summaryrefslogtreecommitdiff
path: root/ext/pcre/pcrelib/doc/pcre.txt
diff options
context:
space:
mode:
Diffstat (limited to 'ext/pcre/pcrelib/doc/pcre.txt')
-rw-r--r--ext/pcre/pcrelib/doc/pcre.txt1538
1 files changed, 932 insertions, 606 deletions
diff --git a/ext/pcre/pcrelib/doc/pcre.txt b/ext/pcre/pcrelib/doc/pcre.txt
index 9c7884998c..e55cf01c3a 100644
--- a/ext/pcre/pcrelib/doc/pcre.txt
+++ b/ext/pcre/pcrelib/doc/pcre.txt
@@ -72,6 +72,7 @@ USER DOCUMENTATION
of searching. The sections are as follows:
pcre this document
+ pcre-config show PCRE installation configuration information
pcreapi details of PCRE's native C API
pcrebuild options for building PCRE
pcrecallout details of the callout feature
@@ -196,7 +197,11 @@ UTF-8 AND UNICODE PROPERTY SUPPORT
8. Similarly, characters that match the POSIX named character classes
are all low-valued characters.
- 9. Case-insensitive matching applies only to characters whose values
+ 9. However, the Perl 5.10 horizontal and vertical whitespace matching
+ escapes (\h, \H, \v, and \V) do match all the appropriate Unicode char-
+ acters.
+
+ 10. Case-insensitive matching applies only to characters whose values
are less than 128, unless PCRE is built with Unicode property support.
Even when Unicode property support is available, PCRE still uses its
own character tables when checking the case of low-valued characters,
@@ -211,15 +216,18 @@ UTF-8 AND UNICODE PROPERTY SUPPORT
AUTHOR
Philip Hazel
- University Computing Service,
+ University Computing Service
Cambridge CB2 3QH, England.
Putting an actual email address here seems to have been a spam magnet,
- so I've taken it away. If you want to email me, use my initial and sur-
- name, separated by a dot, at the domain ucs.cam.ac.uk.
+ so I've taken it away. If you want to email me, use my two initials,
+ followed by the two digits 10, at the domain cam.ac.uk.
+
+
+REVISION
-Last updated: 23 November 2006
-Copyright (c) 1997-2006 University of Cambridge.
+ Last updated: 13 June 2007
+ Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------
@@ -241,12 +249,12 @@ PCRE BUILD-TIME OPTIONS
./configure --help
- The following sections describe certain options whose names begin with
- --enable or --disable. These settings specify changes to the defaults
- for the configure command. Because of the way that configure works,
- --enable and --disable always come in pairs, so the complementary
- option always exists as well, but as it specifies the default, it is
- not described.
+ The following sections include descriptions of options whose names
+ begin with --enable or --disable. These settings specify changes to the
+ defaults for the configure command. Because of the way that configure
+ works, --enable and --disable always come in pairs, so the complemen-
+ tary option always exists as well, but as it specifies the default, it
+ is not described.
C++ SUPPORT
@@ -285,22 +293,21 @@ UNICODE CHARACTER PROPERTY SUPPORT
to the configure command. This implies UTF-8 support, even if you have
not explicitly requested it.
- Including Unicode property support adds around 90K of tables to the
- PCRE library, approximately doubling its size. Only the general cate-
- gory properties such as Lu and Nd are supported. Details are given in
- the pcrepattern documentation.
+ Including Unicode property support adds around 30K of tables to the
+ PCRE library. Only the general category properties such as Lu and Nd
+ are supported. Details are given in the pcrepattern documentation.
CODE VALUE OF NEWLINE
- By default, PCRE interprets character 10 (linefeed, LF) as indicating
- the end of a line. This is the normal newline character on Unix-like
+ By default, PCRE interprets character 10 (linefeed, LF) as indicating
+ the end of a line. This is the normal newline character on Unix-like
systems. You can compile PCRE to use character 13 (carriage return, CR)
instead, by adding
--enable-newline-is-cr
- to the configure command. There is also a --enable-newline-is-lf
+ to the configure command. There is also a --enable-newline-is-lf
option, which explicitly specifies linefeed as the newline character.
Alternatively, you can specify that line endings are to be indicated by
@@ -310,19 +317,24 @@ CODE VALUE OF NEWLINE
to the configure command. There is a fourth option, specified by
+ --enable-newline-is-anycrlf
+
+ which causes PCRE to recognize any of the three sequences CR, LF, or
+ CRLF as indicating a line ending. Finally, a fifth option, specified by
+
--enable-newline-is-any
- which causes PCRE to recognize any Unicode newline sequence.
+ causes PCRE to recognize any Unicode newline sequence.
- Whatever line ending convention is selected when PCRE is built can be
- overridden when the library functions are called. At build time it is
+ Whatever line ending convention is selected when PCRE is built can be
+ overridden when the library functions are called. At build time it is
conventional to use the standard for your operating system.
