summaryrefslogtreecommitdiff
path: root/src/backend/access/hash/hashovfl.c
blob: 54178179162802dda31ab9b2e57a018bb45df766 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
/*-------------------------------------------------------------------------
 *
 * hashovfl.c--
 *	  Overflow page management code for the Postgres hash access method
 *
 * Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  $Header: /cvsroot/pgsql/src/backend/access/hash/hashovfl.c,v 1.16 1998/06/15 19:27:49 momjian Exp $
 *
 * NOTES
 *	  Overflow pages look like ordinary relation pages.
 *
 *-------------------------------------------------------------------------
 */
#include <postgres.h>

#include <access/hash.h>
#include <storage/bufmgr.h>
#include <utils/memutils.h>

#ifndef HAVE_MEMMOVE
#include <regex/utils.h>
#else
#include <string.h>
#endif

static OverflowPageAddress _hash_getovfladdr(Relation rel, Buffer *metabufp);
static uint32 _hash_firstfreebit(uint32 map);

/*
 *	_hash_addovflpage
 *
 *	Add an overflow page to the page currently pointed to by the buffer
 *	argument 'buf'.
 *
 *	*Metabufp has a read lock upon entering the function; buf has a
 *	write lock.
 *
 */
Buffer
_hash_addovflpage(Relation rel, Buffer *metabufp, Buffer buf)
{

	OverflowPageAddress oaddr;
	BlockNumber ovflblkno;
	Buffer		ovflbuf;
	HashMetaPage metap;
	HashPageOpaque ovflopaque;
	HashPageOpaque pageopaque;
	Page		page;
	Page		ovflpage;

	/* this had better be the last page in a bucket chain */
	page = BufferGetPage(buf);
	_hash_checkpage(page, LH_BUCKET_PAGE | LH_OVERFLOW_PAGE);
	pageopaque = (HashPageOpaque) PageGetSpecialPointer(page);
	Assert(!BlockNumberIsValid(pageopaque->hasho_nextblkno));

	metap = (HashMetaPage) BufferGetPage(*metabufp);
	_hash_checkpage((Page) metap, LH_META_PAGE);

	/* allocate an empty overflow page */
	oaddr = _hash_getovfladdr(rel, metabufp);
	if (oaddr == InvalidOvflAddress)
		elog(ERROR, "_hash_addovflpage: problem with _hash_getovfladdr.");
	ovflblkno = OADDR_TO_BLKNO(OADDR_OF(SPLITNUM(oaddr), OPAGENUM(oaddr)));
	Assert(BlockNumberIsValid(ovflblkno));
	ovflbuf = _hash_getbuf(rel, ovflblkno, HASH_WRITE);
	Assert(BufferIsValid(ovflbuf));
	ovflpage = BufferGetPage(ovflbuf);

	/* initialize the new overflow page */
	_hash_pageinit(ovflpage, BufferGetPageSize(ovflbuf));
	ovflopaque = (HashPageOpaque) PageGetSpecialPointer(ovflpage);
	ovflopaque->hasho_prevblkno = BufferGetBlockNumber(buf);
	ovflopaque->hasho_nextblkno = InvalidBlockNumber;
	ovflopaque->hasho_flag = LH_OVERFLOW_PAGE;
	ovflopaque->hasho_oaddr = oaddr;
	ovflopaque->hasho_bucket = pageopaque->hasho_bucket;
	_hash_wrtnorelbuf(rel, ovflbuf);

	/* logically chain overflow page to previous page */
	pageopaque->hasho_nextblkno = ovflblkno;
	_hash_wrtnorelbuf(rel, buf);
	return (ovflbuf);
}

/*
 *	_hash_getovfladdr()
 *
 *	Find an available overflow page and return its address.
 *
 *	When we enter this function, we have a read lock on *metabufp which
 *	we change to a write lock immediately. Before exiting, the write lock
 *	is exchanged for a read lock.
 *
 */
static OverflowPageAddress
_hash_getovfladdr(Relation rel, Buffer *metabufp)
{
	HashMetaPage metap;
	Buffer		mapbuf = 0;
	BlockNumber blkno;
	PageOffset	offset;
	OverflowPageAddress oaddr;
	SplitNumber splitnum;
	uint32	   *freep = NULL;
	uint32		max_free;
	uint32		bit;
	uint32		first_page;
	uint32		free_bit;
	uint32		free_page;
	uint32		in_use_bits;
	uint32		i,
				j;

	metap = (HashMetaPage) _hash_chgbufaccess(rel, metabufp, HASH_READ, HASH_WRITE);

	splitnum = metap->OVFL_POINT;
	max_free = metap->SPARES[splitnum];

	free_page = (max_free - 1) >> (metap->BSHIFT + BYTE_TO_BIT);
	free_bit = (max_free - 1) & (BMPGSZ_BIT(metap) - 1);

