1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
/*
+----------------------------------------------------------------------+
| Zend Engine, Sparse Conditional Data Flow Propagation Framework |
+----------------------------------------------------------------------+
| Copyright (c) The PHP Group |
+----------------------------------------------------------------------+
| This source file is subject to version 3.01 of the PHP license, |
| that is bundled with this package in the file LICENSE, and is |
| available through the world-wide-web at the following url: |
| http://www.php.net/license/3_01.txt |
| If you did not receive a copy of the PHP license and are unable to |
| obtain it through the world-wide-web, please send a note to |
| license@php.net so we can mail you a copy immediately. |
+----------------------------------------------------------------------+
| Authors: Nikita Popov <nikic@php.net> |
+----------------------------------------------------------------------+
*/
#include "ZendAccelerator.h"
#include "Optimizer/zend_optimizer_internal.h"
#include "Optimizer/scdf.h"
/* This defines a generic framework for sparse conditional dataflow propagation. The algorithm is
* based on "Sparse conditional constant propagation" by Wegman and Zadeck. We're using a
* generalized implementation as described in chapter 8.3 of the SSA book.
*
* Every SSA variable is associated with an element on a finite-height lattice, those value can only
* ever be lowered during the operation of the algorithm. If a value is lowered all instructions and
* phis using that value need to be reconsidered (this is done by adding the variable to a
* worklist). For phi functions the result is computed by applying the meet operation to the
* operands. This continues until a fixed point is reached.
*
* The algorithm is control-flow sensitive: All blocks except the start block are initially assumed
* to be unreachable. When considering a branch instruction, we determine the feasible successors
* based on the current state of the variable lattice. If a new edge becomes feasible we either have
* to mark the successor block executable and consider all instructions in it, or, if the target is
* already executable, we only have to reconsider the phi functions (as we only consider phi
* operands which are associated with a feasible edge).
*
* The generic framework requires the definition of three functions:
* * visit_instr() should recompute the lattice values of all SSA variables defined by an
* instruction.
* * visit_phi() should recompute the lattice value of the SSA variable defined by the phi. While
* doing this it should only consider operands for which scfg_is_edge_feasible() returns true.
* * get_feasible_successors() should determine the feasible successors for a branch instruction.
* Note that this callback only needs to handle conditional branches (with two successors).
*/
#if 0
#define DEBUG_PRINT(...) fprintf(stderr, __VA_ARGS__)
#else
#define DEBUG_PRINT(...)
#endif
void scdf_mark_edge_feasible(scdf_ctx *scdf, int from, int to) {
uint32_t edge = scdf_edge(&scdf->ssa->cfg, from, to);
if (zend_bitset_in(scdf->feasible_edges, edge)) {
/* We already handled this edge */
return;
}
DEBUG_PRINT("Marking edge %d->%d feasible\n", from, to);
zend_bitset_incl(scdf->feasible_edges, edge);
if (!zend_bitset_in(scdf->executable_blocks, to)) {
if (!zend_bitset_in(scdf->block_worklist, to)) {
DEBUG_PRINT("Adding block %d to worklist\n", to);
}
zend_bitset_incl(scdf->block_worklist, to);
} else {
/* Block is already executable, only a new edge became feasible.
* Reevaluate phi nodes to account for changed source operands. */
zend_ssa_block *ssa_block = &scdf->ssa->blocks[to];
zend_ssa_phi *phi;
for (phi = ssa_block->phis; phi; phi = phi->next) {
zend_bitset_excl(scdf->phi_var_worklist, phi->ssa_var);
scdf->handlers.visit_phi(scdf, phi);
}
}
}
void scdf_init(zend_optimizer_ctx *ctx, scdf_ctx *scdf, zend_op_array *op_array, zend_ssa *ssa) {
scdf->op_array = op_array;
scdf->ssa = ssa;
scdf->instr_worklist_len = zend_bitset_len(op_array->last);
scdf->phi_var_worklist_len = zend_bitset_len(ssa->vars_count);
scdf->block_worklist_len = zend_bitset_len(ssa->cfg.blocks_count);
scdf->instr_worklist = zend_arena_calloc(&ctx->arena,
scdf->instr_worklist_len + scdf->phi_var_worklist_len + 2 * scdf->block_worklist_len + zend_bitset_len(ssa->cfg.edges_count),
sizeof(zend_ulong));
scdf->phi_var_worklist = scdf->instr_worklist + scdf->instr_worklist_len;
