summaryrefslogtreecommitdiff
path: root/ext/date/lib/astro.c
diff options
context:
space:
mode:
Diffstat (limited to 'ext/date/lib/astro.c')
-rw-r--r--ext/date/lib/astro.c303
1 files changed, 303 insertions, 0 deletions
diff --git a/ext/date/lib/astro.c b/ext/date/lib/astro.c
new file mode 100644
index 0000000..d770d1a
--- /dev/null
+++ b/ext/date/lib/astro.c
@@ -0,0 +1,303 @@
+/*
+ +----------------------------------------------------------------------+
+ | PHP Version 5 |
+ +----------------------------------------------------------------------+
+ | Copyright (c) 1997-2013 The PHP Group |
+ +----------------------------------------------------------------------+
+ | This source file is subject to version 3.01 of the PHP license, |
+ | that is bundled with this package in the file LICENSE, and is |
+ | available through the world-wide-web at the following url: |
+ | http://www.php.net/license/3_01.txt |
+ | If you did not receive a copy of the PHP license and are unable to |
+ | obtain it through the world-wide-web, please send a note to |
+ | license@php.net so we can mail you a copy immediately. |
+ +----------------------------------------------------------------------+
+ | Algorithms are taken from a public domain source by Paul |
+ | Schlyter, who wrote this in December 1992 |
+ +----------------------------------------------------------------------+
+ | Authors: Derick Rethans <derick@derickrethans.nl> |
+ +----------------------------------------------------------------------+
+ */
+
+/* $Id$ */
+
+#include <stdio.h>
+#include <math.h>
+#include "timelib.h"
+
+#define days_since_2000_Jan_0(y,m,d) \
+ (367L*(y)-((7*((y)+(((m)+9)/12)))/4)+((275*(m))/9)+(d)-730530L)
+
+#ifndef PI
+ #define PI 3.1415926535897932384
+#endif
+
+#define RADEG ( 180.0 / PI )
+#define DEGRAD ( PI / 180.0 )
+
+/* The trigonometric functions in degrees */
+
+#define sind(x) sin((x)*DEGRAD)
+#define cosd(x) cos((x)*DEGRAD)
+#define tand(x) tan((x)*DEGRAD)
+
+#define atand(x) (RADEG*atan(x))
+#define asind(x) (RADEG*asin(x))
+#define acosd(x) (RADEG*acos(x))
+#define atan2d(y,x) (RADEG*atan2(y,x))
+
+
+/* Following are some macros around the "workhorse" function __daylen__ */
+/* They mainly fill in the desired values for the reference altitude */
+/* below the horizon, and also selects whether this altitude should */
+/* refer to the Sun's center or its upper limb. */
+
+
+#include "astro.h"
+
+/******************************************************************/
+/* This function reduces any angle to within the first revolution */
+/* by subtracting or adding even multiples of 360.0 until the */
+/* result is >= 0.0 and < 360.0 */
+/******************************************************************/
+
+#define INV360 (1.0 / 360.0)
+
+/*****************************************/
+/* Reduce angle to within 0..360 degrees */
+/*****************************************/
+static double astro_revolution(double x)
+{
+ return (x - 360.0 * floor(x * INV360));
+}
+
+/*********************************************/
+/* Reduce angle to within +180..+180 degrees */
+/*********************************************/
+static double astro_rev180( double x )
+{
+ return (x - 360.0 * floor(x * INV360 + 0.5));
+}
+
+/*******************************************************************/
+/* This function computes GMST0, the Greenwich Mean Sidereal Time */
+/* at 0h UT (i.e. the sidereal time at the Greenwhich meridian at */
+/* 0h UT). GMST is then the sidereal time at Greenwich at any */
+/* time of the day. I've generalized GMST0 as well, and define it */
+/* as: GMST0 = GMST - UT -- this allows GMST0 to be computed at */
+/* other times than 0h UT as well. While this sounds somewhat */
+/* contradictory, it is very practical: instead of computing */
+/* GMST like: */
+/* */
+/* GMST = (GMST0) + UT * (366.2422/365.2422) */