	/* Look through all the free maps to find the first free block */
	first_page = metap->LAST_FREED >> (metap->BSHIFT + BYTE_TO_BIT);
	for (i = first_page; i <= free_page; i++)
	{
		Page		mappage;

		blkno = metap->hashm_mapp[i];
		mapbuf = _hash_getbuf(rel, blkno, HASH_WRITE);
		mappage = BufferGetPage(mapbuf);
		_hash_checkpage(mappage, LH_BITMAP_PAGE);
		freep = HashPageGetBitmap(mappage);
		Assert(freep);

		if (i == free_page)
			in_use_bits = free_bit;
		else
			in_use_bits = BMPGSZ_BIT(metap) - 1;

		if (i == first_page)
		{
			bit = metap->LAST_FREED & (BMPGSZ_BIT(metap) - 1);
			j = bit / BITS_PER_MAP;
			bit = bit & ~(BITS_PER_MAP - 1);
		}
		else
		{
			bit = 0;
			j = 0;
		}
		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
			if (freep[j] != ALL_SET)
				goto found;
	}

	/* No Free Page Found - have to allocate a new page */
	metap->LAST_FREED = metap->SPARES[splitnum];
	metap->SPARES[splitnum]++;
	offset = metap->SPARES[splitnum] -
		(splitnum ? metap->SPARES[splitnum - 1] : 0);

#define OVMSG	"HASH: Out of overflow pages.  Out of luck.\n"

	if (offset > SPLITMASK)
	{
		if (++splitnum >= NCACHED)
			elog(ERROR, OVMSG);
		metap->OVFL_POINT = splitnum;
		metap->SPARES[splitnum] = metap->SPARES[splitnum - 1];
		metap->SPARES[splitnum - 1]--;
		offset = 0;
	}

	/* Check if we need to allocate a new bitmap page */
	if (free_bit == BMPGSZ_BIT(metap) - 1)
	{
		/* won't be needing old map page */

		_hash_relbuf(rel, mapbuf, HASH_WRITE);

		free_page++;
		if (free_page >= NCACHED)
			elog(ERROR, OVMSG);

		/*
		 * This is tricky.	The 1 indicates that you want the new page
		 * allocated with 1 clear bit.	Actually, you are going to
		 * allocate 2 pages from this map.	The first is going to be the
		 * map page, the second is the overflow page we were looking for.
		 * The init_bitmap routine automatically, sets the first bit of
		 * itself to indicate that the bitmap itself is in use.  We would
		 * explicitly set the second bit, but don't have to if we tell
		 * init_bitmap not to leave it clear in the first place.
		 */
		if (_hash_initbitmap(rel, metap, OADDR_OF(splitnum, offset),
							 1, free_page))
			elog(ERROR, "overflow_page: problem with _hash_initbitmap.");
		metap->SPARES[splitnum]++;
		offset++;
		if (offset > SPLITMASK)
		{
			if (++splitnum >= NCACHED)
				elog(ERROR, OVMSG);
			metap->OVFL_POINT = splitnum;
			metap->SPARES[splitnum] = metap->SPARES[splitnum - 1];
			metap->SPARES[splitnum - 1]--;
			offset = 0;
		}
	}
	else
	{

		/*
		 * Free_bit addresses the last used bit.  Bump it to address the
		 * first available bit.
		 */
		free_bit++;
		SETBIT(freep, free_bit);
		_hash_wrtbuf(rel, mapbuf);
	}

	/* Calculate address of the new overflow page */
	oaddr = OADDR_OF(splitnum, offset);
	_hash_chgbufaccess(rel, metabufp, HASH_WRITE, HASH_READ);
	return (oaddr);

found:
	bit = bit + _hash_firstfreebit(freep[j]);
	SETBIT(freep, bit);
	_hash_wrtbuf(rel, mapbuf);

	/*
	 * Bits are addressed starting with 0, but overflow pages are
	 * addressed beginning at 1. Bit is a bit addressnumber, so we need to
	 * increment it to convert it to a page number.
	 */

	bit = 1 + bit + (i * BMPGSZ_BIT(metap));
	if (bit >= metap->LAST_FREED)
		metap->LAST_FREED = bit - 1;

	/* Calculate the split number for this page */
	for (i = 0; (i < splitnum) && (bit > metap->SPARES[i]); i++)
		;
	offset = (i ? bit - metap->SPARES[i - 1] : bit);
	if (offset >= SPLITMASK)
		elog(ERROR, OVMSG);

