1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
|
/*-------------------------------------------------------------------------
*
* ginbulk.c
* routines for fast build of inverted index
*
*
* Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/access/gin/ginbulk.c
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <limits.h>
#include "access/gin_private.h"
#include "utils/datum.h"
#include "utils/memutils.h"
#define DEF_NENTRY 2048 /* GinEntryAccumulator allocation quantum */
#define DEF_NPTR 5 /* ItemPointer initial allocation quantum */
/* Combiner function for rbtree.c */
static void
ginCombineData(RBNode *existing, const RBNode *newdata, void *arg)
{
GinEntryAccumulator *eo = (GinEntryAccumulator *) existing;
const GinEntryAccumulator *en = (const GinEntryAccumulator *) newdata;
BuildAccumulator *accum = (BuildAccumulator *) arg;
/*
* Note this code assumes that newdata contains only one itempointer.
*/
if (eo->count >= eo->maxcount)
{
if (eo->maxcount > INT_MAX)
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("posting list is too long"),
errhint("Reduce maintenance_work_mem.")));
accum->allocatedMemory -= GetMemoryChunkSpace(eo->list);
eo->maxcount *= 2;
eo->list = (ItemPointerData *)
repalloc_huge(eo->list, sizeof(ItemPointerData) * eo->maxcount);
accum->allocatedMemory += GetMemoryChunkSpace(eo->list);
}
/* If item pointers are not ordered, they will need to be sorted later */
if (eo->shouldSort == false)
{
int res;
res = ginCompareItemPointers(eo->list + eo->count - 1, en->list);
Assert(res != 0);
if (res > 0)
eo->shouldSort = true;
}
eo->list[eo->count] = en->list[0];
eo->count++;
}
/* Comparator function for rbtree.c */
static int
cmpEntryAccumulator(const RBNode *a, const RBNode *b, void *arg)
{
const GinEntryAccumulator *ea = (const GinEntryAccumulator *) a;
const GinEntryAccumulator *eb = (const GinEntryAccumulator *) b;
BuildAccumulator *accum = (BuildAccumulator *) arg;
return ginCompareAttEntries(accum->ginstate,
ea->attnum, ea->key, ea->category,
eb->attnum, eb->key, eb->category);
}
/* Allocator function for rbtree.c */
static RBNode *
ginAllocEntryAccumulator(void *arg)
{
BuildAccumulator *accum = (BuildAccumulator *) arg;
GinEntryAccumulator *ea;
/*
* Allocate memory by rather big chunks to decrease overhead. We have no
* need to reclaim RBNodes individually, so this costs nothing.
*/
if (accum->entryallocator == NULL || accum->eas_used >= DEF_NENTRY)
{
accum->entryallocator = palloc(sizeof(GinEntryAccumulator) * DEF_NENTRY);
accum->allocatedMemory += GetMemoryChunkSpace(accum->entryallocator);
accum->eas_used = 0;
}
/* Allocate new RBNode from current chunk */
ea = accum->entryallocator + accum->eas_used;
accum->eas_used++;
return (RBNode *) ea;
}
void
ginInitBA(BuildAccumulator *accum)
{
/* accum->ginstate is intentionally not set here */
accum->allocatedMemory = 0;
accum->entryallocator = NULL;
accum->eas_used = 0;
accum->tree = rb_create(sizeof(GinEntryAccumulator),
cmpEntryAccumulator,
ginCombineData,
ginAllocEntryAccumulator,
NULL, /* no freefunc needed */
(void *) accum);
}
/*
* This is basically the same as datumCopy(), but extended to count
* palloc'd space in accum->allocatedMemory.
*/
static Datum
getDatumCopy(BuildAccumulator *accum, OffsetNumber attnum, Datum value)
{
Form_pg_attribute att;
Datum res;
att = TupleDescAttr(accum->ginstate->origTupdesc, attnum - 1);
if (att->attbyval)
res = value;
else
{
res = datumCopy(value, false, att->attlen);
accum->allocatedMemory += GetMemoryChunkSpace(DatumGetPointer(res));
}
return res;
}
/*
* Find/store one entry from indexed value.