BUILDING SHARED AND STATIC LIBRARIES
- The PCRE building process uses libtool to build both shared and static
- Unix libraries by default. You can suppress one of these by adding one
+ The PCRE building process uses libtool to build both shared and static
+ Unix libraries by default. You can suppress one of these by adding one
of
--disable-shared
@@ -334,9 +346,9 @@ BUILDING SHARED AND STATIC LIBRARIES
POSIX MALLOC USAGE
When PCRE is called through the POSIX interface (see the pcreposix doc-
- umentation), additional working storage is required for holding the
- pointers to capturing substrings, because PCRE requires three integers
- per substring, whereas the POSIX interface provides only two. If the
+ umentation), additional working storage is required for holding the
+ pointers to capturing substrings, because PCRE requires three integers
+ per substring, whereas the POSIX interface provides only two. If the
number of expected substrings is small, the wrapper function uses space
on the stack, because this is faster than using malloc() for each call.
The default threshold above which the stack is no longer used is 10; it
@@ -349,26 +361,21 @@ POSIX MALLOC USAGE
HANDLING VERY LARGE PATTERNS
- Within a compiled pattern, offset values are used to point from one
- part to another (for example, from an opening parenthesis to an alter-
- nation metacharacter). By default, two-byte values are used for these
- offsets, leading to a maximum size for a compiled pattern of around
- 64K. This is sufficient to handle all but the most gigantic patterns.
- Nevertheless, some people do want to process enormous patterns, so it
- is possible to compile PCRE to use three-byte or four-byte offsets by
+ Within a compiled pattern, offset values are used to point from one
+ part to another (for example, from an opening parenthesis to an alter-
+ nation metacharacter). By default, two-byte values are used for these
+ offsets, leading to a maximum size for a compiled pattern of around
+ 64K. This is sufficient to handle all but the most gigantic patterns.
+ Nevertheless, some people do want to process enormous patterns, so it
+ is possible to compile PCRE to use three-byte or four-byte offsets by
adding a setting such as
--with-link-size=3
- to the configure command. The value given must be 2, 3, or 4. Using
- longer offsets slows down the operation of PCRE because it has to load
+ to the configure command. The value given must be 2, 3, or 4. Using
+ longer offsets slows down the operation of PCRE because it has to load
additional bytes when handling them.
- If you build PCRE with an increased link size, test 2 (and test 5 if
- you are using UTF-8) will fail. Part of the output of these tests is a
- representation of the compiled pattern, and this changes with the link
- size.
-
AVOIDING EXCESSIVE STACK USAGE
@@ -387,13 +394,17 @@ AVOIDING EXCESSIVE STACK USAGE
to the configure command. With this configuration, PCRE will use the
pcre_stack_malloc and pcre_stack_free variables to call memory manage-
- ment functions. Separate functions are provided because the usage is
- very predictable: the block sizes requested are always the same, and
- the blocks are always freed in reverse order. A calling program might
- be able to implement optimized functions that perform better than the
- standard malloc() and free() functions. PCRE runs noticeably more
- slowly when built in this way. This option affects only the pcre_exec()
- function; it is not relevant for the the pcre_dfa_exec() function.
+ ment functions. By default these point to malloc() and free(), but you
+ can replace the pointers so that your own functions are used.
+
+ Separate functions are provided rather than using pcre_malloc and
+ pcre_free because the usage is very predictable: the block sizes
+ requested are always the same, and the blocks are always freed in
+ reverse order. A calling program might be able to implement optimized
+ functions that perform better than malloc() and free(). PCRE runs
+ noticeably more slowly when built in this way. This option affects only
+ the pcre_exec() function; it is not relevant for the the
+ pcre_dfa_exec() function.
LIMITING PCRE RESOURCE USAGE
@@ -426,24 +437,53 @@ LIMITING PCRE RESOURCE USAGE
time.
+CREATING CHARACTER TABLES AT BUILD TIME
+
+ PCRE uses fixed tables for processing characters whose code values are
+ less than 256. By default, PCRE is built with a set of tables that are
+ distributed in the file pcre_chartables.c.dist. These tables are for
+ ASCII codes only. If you add
+
+ --enable-rebuild-chartables
+
+ to the configure command, the distributed tables are no longer used.
+ Instead, a program called dftables is compiled and run. This outputs
+ the source for new set of tables, created in the default locale of your
+ C runtime system. (This method of replacing the tables does not work if
+ you are cross compiling, because dftables is run on the local host. If
+ you need to create alternative tables when cross compiling, you will
+ have to do so "by hand".)
+
+
USING EBCDIC CODE
- PCRE assumes by default that it will run in an environment where the
- character code is ASCII (or Unicode, which is a superset of ASCII).
- PCRE can, however, be compiled to run in an EBCDIC environment by
+ PCRE assumes by default that it will run in an environment where the
+ character code is ASCII (or Unicode, which is a superset of ASCII).
+ PCRE can, however, be compiled to run in an EBCDIC environment by
adding
--enable-ebcdic
- to the configure command.
+ to the configure command. This setting implies --enable-rebuild-charta-
+ bles.
SEE ALSO
pcreapi(3), pcre_config(3).