+/* */
+/* where (GMST0) is the GMST last time UT was 0 hours, one simply */
+/* computes: */
+/* */
+/* GMST = GMST0 + UT */
+/* */
+/* where GMST0 is the GMST "at 0h UT" but at the current moment! */
+/* Defined in this way, GMST0 will increase with about 4 min a */
+/* day. It also happens that GMST0 (in degrees, 1 hr = 15 degr) */
+/* is equal to the Sun's mean longitude plus/minus 180 degrees! */
+/* (if we neglect aberration, which amounts to 20 seconds of arc */
+/* or 1.33 seconds of time) */
+/* */
+/*******************************************************************/
+
+static double astro_GMST0(double d)
+{
+ double sidtim0;
+ /* Sidtime at 0h UT = L (Sun's mean longitude) + 180.0 degr */
+ /* L = M + w, as defined in sunpos(). Since I'm too lazy to */
+ /* add these numbers, I'll let the C compiler do it for me. */
+ /* Any decent C compiler will add the constants at compile */
+ /* time, imposing no runtime or code overhead. */
+ sidtim0 = astro_revolution((180.0 + 356.0470 + 282.9404) + (0.9856002585 + 4.70935E-5) * d);
+ return sidtim0;
+}
+
+/* This function computes the Sun's position at any instant */
+
+/******************************************************/
+/* Computes the Sun's ecliptic longitude and distance */
+/* at an instant given in d, number of days since */
+/* 2000 Jan 0.0. The Sun's ecliptic latitude is not */
+/* computed, since it's always very near 0. */
+/******************************************************/
+static void astro_sunpos(double d, double *lon, double *r)
+{
+ double M, /* Mean anomaly of the Sun */
+ w, /* Mean longitude of perihelion */
+ /* Note: Sun's mean longitude = M + w */
+ e, /* Eccentricity of Earth's orbit */
+ E, /* Eccentric anomaly */
+ x, y, /* x, y coordinates in orbit */
+ v; /* True anomaly */
+
+ /* Compute mean elements */
+ M = astro_revolution(356.0470 + 0.9856002585 * d);
+ w = 282.9404 + 4.70935E-5 * d;
+ e = 0.016709 - 1.151E-9 * d;
+
+ /* Compute true longitude and radius vector */
+ E = M + e * RADEG * sind(M) * (1.0 + e * cosd(M));
+ x = cosd(E) - e;
+ y = sqrt(1.0 - e*e) * sind(E);
+ *r = sqrt(x*x + y*y); /* Solar distance */
+ v = atan2d(y, x); /* True anomaly */
+ *lon = v + w; /* True solar longitude */
+ if (*lon >= 360.0) {
+ *lon -= 360.0; /* Make it 0..360 degrees */
+ }
+}
+
+static void astro_sun_RA_dec(double d, double *RA, double *dec, double *r)
+{
+ double lon, obl_ecl, x, y, z;
+
+ /* Compute Sun's ecliptical coordinates */
+ astro_sunpos(d, &lon, r);
+
+ /* Compute ecliptic rectangular coordinates (z=0) */
+ x = *r * cosd(lon);
+ y = *r * sind(lon);
+
+ /* Compute obliquity of ecliptic (inclination of Earth's axis) */
+ obl_ecl = 23.4393 - 3.563E-7 * d;
+
+ /* Convert to equatorial rectangular coordinates - x is unchanged */
+ z = y * sind(obl_ecl);
+ y = y * cosd(obl_ecl);
+
+ /* Convert to spherical coordinates */
+ *RA = atan2d(y, x);
+ *dec = atan2d(z, sqrt(x*x + y*y));
+}
+
+/**
+ * Note: timestamp = unixtimestamp (NEEDS to be 00:00:00 UT)
+ * Eastern longitude positive, Western longitude negative
+ * Northern latitude positive, Southern latitude negative
+ * The longitude value IS critical in this function!
+ * altit = the altitude which the Sun should cross
+ * Set to -35/60 degrees for rise/set, -6 degrees
+ * for civil, -12 degrees for nautical and -18
+ * degrees for astronomical twilight.
+ * upper_limb: non-zero -> upper limb, zero -> center
+ * Set to non-zero (e.g. 1) when computing rise/set
+ * times, and to zero when computing start/end of
+ * twilight.
+ * *rise = where to store the rise time
+ * *set = where to store the set time
+ * Both times are relative to the specified altitude,
+ * and thus this function can be used to compute
+ * various twilight times, as well as rise/set times
+ * Return value: 0 = sun rises/sets this day, times stored at
+ * *trise and *tset.
