)
	{
		SortCoordinate coordinate2;

		/*
		 * We expect that the second one (for dead tuples) won't get very
		 * full, so we give it only work_mem (unless sortmem is less for
		 * worker).  Worker processes are generally permitted to allocate
		 * work_mem independently.
		 */
		coordinate2 = palloc0(sizeof(SortCoordinateData));
		coordinate2->isWorker = true;
		coordinate2->nParticipants = -1;
		coordinate2->sharedsort = sharedsort2;
		btspool2->sortstate =
			tuplesort_begin_index_btree(btspool->heap, btspool->index, false, false,
										Min(sortmem, work_mem), coordinate2,
										false);
	}

	/* Fill in buildstate for _bt_build_callback() */
	buildstate.isunique = btshared->isunique;
	buildstate.nulls_not_distinct = btshared->nulls_not_distinct;
	buildstate.havedead = false;
	buildstate.heap = btspool->heap;
	buildstate.spool = btspool;
	buildstate.spool2 = btspool2;
	buildstate.indtuples = 0;
	buildstate.btleader = NULL;

	/* Join parallel scan */
	indexInfo = BuildIndexInfo(btspool->index);
	indexInfo->ii_Concurrent = btshared->isconcurrent;
	scan = table_beginscan_parallel(btspool->heap,
									ParallelTableScanFromBTShared(btshared));
	reltuples = table_index_build_scan(btspool->heap, btspool->index, indexInfo,
									   true, progress, _bt_build_callback,
									   (void *) &buildstate, scan);

	/* Execute this worker's part of the sort */
	if (progress)
		pgstat_progress_update_param(PROGRESS_CREATEIDX_SUBPHASE,
									 PROGRESS_BTREE_PHASE_PERFORMSORT_1);
	tuplesort_performsort(btspool->sortstate);
	if (btspool2)
	{
		if (progress)
			pgstat_progress_update_param(PROGRESS_CREATEIDX_SUBPHASE,
										 PROGRESS_BTREE_PHASE_PERFORMSORT_2);
		tuplesort_performsort(btspool2->sortstate);
	}

	/*
	 * Done.  Record ambuild statistics, and whether we encountered a broken
	 * HOT chain.
	 */
	SpinLockAcquire(&btshared->mutex);
	btshared->nparticipantsdone++;
	btshared->reltuples += reltuples;
	if (buildstate.havedead)
		btshared->havedead = true;
	btshared->indtuples += buildstate.indtuples;
	if (indexInfo->ii_BrokenHotChain)
		btshared->brokenhotchain = true;
	SpinLockRelease(&btshared->mutex);

	/* Notify leader */
	ConditionVariableSignal(&btshared->workersdonecv);

	/* We can end tuplesorts immediately */
	tuplesort_end(btspool->sortstate);
	if (btspool2)
		tuplesort_end(btspool2->sortstate);
}