-Last updated: 30 November 2006
-Copyright (c) 1997-2006 University of Cambridge.
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 05 June 2007
+ Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------
@@ -495,8 +535,8 @@ REGULAR EXPRESSIONS AS TREES
THE STANDARD MATCHING ALGORITHM
- In the terminology of Jeffrey Friedl's book Mastering Regular Expres-
- sions, the standard algorithm is an "NFA algorithm". It conducts a
+ In the terminology of Jeffrey Friedl's book "Mastering Regular Expres-
+ sions", the standard algorithm is an "NFA algorithm". It conducts a
depth-first search of the pattern tree. That is, it proceeds along a
single path through the tree, checking that the subject matches what is
required. When there is a mismatch, the algorithm tries any alterna-
@@ -578,34 +618,39 @@ THE ALTERNATIVE MATCHING ALGORITHM
ence as the condition or test for a specific group recursion are not
supported.
- 5. Callouts are supported, but the value of the capture_top field is
+ 5. Because many paths through the tree may be active, the \K escape
+ sequence, which resets the start of the match when encountered (but may
+ be on some paths and not on others), is not supported. It causes an
+ error if encountered.
+
+ 6. Callouts are supported, but the value of the capture_top field is
always 1, and the value of the capture_last field is always -1.
- 6. The \C escape sequence, which (in the standard algorithm) matches a
- single byte, even in UTF-8 mode, is not supported because the alterna-
- tive algorithm moves through the subject string one character at a
+ 7. The \C escape sequence, which (in the standard algorithm) matches a
+ single byte, even in UTF-8 mode, is not supported because the alterna-
+ tive algorithm moves through the subject string one character at a
time, for all active paths through the tree.
ADVANTAGES OF THE ALTERNATIVE ALGORITHM
- Using the alternative matching algorithm provides the following advan-
+ Using the alternative matching algorithm provides the following advan-
tages:
1. All possible matches (at a single point in the subject) are automat-
- ically found, and in particular, the longest match is found. To find
+ ically found, and in particular, the longest match is found. To find
more than one match using the standard algorithm, you have to do kludgy
things with callouts.
- 2. There is much better support for partial matching. The restrictions
- on the content of the pattern that apply when using the standard algo-
- rithm for partial matching do not apply to the alternative algorithm.
- For non-anchored patterns, the starting position of a partial match is
+ 2. There is much better support for partial matching. The restrictions
+ on the content of the pattern that apply when using the standard algo-
+ rithm for partial matching do not apply to the alternative algorithm.
+ For non-anchored patterns, the starting position of a partial match is
available.
- 3. Because the alternative algorithm scans the subject string just
- once, and never needs to backtrack, it is possible to pass very long
- subject strings to the matching function in several pieces, checking
+ 3. Because the alternative algorithm scans the subject string just
+ once, and never needs to backtrack, it is possible to pass very long
+ subject strings to the matching function in several pieces, checking
for partial matching each time.
@@ -613,8 +658,8 @@ DISADVANTAGES OF THE ALTERNATIVE ALGORITHM
The alternative algorithm suffers from a number of disadvantages:
- 1. It is substantially slower than the standard algorithm. This is
- partly because it has to search for all possible matches, but is also
+ 1. It is substantially slower than the standard algorithm. This is
+ partly because it has to search for all possible matches, but is also
because it is less susceptible to optimization.
2. Capturing parentheses and back references are not supported.
@@ -622,8 +667,18 @@ DISADVANTAGES OF THE ALTERNATIVE ALGORITHM
3. Although atomic groups are supported, their use does not provide the
performance advantage that it does for the standard algorithm.
-Last updated: 24 November 2006
-Copyright (c) 1997-2006 University of Cambridge.
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 29 May 2007
+ Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------
@@ -805,13 +860,13 @@ PCRE API OVERVIEW
NEWLINES
- PCRE supports four different conventions for indicating line breaks in
+ PCRE supports five different conventions for indicating line breaks in
strings: a single CR (carriage return) character, a single LF (line-
- feed) character, the two-character sequence CRLF, or any Unicode new-
- line sequence. The Unicode newline sequences are the three just men-
- tioned, plus the single characters VT (vertical tab, U+000B), FF (form-
- feed, U+000C), NEL (next line, U+0085), LS (line separator, U+2028),
- and PS (paragraph separator, U+2029).
+ feed) character, the two-character sequence CRLF, any of the three pre-
+ ceding, or any Unicode newline sequence. The Unicode newline sequences
+ are the three just mentioned, plus the single characters VT (vertical
+ tab, U+000B), FF (formfeed, U+000C), NEL (next line, U+0085), LS (line
+ separator, U+2028), and PS (paragraph separator, U+2029).
Each of the first three conventions is used by at least one operating
system as its standard newline sequence. When PCRE is built, a default
@@ -845,7 +900,9 @@ SAVING PRECOMPILED PATTERNS FOR LATER USE
The compiled form of a regular expression can be saved and re-used at a
later time, possibly by a different program, and even on a host other
than the one on which it was compiled. Details are given in the
- pcreprecompile documentation.