scdf->block_worklist = scdf->phi_var_worklist + scdf->phi_var_worklist_len;
scdf->executable_blocks = scdf->block_worklist + scdf->block_worklist_len;
scdf->feasible_edges = scdf->executable_blocks + scdf->block_worklist_len;
zend_bitset_incl(scdf->block_worklist, 0);
zend_bitset_incl(scdf->executable_blocks, 0);
}
void scdf_solve(scdf_ctx *scdf, const char *name) {
zend_ssa *ssa = scdf->ssa;
DEBUG_PRINT("Start SCDF solve (%s)\n", name);
while (!zend_bitset_empty(scdf->instr_worklist, scdf->instr_worklist_len)
|| !zend_bitset_empty(scdf->phi_var_worklist, scdf->phi_var_worklist_len)
|| !zend_bitset_empty(scdf->block_worklist, scdf->block_worklist_len)
) {
int i;
while ((i = zend_bitset_pop_first(scdf->phi_var_worklist, scdf->phi_var_worklist_len)) >= 0) {
zend_ssa_phi *phi = ssa->vars[i].definition_phi;
ZEND_ASSERT(phi);
if (zend_bitset_in(scdf->executable_blocks, phi->block)) {
scdf->handlers.visit_phi(scdf, phi);
}
}
while ((i = zend_bitset_pop_first(scdf->instr_worklist, scdf->instr_worklist_len)) >= 0) {
int block_num = ssa->cfg.map[i];
if (zend_bitset_in(scdf->executable_blocks, block_num)) {
zend_basic_block *block = &ssa->cfg.blocks[block_num];
zend_op *opline = &scdf->op_array->opcodes[i];
zend_ssa_op *ssa_op = &ssa->ops[i];
if (opline->opcode == ZEND_OP_DATA) {
opline--;
ssa_op--;
}
scdf->handlers.visit_instr(scdf, opline, ssa_op);
if (i == block->start + block->len - 1) {
if (block->successors_count == 1) {
scdf_mark_edge_feasible(scdf, block_num, block->successors[0]);
} else if (block->successors_count > 1) {
scdf->handlers.mark_feasible_successors(scdf, block_num, block, opline, ssa_op);
}
}
}
}
while ((i = zend_bitset_pop_first(scdf->block_worklist, scdf->block_worklist_len)) >= 0) {
/* This block is now live. Interpret phis and instructions in it. */
zend_basic_block *block = &ssa->cfg.blocks[i];
zend_ssa_block *ssa_block = &ssa->blocks[i];
DEBUG_PRINT("Pop block %d from worklist\n", i);
zend_bitset_incl(scdf->executable_blocks, i);
{
zend_ssa_phi *phi;
for (phi = ssa_block->phis; phi; phi = phi->next) {
zend_bitset_excl(scdf->phi_var_worklist, phi->ssa_var);
scdf->handlers.visit_phi(scdf, phi);
}
}
if (block->len == 0) {
/* Zero length blocks don't have a last instruction that would normally do this */
scdf_mark_edge_feasible(scdf, i, block->successors[0]);
} else {
zend_op *opline = NULL;
int j, end = block->start + block->len;
for (j = block->start; j < end; j++) {
opline = &scdf->op_array->opcodes[j];
zend_bitset_excl(scdf->instr_worklist, j);
if (opline->opcode != ZEND_OP_DATA) {
scdf->handlers.visit_instr(scdf, opline, &ssa->ops[j]);
}
}
if (block->successors_count == 1) {
scdf_mark_edge_feasible(scdf, i, block->successors[0]);
} else if (block->successors_count > 1) {
ZEND_ASSERT(opline && "Should have opline in non-empty block");
if (opline->opcode == ZEND_OP_DATA) {
opline--;
j--;
}
scdf->handlers.mark_feasible_successors(scdf, i, block, opline, &ssa->ops[j-1]);
}
}
}
}
}
/* If a live range starts in a reachable block and ends in an unreachable block, we should
* not eliminate the latter. While it cannot be reached, the FREE opcode of the loop var
* is necessary for the correctness of temporary compaction. */
static bool kept_alive_by_loop_var_free(scdf_ctx *scdf, uint32_t block_idx) {
uint32_t i;
const zend_op_array *op_array = scdf->op_array;
const zend_cfg *cfg = &scdf->ssa->cfg;
const zend_basic_block *block = &cfg->blocks[block_idx];
if (!(cfg->flags & ZEND_FUNC_FREE_LOOP_VAR)) {
return 0;
}
for (i = block->start; i < block->start + block->len; i++) {
zend_op *opline = &op_array->opcodes[i];
if (zend_optimizer_is_loop_var_free(opline)) {
int ssa_var = scdf->ssa->ops[i].op1_use;
if (ssa_var >= 0) {
int op_num = scdf->ssa->vars[ssa_var].definition;
uint32_t def_block;
ZEND_ASSERT(op_num >= 0);
def_block = cfg->map[op_num];
if (zend_bitset_in(scdf->executable_blocks, def_block)) {
return 1;
}
}
}
}
return 0;
}
/* Removes unreachable blocks. This will remove both the instructions (and phis) in the
* blocks, as well as remove them from the successor / predecessor lists and mark them
* unreachable. Blocks already marked unreachable are not removed. */
int scdf_remove_unreachable_blocks(scdf_ctx *scdf) {
zend_ssa *ssa = scdf->ssa;
int i;
int removed_ops = 0;
for (i = 0; i < ssa->cfg.blocks_count; i++) {
if (!zend_bitset_in(scdf->executable_blocks, i)
&& (ssa->cfg.blocks[i].flags & ZEND_BB_REACHABLE)
&& !kept_alive_by_loop_var_free(scdf, i)) {
removed_ops += ssa->cfg.blocks[i].len;
zend_ssa_remove_block(scdf->op_array, ssa, i);
}
}
return removed_ops;
}
|