	/* initialize this page */
	oaddr = OADDR_OF(i, offset);
	_hash_chgbufaccess(rel, metabufp, HASH_WRITE, HASH_READ);
	return (oaddr);
}

/*
 *	_hash_firstfreebit()
 *
 *	Return the first bit that is not set in the argument 'map'. This
 *	function is used to find an available overflow page within a
 *	splitnumber.
 *
 */
static uint32
_hash_firstfreebit(uint32 map)
{
	uint32		i,
				mask;

	mask = 0x1;
	for (i = 0; i < BITS_PER_MAP; i++)
	{
		if (!(mask & map))
			return (i);
		mask = mask << 1;
	}
	return (i);
}

/*
 *	_hash_freeovflpage() -
 *
 *	Mark this overflow page as free and return a buffer with
 *	the page that follows it (which may be defined as
 *	InvalidBuffer).
 *
 */
Buffer
_hash_freeovflpage(Relation rel, Buffer ovflbuf)
{
	HashMetaPage metap;
	Buffer		metabuf;
	Buffer		mapbuf;
	BlockNumber prevblkno;
	BlockNumber blkno;
	BlockNumber nextblkno;
	HashPageOpaque ovflopaque;
	Page		ovflpage;
	Page		mappage;
	OverflowPageAddress addr;
	SplitNumber splitnum;
	uint32	   *freep;
	uint32		ovflpgno;
	int32		bitmappage,
				bitmapbit;
	Bucket		bucket;

	metabuf = _hash_getbuf(rel, HASH_METAPAGE, HASH_WRITE);
	metap = (HashMetaPage) BufferGetPage(metabuf);
	_hash_checkpage((Page) metap, LH_META_PAGE);

	ovflpage = BufferGetPage(ovflbuf);
	_hash_checkpage(ovflpage, LH_OVERFLOW_PAGE);
	ovflopaque = (HashPageOpaque) PageGetSpecialPointer(ovflpage);
	addr = ovflopaque->hasho_oaddr;
	nextblkno = ovflopaque->hasho_nextblkno;
	prevblkno = ovflopaque->hasho_prevblkno;
	bucket = ovflopaque->hasho_bucket;
	MemSet(ovflpage, 0, BufferGetPageSize(ovflbuf));
	_hash_wrtbuf(rel, ovflbuf);

	/*
	 * fix up the bucket chain.  this is a doubly-linked list, so we must
	 * fix up the bucket chain members behind and ahead of the overflow
	 * page being deleted.
	 *
	 * XXX this should look like: - lock prev/next - modify/write prev/next
	 * (how to do write ordering with a doubly-linked list?) - unlock
	 * prev/next
	 */
	if (BlockNumberIsValid(prevblkno))
	{
		Buffer		prevbuf = _hash_getbuf(rel, prevblkno, HASH_WRITE);
		Page		prevpage = BufferGetPage(prevbuf);
		HashPageOpaque prevopaque =
		(HashPageOpaque) PageGetSpecialPointer(prevpage);

		_hash_checkpage(prevpage, LH_BUCKET_PAGE | LH_OVERFLOW_PAGE);
		Assert(prevopaque->hasho_bucket == bucket);
		prevopaque->hasho_nextblkno = nextblkno;
		_hash_wrtbuf(rel, prevbuf);
	}
	if (BlockNumberIsValid(nextblkno))
	{
		Buffer		nextbuf = _hash_getbuf(rel, nextblkno, HASH_WRITE);
		Page		nextpage = BufferGetPage(nextbuf);
		HashPageOpaque nextopaque =
		(HashPageOpaque) PageGetSpecialPointer(nextpage);

		_hash_checkpage(nextpage, LH_OVERFLOW_PAGE);
		Assert(nextopaque->hasho_bucket == bucket);
		nextopaque->hasho_prevblkno = prevblkno;
		_hash_wrtbuf(rel, nextbuf);
	}

	/*
	 * Fix up the overflow page bitmap that tracks this particular
	 * overflow page. The bitmap can be found in the MetaPageData array
	 * element hashm_mapp[bitmappage].
	 */
	splitnum = (addr >> SPLITSHIFT);
	ovflpgno =
		(splitnum ? metap->SPARES[splitnum - 1] : 0) + (addr & SPLITMASK) - 1;

	if (ovflpgno < metap->LAST_FREED)
		metap->LAST_FREED = ovflpgno;

	bitmappage = (ovflpgno >> (metap->BSHIFT + BYTE_TO_BIT));
	bitmapbit = ovflpgno & (BMPGSZ_BIT(metap) - 1);

	blkno = metap->hashm_mapp[bitmappage];
	mapbuf = _hash_getbuf(rel, blkno, HASH_WRITE);
	mappage = BufferGetPage(mapbuf);
	_hash_checkpage(mappage, LH_BITMAP_PAGE);
	freep = HashPageGetBitmap(mappage);
	CLRBIT(freep, bitmapbit);
	_hash_wrtbuf(rel, mapbuf);