+ pcreprecompile documentation. However, compiling a regular expression
+ with one version of PCRE for use with a different version is not guar-
+ anteed to work and may cause crashes.
CHECKING BUILD-TIME OPTIONS
@@ -876,9 +933,9 @@ CHECKING BUILD-TIME OPTIONS
The output is an integer whose value specifies the default character
sequence that is recognized as meaning "newline". The four values that
- are supported are: 10 for LF, 13 for CR, 3338 for CRLF, and -1 for ANY.
- The default should normally be the standard sequence for your operating
- system.
+ are supported are: 10 for LF, 13 for CR, 3338 for CRLF, -2 for ANYCRLF,
+ and -1 for ANY. The default should normally be the standard sequence
+ for your operating system.
PCRE_CONFIG_LINK_SIZE
@@ -1102,26 +1159,29 @@ COMPILING A PATTERN
PCRE_NEWLINE_CR
PCRE_NEWLINE_LF
PCRE_NEWLINE_CRLF
+ PCRE_NEWLINE_ANYCRLF
PCRE_NEWLINE_ANY
These options override the default newline definition that was chosen
when PCRE was built. Setting the first or the second specifies that a
newline is indicated by a single character (CR or LF, respectively).
Setting PCRE_NEWLINE_CRLF specifies that a newline is indicated by the
- two-character CRLF sequence. Setting PCRE_NEWLINE_ANY specifies that
- any Unicode newline sequence should be recognized. The Unicode newline
- sequences are the three just mentioned, plus the single characters VT
- (vertical tab, U+000B), FF (formfeed, U+000C), NEL (next line, U+0085),
- LS (line separator, U+2028), and PS (paragraph separator, U+2029). The
- last two are recognized only in UTF-8 mode.
+ two-character CRLF sequence. Setting PCRE_NEWLINE_ANYCRLF specifies
+ that any of the three preceding sequences should be recognized. Setting
+ PCRE_NEWLINE_ANY specifies that any Unicode newline sequence should be
+ recognized. The Unicode newline sequences are the three just mentioned,
+ plus the single characters VT (vertical tab, U+000B), FF (formfeed,
+ U+000C), NEL (next line, U+0085), LS (line separator, U+2028), and PS
+ (paragraph separator, U+2029). The last two are recognized only in
+ UTF-8 mode.
The newline setting in the options word uses three bits that are
- treated as a number, giving eight possibilities. Currently only five
- are used (default plus the four values above). This means that if you
- set more than one newline option, the combination may or may not be
- sensible. For example, PCRE_NEWLINE_CR with PCRE_NEWLINE_LF is equiva-
- lent to PCRE_NEWLINE_CRLF, but other combinations yield unused numbers
- and cause an error.
+ treated as a number, giving eight possibilities. Currently only six are
+ used (default plus the five values above). This means that if you set
+ more than one newline option, the combination may or may not be sensi-
+ ble. For example, PCRE_NEWLINE_CR with PCRE_NEWLINE_LF is equivalent to
+ PCRE_NEWLINE_CRLF, but other combinations may yield unused numbers and
+ cause an error.
The only time that a line break is specially recognized when compiling
a pattern is if PCRE_EXTENDED is set, and an unescaped # outside a
@@ -1207,7 +1267,7 @@ COMPILATION ERROR CODES
26 malformed number or name after (?(
27 conditional group contains more than two branches
28 assertion expected after (?(
- 29 (?R or (?digits must be followed by )
+ 29 (?R or (?[+-]digits must be followed by )
30 unknown POSIX class name
31 POSIX collating elements are not supported
32 this version of PCRE is not compiled with PCRE_UTF8 support
@@ -1236,6 +1296,9 @@ COMPILATION ERROR CODES
54 DEFINE group contains more than one branch
55 repeating a DEFINE group is not allowed
56 inconsistent NEWLINE options"
+ 57 \g is not followed by a braced name or an optionally braced
+ non-zero number
+ 58 (?+ or (?- or (?(+ or (?(- must be followed by a non-zero number
STUDYING A PATTERN
@@ -1287,31 +1350,41 @@ STUDYING A PATTERN
LOCALE SUPPORT
PCRE handles caseless matching, and determines whether characters are
- letters digits, or whatever, by reference to a set of tables, indexed
+ letters, digits, or whatever, by reference to a set of tables, indexed
by character value. When running in UTF-8 mode, this applies only to
characters with codes less than 128. Higher-valued codes never match
escapes such as \w or \d, but can be tested with \p if PCRE is built
with Unicode character property support. The use of locales with Uni-
- code is discouraged.
-
- An internal set of tables is created in the default C locale when PCRE
- is built. This is used when the final argument of pcre_compile() is
- NULL, and is sufficient for many applications. An alternative set of
- tables can, however, be supplied. These may be created in a different
- locale from the default. As more and more applications change to using
- Unicode, the need for this locale support is expected to die away.