*/
static void
ginInsertBAEntry(BuildAccumulator *accum,
ItemPointer heapptr, OffsetNumber attnum,
Datum key, GinNullCategory category)
{
GinEntryAccumulator eatmp;
GinEntryAccumulator *ea;
bool isNew;
/*
* For the moment, fill only the fields of eatmp that will be looked at by
* cmpEntryAccumulator or ginCombineData.
*/
eatmp.attnum = attnum;
eatmp.key = key;
eatmp.category = category;
/* temporarily set up single-entry itempointer list */
eatmp.list = heapptr;
ea = (GinEntryAccumulator *) rb_insert(accum->tree, (RBNode *) &eatmp,
&isNew);
if (isNew)
{
/*
* Finish initializing new tree entry, including making permanent
* copies of the datum (if it's not null) and itempointer.
*/
if (category == GIN_CAT_NORM_KEY)
ea->key = getDatumCopy(accum, attnum, key);
ea->maxcount = DEF_NPTR;
ea->count = 1;
ea->shouldSort = false;
ea->list =
(ItemPointerData *) palloc(sizeof(ItemPointerData) * DEF_NPTR);
ea->list[0] = *heapptr;
accum->allocatedMemory += GetMemoryChunkSpace(ea->list);
}
else
{
/*
* ginCombineData did everything needed.
*/
}
}
/*
* Insert the entries for one heap pointer.
*
* Since the entries are being inserted into a balanced binary tree, you
* might think that the order of insertion wouldn't be critical, but it turns
* out that inserting the entries in sorted order results in a lot of
* rebalancing operations and is slow. To prevent this, we attempt to insert
* the nodes in an order that will produce a nearly-balanced tree if the input
* is in fact sorted.
*
* We do this as follows. First, we imagine that we have an array whose size
* is the smallest power of two greater than or equal to the actual array
* size. Second, we insert the middle entry of our virtual array into the
* tree; then, we insert the middles of each half of our virtual array, then
* middles of quarters, etc.
*/
void
ginInsertBAEntries(BuildAccumulator *accum,
ItemPointer heapptr, OffsetNumber attnum,
Datum *entries, GinNullCategory *categories,
int32 nentries)
{
uint32 step = nentries;
if (nentries <= 0)
return;
Assert(ItemPointerIsValid(heapptr) && attnum >= FirstOffsetNumber);
/*
* step will contain largest power of 2 and <= nentries
*/
step |= (step >> 1);
step |= (step >> 2);
step |= (step >> 4);
step |= (step >> 8);
step |= (step >> 16);
step >>= 1;
step++;
while (step > 0)
{
int i;
for (i = step - 1; i < nentries && i >= 0; i += step << 1 /* *2 */ )
ginInsertBAEntry(accum, heapptr, attnum,
entries[i], categories[i]);
step >>= 1; /* /2 */
}
}
static int
qsortCompareItemPointers(const void *a, const void *b)
{
int res = ginCompareItemPointers((ItemPointer) a, (ItemPointer) b);
/* Assert that there are no equal item pointers being sorted */
Assert(res != 0);
return res;
}
/* Prepare to read out the rbtree contents using ginGetBAEntry */
void
ginBeginBAScan(BuildAccumulator *accum)
{
rb_begin_iterate(accum->tree, LeftRightWalk, &accum->tree_walk);
}
/*
* Get the next entry in sequence from the BuildAccumulator's rbtree.
* This consists of a single key datum and a list (array) of one or more
* heap TIDs in which that key is found. The list is guaranteed sorted.
*/
ItemPointerData *
ginGetBAEntry(BuildAccumulator *accum,
OffsetNumber *attnum, Datum *key, GinNullCategory *category,
uint32 *n)
{
GinEntryAccumulator *entry;
ItemPointerData *list;
entry = (GinEntryAccumulator *) rb_iterate(&accum->tree_walk);
if (entry == NULL)
return NULL; /* no more entries */
*attnum = entry->attnum;
*key = entry->key;
*category = entry->category;
list = entry->list;
*n = entry->count;
Assert(list != NULL && entry->count > 0);
if (entry->shouldSort && entry->count > 1)
qsort(list, entry->count, sizeof(ItemPointerData),
qsortCompareItemPointers);
return list;
}
|