	_hash_relbuf(rel, metabuf, HASH_WRITE);

	/*
	 * now instantiate the page that replaced this one, if it exists, and
	 * return that buffer with a write lock.
	 */
	if (BlockNumberIsValid(nextblkno))
		return (_hash_getbuf(rel, nextblkno, HASH_WRITE));
	else
		return (InvalidBuffer);
}


/*
 *	_hash_initbitmap()
 *
 *	 Initialize a new bitmap page.	The metapage has a write-lock upon
 *	 entering the function.
 *
 * 'pnum' is the OverflowPageAddress of the new bitmap page.
 * 'nbits' is how many bits to clear (i.e., make available) in the new
 * bitmap page.  the remainder of the bits (as well as the first bit,
 * representing the bitmap page itself) will be set.
 * 'ndx' is the 0-based offset of the new bitmap page within the
 * metapage's array of bitmap page OverflowPageAddresses.
 */

#define INT_MASK		((1 << INT_TO_BIT) -1)

int32
_hash_initbitmap(Relation rel,
				 HashMetaPage metap,
				 int32 pnum,
				 int32 nbits,
				 int32 ndx)
{
	Buffer		buf;
	BlockNumber blkno;
	Page		pg;
	HashPageOpaque op;
	uint32	   *freep;
	int			clearbytes,
				clearints;

	blkno = OADDR_TO_BLKNO(pnum);
	buf = _hash_getbuf(rel, blkno, HASH_WRITE);
	pg = BufferGetPage(buf);
	_hash_pageinit(pg, BufferGetPageSize(buf));
	op = (HashPageOpaque) PageGetSpecialPointer(pg);
	op->hasho_oaddr = InvalidOvflAddress;
	op->hasho_prevblkno = InvalidBlockNumber;
	op->hasho_nextblkno = InvalidBlockNumber;
	op->hasho_flag = LH_BITMAP_PAGE;
	op->hasho_bucket = -1;

	freep = HashPageGetBitmap(pg);

	/* set all of the bits above 'nbits' to 1 */
	clearints = ((nbits - 1) >> INT_TO_BIT) + 1;
	clearbytes = clearints << INT_TO_BYTE;
	MemSet((char *) freep, 0, clearbytes);
	MemSet(((char *) freep) + clearbytes, 0xFF,
		   BMPGSZ_BYTE(metap) - clearbytes);
	freep[clearints - 1] = ALL_SET << (nbits & INT_MASK);

	/* bit 0 represents the new bitmap page */
	SETBIT(freep, 0);

	/* metapage already has a write lock */
	metap->hashm_nmaps++;
	metap->hashm_mapp[ndx] = blkno;

	/* write out the new bitmap page (releasing its locks) */
	_hash_wrtbuf(rel, buf);

	return (0);
}


/*
 *	_hash_squeezebucket(rel, bucket)
 *
 *	Try to squeeze the tuples onto pages occuring earlier in the
 *	bucket chain in an attempt to free overflow pages. When we start
 *	the "squeezing", the page from which we start taking tuples (the
 *	"read" page) is the last bucket in the bucket chain and the page
 *	onto which we start squeezing tuples (the "write" page) is the
 *	first page in the bucket chain.  The read page works backward and
 *	the write page works forward; the procedure terminates when the
 *	read page and write page are the same page.
 */
void
_hash_squeezebucket(Relation rel,
					HashMetaPage metap,
					Bucket bucket)
{
	Buffer		wbuf;
	Buffer		rbuf = 0;
	BlockNumber wblkno;
	BlockNumber rblkno;
	Page		wpage;
	Page		rpage;
	HashPageOpaque wopaque;
	HashPageOpaque ropaque;
	OffsetNumber woffnum;
	OffsetNumber roffnum;
	HashItem	hitem;
	int			itemsz;

/*	  elog(DEBUG, "_hash_squeezebucket: squeezing bucket %d", bucket); */

	/*
	 * start squeezing into the base bucket page.
	 */
	wblkno = BUCKET_TO_BLKNO(bucket);
	wbuf = _hash_getbuf(rel, wblkno, HASH_WRITE);
	wpage = BufferGetPage(wbuf);
	_hash_checkpage(wpage, LH_BUCKET_PAGE);
	wopaque = (HashPageOpaque) PageGetSpecialPointer(wpage);