-
- External tables are built by calling the pcre_maketables() function,
- which has no arguments, in the relevant locale. The result can then be
- passed to pcre_compile() or pcre_exec() as often as necessary. For
- example, to build and use tables that are appropriate for the French
- locale (where accented characters with values greater than 128 are
+ code is discouraged. If you are handling characters with codes greater
+ than 128, you should either use UTF-8 and Unicode, or use locales, but
+ not try to mix the two.
+
+ PCRE contains an internal set of tables that are used when the final
+ argument of pcre_compile() is NULL. These are sufficient for many
+ applications. Normally, the internal tables recognize only ASCII char-
+ acters. However, when PCRE is built, it is possible to cause the inter-
+ nal tables to be rebuilt in the default "C" locale of the local system,
+ which may cause them to be different.
+
+ The internal tables can always be overridden by tables supplied by the
+ application that calls PCRE. These may be created in a different locale
+ from the default. As more and more applications change to using Uni-
+ code, the need for this locale support is expected to die away.
+
+ External tables are built by calling the pcre_maketables() function,
+ which has no arguments, in the relevant locale. The result can then be
+ passed to pcre_compile() or pcre_exec() as often as necessary. For
+ example, to build and use tables that are appropriate for the French
+ locale (where accented characters with values greater than 128 are
treated as letters), the following code could be used:
setlocale(LC_CTYPE, "fr_FR");
tables = pcre_maketables();
re = pcre_compile(..., tables);
+ The locale name "fr_FR" is used on Linux and other Unix-like systems;
+ if you are using Windows, the name for the French locale is "french".
+
When pcre_maketables() runs, the tables are built in memory that is
obtained via pcre_malloc. It is the caller's responsibility to ensure
that the memory containing the tables remains available for as long as
@@ -1414,6 +1487,12 @@ INFORMATION ABOUT A PATTERN
returned. The fourth argument should point to an unsigned char * vari-
able.
+ PCRE_INFO_JCHANGED
+
+ Return 1 if the (?J) option setting is used in the pattern, otherwise
+ 0. The fourth argument should point to an int variable. The (?J) inter-
+ nal option setting changes the local PCRE_DUPNAMES option.
+
PCRE_INFO_LASTLITERAL
Return the value of the rightmost literal byte that must exist in any
@@ -1468,14 +1547,21 @@ INFORMATION ABOUT A PATTERN
name-to-number map, remember that the length of the entries is likely
to be different for each compiled pattern.
+ PCRE_INFO_OKPARTIAL
+
+ Return 1 if the pattern can be used for partial matching, otherwise 0.
+ The fourth argument should point to an int variable. The pcrepartial
+ documentation lists the restrictions that apply to patterns when par-
+ tial matching is used.
+
PCRE_INFO_OPTIONS
- Return a copy of the options with which the pattern was compiled. The
- fourth argument should point to an unsigned long int variable. These
+ Return a copy of the options with which the pattern was compiled. The
+ fourth argument should point to an unsigned long int variable. These
option bits are those specified in the call to pcre_compile(), modified
by any top-level option settings within the pattern itself.
- A pattern is automatically anchored by PCRE if all of its top-level
+ A pattern is automatically anchored by PCRE if all of its top-level
alternatives begin with one of the following:
^ unless PCRE_MULTILINE is set
@@ -1489,7 +1575,7 @@ INFORMATION ABOUT A PATTERN
PCRE_INFO_SIZE
- Return the size of the compiled pattern, that is, the value that was
+ Return the size of the compiled pattern, that is, the value that was
passed as the argument to pcre_malloc() when PCRE was getting memory in
which to place the compiled data. The fourth argument should point to a
size_t variable.
@@ -1497,9 +1583,9 @@ INFORMATION ABOUT A PATTERN
PCRE_INFO_STUDYSIZE
Return the size of the data block pointed to by the study_data field in
- a pcre_extra block. That is, it is the value that was passed to
+ a pcre_extra block. That is, it is the value that was passed to
pcre_malloc() when PCRE was getting memory into which to place the data
- created by pcre_study(). The fourth argument should point to a size_t
+ created by pcre_study(). The fourth argument should point to a size_t
variable.
@@ -1507,21 +1593,21 @@ OBSOLETE INFO FUNCTION
int pcre_info(const pcre *code, int *optptr, int *firstcharptr);
- The pcre_info() function is now obsolete because its interface is too
- restrictive to return all the available data about a compiled pattern.
- New programs should use pcre_fullinfo() instead. The yield of
- pcre_info() is the number of capturing subpatterns, or one of the fol-
+ The pcre_info() function is now obsolete because its interface is too
+ restrictive to return all the available data about a compiled pattern.
+ New programs should use pcre_fullinfo() instead. The yield of
+ pcre_info() is the number of capturing subpatterns, or one of the fol-
lowing negative numbers:
PCRE_ERROR_NULL the argument code was NULL
PCRE_ERROR_BADMAGIC the "magic number" was not found
- If the optptr argument is not NULL, a copy of the options with which
- the pattern was compiled is placed in the integer it points to (see
+ If the optptr argument is not NULL, a copy of the options with which
+ the pattern was compiled is placed in the integer it points to (see
PCRE_INFO_OPTIONS above).