+ * +1 = sun above the specified "horizon" 24 hours.
+ * *trise set to time when the sun is at south,
+ * minus 12 hours while *tset is set to the south
+ * time plus 12 hours. "Day" length = 24 hours
+ * -1 = sun is below the specified "horizon" 24 hours
+ * "Day" length = 0 hours, *trise and *tset are
+ * both set to the time when the sun is at south.
+ *
+ */
+int timelib_astro_rise_set_altitude(timelib_time *t_loc, double lon, double lat, double altit, int upper_limb, double *h_rise, double *h_set, timelib_sll *ts_rise, timelib_sll *ts_set, timelib_sll *ts_transit)
+{
+ double d, /* Days since 2000 Jan 0.0 (negative before) */
+ sr, /* Solar distance, astronomical units */
+ sRA, /* Sun's Right Ascension */
+ sdec, /* Sun's declination */
+ sradius, /* Sun's apparent radius */
+ t, /* Diurnal arc */
+ tsouth, /* Time when Sun is at south */
+ sidtime; /* Local sidereal time */
+ timelib_time *t_utc;
+ timelib_sll timestamp, old_sse;
+
+ int rc = 0; /* Return cde from function - usually 0 */
+
+ /* Normalize time */
+ old_sse = t_loc->sse;
+ t_loc->h = 12;
+ t_loc->i = t_loc->s = 0;
+ timelib_update_ts(t_loc, NULL);
+
+ /* Calculate TS belonging to UTC 00:00 of the current day */
+ t_utc = timelib_time_ctor();
+ t_utc->y = t_loc->y;
+ t_utc->m = t_loc->m;
+ t_utc->d = t_loc->d;
+ t_utc->h = t_utc->i = t_utc->s = 0;
+ timelib_update_ts(t_utc, NULL);
+
+ /* Compute d of 12h local mean solar time */
+ timestamp = t_loc->sse;
+ d = timelib_ts_to_juliandate(timestamp) - lon/360.0;
+
+ /* Compute local sidereal time of this moment */
+ sidtime = astro_revolution(astro_GMST0(d) + 180.0 + lon);
+
+ /* Compute Sun's RA + Decl at this moment */
+ astro_sun_RA_dec( d, &sRA, &sdec, &sr );
+
+ /* Compute time when Sun is at south - in hours UT */
+ tsouth = 12.0 - astro_rev180(sidtime - sRA) / 15.0;
+
+ /* Compute the Sun's apparent radius, degrees */
+ sradius = 0.2666 / sr;
+
+ /* Do correction to upper limb, if necessary */
+ if (upper_limb) {
+ altit -= sradius;
+ }
+
+ /* Compute the diurnal arc that the Sun traverses to reach */
+ /* the specified altitude altit: */
+ {
+ double cost;
+ cost = (sind(altit) - sind(lat) * sind(sdec)) / (cosd(lat) * cosd(sdec));
+ *ts_transit = t_utc->sse + (tsouth * 3600);
+ if (cost >= 1.0) {
+ rc = -1;
+ t = 0.0; /* Sun always below altit */
+
+ *ts_rise = *ts_set = t_utc->sse + (tsouth * 3600);
+ } else if (cost <= -1.0) {
+ rc = +1;
+ t = 12.0; /* Sun always above altit */
+
+ *ts_rise = t_loc->sse - (12 * 3600);
+ *ts_set = t_loc->sse + (12 * 3600);
+ } else {
+ t = acosd(cost) / 15.0; /* The diurnal arc, hours */
+
+ /* Store rise and set times - as Unix Timestamp */
+ *ts_rise = ((tsouth - t) * 3600) + t_utc->sse;
+ *ts_set = ((tsouth + t) * 3600) + t_utc->sse;
+
+ *h_rise = (tsouth - t);
+ *h_set = (tsouth + t);
+ }
+ }
+
+ /* Kill temporary time and restore original sse */
+ timelib_time_dtor(t_utc);
+ t_loc->sse = old_sse;
+
+ return rc;
+}
+
+double timelib_ts_to_juliandate(timelib_sll ts)
+{
+ double tmp;
+
+ tmp = ts;
+ tmp /= 86400;
+ tmp += 2440587.5;
+ tmp -= 2451543;
+
+ return tmp;
+}