	/*
	 * if there aren't any overflow pages, there's nothing to squeeze.
	 */
	if (!BlockNumberIsValid(wopaque->hasho_nextblkno))
	{
		_hash_relbuf(rel, wbuf, HASH_WRITE);
		return;
	}

	/*
	 * find the last page in the bucket chain by starting at the base
	 * bucket page and working forward.
	 *
	 * XXX if chains tend to be long, we should probably move forward using
	 * HASH_READ and then _hash_chgbufaccess to HASH_WRITE when we reach
	 * the end.  if they are short we probably don't care very much.  if
	 * the hash function is working at all, they had better be short..
	 */
	ropaque = wopaque;
	do
	{
		rblkno = ropaque->hasho_nextblkno;
		if (ropaque != wopaque)
			_hash_relbuf(rel, rbuf, HASH_WRITE);
		rbuf = _hash_getbuf(rel, rblkno, HASH_WRITE);
		rpage = BufferGetPage(rbuf);
		_hash_checkpage(rpage, LH_OVERFLOW_PAGE);
		Assert(!PageIsEmpty(rpage));
		ropaque = (HashPageOpaque) PageGetSpecialPointer(rpage);
		Assert(ropaque->hasho_bucket == bucket);
	} while (BlockNumberIsValid(ropaque->hasho_nextblkno));

	/*
	 * squeeze the tuples.
	 */
	roffnum = FirstOffsetNumber;
	for (;;)
	{
		hitem = (HashItem) PageGetItem(rpage, PageGetItemId(rpage, roffnum));
		itemsz = IndexTupleDSize(hitem->hash_itup)
			+ (sizeof(HashItemData) - sizeof(IndexTupleData));
		itemsz = DOUBLEALIGN(itemsz);

		/*
		 * walk up the bucket chain, looking for a page big enough for
		 * this item.
		 */
		while (PageGetFreeSpace(wpage) < itemsz)
		{
			wblkno = wopaque->hasho_nextblkno;

			_hash_wrtbuf(rel, wbuf);

			if (!BlockNumberIsValid(wblkno) || (rblkno == wblkno))
			{
				_hash_wrtbuf(rel, rbuf);
				/* wbuf is already released */
				return;
			}

			wbuf = _hash_getbuf(rel, wblkno, HASH_WRITE);
			wpage = BufferGetPage(wbuf);
			_hash_checkpage(wpage, LH_OVERFLOW_PAGE);
			Assert(!PageIsEmpty(wpage));
			wopaque = (HashPageOpaque) PageGetSpecialPointer(wpage);
			Assert(wopaque->hasho_bucket == bucket);
		}

		/*
		 * if we're here, we have found room so insert on the "write"
		 * page.
		 */
		woffnum = OffsetNumberNext(PageGetMaxOffsetNumber(wpage));
		PageAddItem(wpage, (Item) hitem, itemsz, woffnum, LP_USED);

		/*
		 * delete the tuple from the "read" page. PageIndexTupleDelete
		 * repacks the ItemId array, so 'roffnum' will be "advanced" to
		 * the "next" ItemId.
		 */
		PageIndexTupleDelete(rpage, roffnum);
		_hash_wrtnorelbuf(rel, rbuf);

		/*
		 * if the "read" page is now empty because of the deletion, free
		 * it.
		 */
		if (PageIsEmpty(rpage) && (ropaque->hasho_flag & LH_OVERFLOW_PAGE))
		{
			rblkno = ropaque->hasho_prevblkno;
			Assert(BlockNumberIsValid(rblkno));

			/*
			 * free this overflow page.  the extra _hash_relbuf is because
			 * _hash_freeovflpage gratuitously returns the next page (we
			 * want the previous page and will get it ourselves later).
			 */
			rbuf = _hash_freeovflpage(rel, rbuf);
			if (BufferIsValid(rbuf))
				_hash_relbuf(rel, rbuf, HASH_WRITE);

			if (rblkno == wblkno)
			{
				/* rbuf is already released */
				_hash_wrtbuf(rel, wbuf);
				return;
			}

			rbuf = _hash_getbuf(rel, rblkno, HASH_WRITE);
			rpage = BufferGetPage(rbuf);
			_hash_checkpage(rpage, LH_OVERFLOW_PAGE);
			Assert(!PageIsEmpty(rpage));
			ropaque = (HashPageOpaque) PageGetSpecialPointer(rpage);
			Assert(ropaque->hasho_bucket == bucket);

			roffnum = FirstOffsetNumber;
		}
	}
}