- If the pattern is not anchored and the firstcharptr argument is not
- NULL, it is used to pass back information about the first character of
+ If the pattern is not anchored and the firstcharptr argument is not
+ NULL, it is used to pass back information about the first character of
any matched string (see PCRE_INFO_FIRSTBYTE above).
@@ -1529,21 +1615,21 @@ REFERENCE COUNTS
int pcre_refcount(pcre *code, int adjust);
- The pcre_refcount() function is used to maintain a reference count in
+ The pcre_refcount() function is used to maintain a reference count in
the data block that contains a compiled pattern. It is provided for the
- benefit of applications that operate in an object-oriented manner,
+ benefit of applications that operate in an object-oriented manner,
where different parts of the application may be using the same compiled
pattern, but you want to free the block when they are all done.
When a pattern is compiled, the reference count field is initialized to
- zero. It is changed only by calling this function, whose action is to
- add the adjust value (which may be positive or negative) to it. The
+ zero. It is changed only by calling this function, whose action is to
+ add the adjust value (which may be positive or negative) to it. The
yield of the function is the new value. However, the value of the count
- is constrained to lie between 0 and 65535, inclusive. If the new value
+ is constrained to lie between 0 and 65535, inclusive. If the new value
is outside these limits, it is forced to the appropriate limit value.
- Except when it is zero, the reference count is not correctly preserved
- if a pattern is compiled on one host and then transferred to a host
+ Except when it is zero, the reference count is not correctly preserved
+ if a pattern is compiled on one host and then transferred to a host
whose byte-order is different. (This seems a highly unlikely scenario.)
@@ -1553,18 +1639,18 @@ MATCHING A PATTERN: THE TRADITIONAL FUNCTION
const char *subject, int length, int startoffset,
int options, int *ovector, int ovecsize);
- The function pcre_exec() is called to match a subject string against a
- compiled pattern, which is passed in the code argument. If the pattern
+ The function pcre_exec() is called to match a subject string against a
+ compiled pattern, which is passed in the code argument. If the pattern
has been studied, the result of the study should be passed in the extra
- argument. This function is the main matching facility of the library,
+ argument. This function is the main matching facility of the library,
and it operates in a Perl-like manner. For specialist use there is also
- an alternative matching function, which is described below in the sec-
+ an alternative matching function, which is described below in the sec-
tion about the pcre_dfa_exec() function.
- In most applications, the pattern will have been compiled (and option-
- ally studied) in the same process that calls pcre_exec(). However, it
+ In most applications, the pattern will have been compiled (and option-
+ ally studied) in the same process that calls pcre_exec(). However, it
is possible to save compiled patterns and study data, and then use them
- later in different processes, possibly even on different hosts. For a
+ later in different processes, possibly even on different hosts. For a
discussion about this, see the pcreprecompile documentation.
Here is an example of a simple call to pcre_exec():
@@ -1583,10 +1669,10 @@ MATCHING A PATTERN: THE TRADITIONAL FUNCTION
Extra data for pcre_exec()
- If the extra argument is not NULL, it must point to a pcre_extra data
- block. The pcre_study() function returns such a block (when it doesn't
- return NULL), but you can also create one for yourself, and pass addi-
- tional information in it. The pcre_extra block contains the following
+ If the extra argument is not NULL, it must point to a pcre_extra data
+ block. The pcre_study() function returns such a block (when it doesn't
+ return NULL), but you can also create one for yourself, and pass addi-
+ tional information in it. The pcre_extra block contains the following
fields (not necessarily in this order):
unsigned long int flags;
@@ -1596,7 +1682,7 @@ MATCHING A PATTERN: THE TRADITIONAL FUNCTION
void *callout_data;
const unsigned char *tables;
- The flags field is a bitmap that specifies which of the other fields
+ The flags field is a bitmap that specifies which of the other fields
are set. The flag bits are:
PCRE_EXTRA_STUDY_DATA
@@ -1605,91 +1691,93 @@ MATCHING A PATTERN: THE TRADITIONAL FUNCTION
PCRE_EXTRA_CALLOUT_DATA
PCRE_EXTRA_TABLES
- Other flag bits should be set to zero. The study_data field is set in
- the pcre_extra block that is returned by pcre_study(), together with
+ Other flag bits should be set to zero. The study_data field is set in
+ the pcre_extra block that is returned by pcre_study(), together with
the appropriate flag bit. You should not set this yourself, but you may
- add to the block by setting the other fields and their corresponding
+ add to the block by setting the other fields and their corresponding
flag bits.
The match_limit field provides a means of preventing PCRE from using up
- a vast amount of resources when running patterns that are not going to
- match, but which have a very large number of possibilities in their
- search trees. The classic example is the use of nested unlimited
+ a vast amount of resources when running patterns that are not going to
+ match, but which have a very large number of possibilities in their
+ search trees. The classic example is the use of nested unlimited
repeats.
- Internally, PCRE uses a function called match() which it calls repeat-
- edly (sometimes recursively). The limit set by match_limit is imposed
- on the number of times this function is called during a match, which
- has the effect of limiting the amount of backtracking that can take
+ Internally, PCRE uses a function called match() which it calls repeat-
+ edly (sometimes recursively). The limit set by match_limit is imposed
+ on the number of times this function is called during a match, which
+ has the effect of limiting the amount of backtracking that can take
place. For patterns that are not anchored, the count restarts from zero
for each position in the subject string.
- The default value for the limit can be set when PCRE is built; the
- default default is 10 million, which handles all but the most extreme
- cases. You can override the default by suppling pcre_exec() with a
- pcre_extra block in which match_limit is set, and
- PCRE_EXTRA_MATCH_LIMIT is set in the flags field. If the limit is
+ The default value for the limit can be set when PCRE is built; the
+ default default is 10 million, which handles all but the most extreme
+ cases. You can override the default by suppling pcre_exec() with a
+ pcre_extra block in which match_limit is set, and
+ PCRE_EXTRA_MATCH_LIMIT is set in the flags field. If the limit is
exceeded, pcre_exec() returns PCRE_ERROR_MATCHLIMIT.
- The match_limit_recursion field is similar to match_limit, but instead
+ The match_limit_recursion field is similar to match_limit, but instead
of limiting the total number of times that match() is called, it limits
- the depth of recursion. The recursion depth is a smaller number than
- the total number of calls, because not all calls to match() are recur-
+ the depth of recursion. The recursion depth is a smaller number than
+ the total number of calls, because not all calls to match() are recur-
sive. This limit is of use only if it is set smaller than match_limit.
- Limiting the recursion depth limits the amount of stack that can be
+ Limiting the recursion depth limits the amount of stack that can be
used, or, when PCRE has been compiled to use memory on the heap instead
of the stack, the amount of heap memory that can be used.
- The default value for match_limit_recursion can be set when PCRE is
- built; the default default is the same value as the default for
- match_limit. You can override the default by suppling pcre_exec() with
- a pcre_extra block in which match_limit_recursion is set, and
- PCRE_EXTRA_MATCH_LIMIT_RECURSION is set in the flags field. If the
+ The default value for match_limit_recursion can be set when PCRE is
+ built; the default default is the same value as the default for
+ match_limit. You can override the default by suppling pcre_exec() with
+ a pcre_extra block in which match_limit_recursion is set, and
+ PCRE_EXTRA_MATCH_LIMIT_RECURSION is set in the flags field. If the
limit is exceeded, pcre_exec() returns PCRE_ERROR_RECURSIONLIMIT.
- The pcre_callout field is used in conjunction with the "callout" fea-
+ The pcre_callout field is used in conjunction with the "callout" fea-
ture, which is described in the pcrecallout documentation.
- The tables field is used to pass a character tables pointer to
- pcre_exec(); this overrides the value that is stored with the compiled
- pattern. A non-NULL value is stored with the compiled pattern only if
- custom tables were supplied to pcre_compile() via its tableptr argu-
+ The tables field is used to pass a character tables pointer to
+ pcre_exec(); this overrides the value that is stored with the compiled
+ pattern. A non-NULL value is stored with the compiled pattern only if
+ custom tables were supplied to pcre_compile() via its tableptr argu-
ment. If NULL is passed to pcre_exec() using this mechanism, it forces
- PCRE's internal tables to be used. This facility is helpful when re-
- using patterns that have been saved after compiling with an external
- set of tables, because the external tables might be at a different
- address when pcre_exec() is called. See the pcreprecompile documenta-
+ PCRE's internal tables to be used. This facility is helpful when re-
+ using patterns that have been saved after compiling with an external
+ set of tables, because the external tables might be at a different
+ address when pcre_exec() is called. See the pcreprecompile documenta-
tion for a discussion of saving compiled patterns for later use.
Option bits for pcre_exec()
- The unused bits of the options argument for pcre_exec() must be zero.
- The only bits that may be set are PCRE_ANCHORED, PCRE_NEWLINE_xxx,
+ The unused bits of the options argument for pcre_exec() must be zero.
+ The only bits that may be set are PCRE_ANCHORED, PCRE_NEWLINE_xxx,
PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY, PCRE_NO_UTF8_CHECK and
PCRE_PARTIAL.
PCRE_ANCHORED
- The PCRE_ANCHORED option limits pcre_exec() to matching at the first
- matching position. If a pattern was compiled with PCRE_ANCHORED, or
- turned out to be anchored by virtue of its contents, it cannot be made
+ The PCRE_ANCHORED option limits pcre_exec() to matching at the first
+ matching position. If a pattern was compiled with PCRE_ANCHORED, or
+ turned out to be anchored by virtue of its contents, it cannot be made
unachored at matching time.
PCRE_NEWLINE_CR
PCRE_NEWLINE_LF
PCRE_NEWLINE_CRLF
+ PCRE_NEWLINE_ANYCRLF
PCRE_NEWLINE_ANY
- These options override the newline definition that was chosen or
- defaulted when the pattern was compiled. For details, see the descrip-
- tion of pcre_compile() above. During matching, the newline choice
- affects the behaviour of the dot, circumflex, and dollar metacharac-
- ters. It may also alter the way the match position is advanced after a
- match failure for an unanchored pattern. When PCRE_NEWLINE_CRLF or
- PCRE_NEWLINE_ANY is set, and a match attempt fails when the current
- position is at a CRLF sequence, the match position is advanced by two
- characters instead of one, in other words, to after the CRLF.
+ These options override the newline definition that was chosen or
+ defaulted when the pattern was compiled. For details, see the descrip-
+ tion of pcre_compile() above. During matching, the newline choice
+ affects the behaviour of the dot, circumflex, and dollar metacharac-
+ ters. It may also alter the way the match position is advanced after a
+ match failure for an unanchored pattern. When PCRE_NEWLINE_CRLF,
+ PCRE_NEWLINE_ANYCRLF, or PCRE_NEWLINE_ANY is set, and a match attempt
+ fails when the current position is at a CRLF sequence, the match posi-
+ tion is advanced by two characters instead of one, in other words, to
+ after the CRLF.
PCRE_NOTBOL
@@ -2109,7 +2197,8 @@ EXTRACTING CAPTURED SUBSTRINGS BY NAME
These functions call pcre_get_stringnumber(), and if it succeeds, they
then call pcre_copy_substring() or pcre_get_substring(), as appropri-
- ate.
+ ate. NOTE: If PCRE_DUPNAMES is set and there are duplicate names, the
+ behaviour may not be what you want (see the next section).
DUPLICATE SUBPATTERN NAMES
@@ -2117,45 +2206,45 @@ DUPLICATE SUBPATTERN NAMES
int pcre_get_stringtable_entries(const pcre *code,
const char *name, char **first, char **last);
- When a pattern is compiled with the PCRE_DUPNAMES option, names for
- subpatterns are not required to be unique. Normally, patterns with
- duplicate names are such that in any one match, only one of the named
- subpatterns participates. An example is shown in the pcrepattern docu-
+ When a pattern is compiled with the PCRE_DUPNAMES option, names for
+ subpatterns are not required to be unique. Normally, patterns with
+ duplicate names are such that in any one match, only one of the named
+ subpatterns participates. An example is shown in the pcrepattern docu-
mentation. When duplicates are present, pcre_copy_named_substring() and
- pcre_get_named_substring() return the first substring corresponding to
- the given name that is set. If none are set, an empty string is
+ pcre_get_named_substring() return the first substring corresponding to
+ the given name that is set. If none are set, an empty string is
returned. The pcre_get_stringnumber() function returns one of the num-
- bers that are associated with the name, but it is not defined which it
+ bers that are associated with the name, but it is not defined which it
is.
- If you want to get full details of all captured substrings for a given
- name, you must use the pcre_get_stringtable_entries() function. The
+ If you want to get full details of all captured substrings for a given
+ name, you must use the pcre_get_stringtable_entries() function. The
first argument is the compiled pattern, and the second is the name. The
- third and fourth are pointers to variables which are updated by the
+ third and fourth are pointers to variables which are updated by the
function. After it has run, they point to the first and last entries in
- the name-to-number table for the given name. The function itself
- returns the length of each entry, or PCRE_ERROR_NOSUBSTRING (-7) if
- there are none. The format of the table is described above in the sec-
- tion entitled Information about a pattern. Given all the relevant
- entries for the name, you can extract each of their numbers, and hence
+ the name-to-number table for the given name. The function itself
+ returns the length of each entry, or PCRE_ERROR_NOSUBSTRING (-7) if
+ there are none. The format of the table is described above in the sec-
+ tion entitled Information about a pattern. Given all the relevant
+ entries for the name, you can extract each of their numbers, and hence
the captured data, if any.
FINDING ALL POSSIBLE MATCHES
- The traditional matching function uses a similar algorithm to Perl,
+ The traditional matching function uses a similar algorithm to Perl,
which stops when it finds the first match, starting at a given point in
- the subject. If you want to find all possible matches, or the longest
- possible match, consider using the alternative matching function (see
- below) instead. If you cannot use the alternative function, but still
- need to find all possible matches, you can kludge it up by making use
+ the subject. If you want to find all possible matches, or the longest
+ possible match, consider using the alternative matching function (see
+ below) instead. If you cannot use the alternative function, but still
+ need to find all possible matches, you can kludge it up by making use
of the callout facility, which is described in the pcrecallout documen-
tation.
What you have to do is to insert a callout right at the end of the pat-
- tern. When your callout function is called, extract and save the cur-
- rent matched substring. Then return 1, which forces pcre_exec() to
- backtrack and try other alternatives. Ultimately, when it runs out of
+ tern. When your callout function is called, extract and save the cur-
+ rent matched substring. Then return 1, which forces pcre_exec() to
+ backtrack and try other alternatives. Ultimately, when it runs out of
matches, pcre_exec() will yield PCRE_ERROR_NOMATCH.
@@ -2166,25 +2255,25 @@ MATCHING A PATTERN: THE ALTERNATIVE FUNCTION
int options, int *ovector, int ovecsize,
int *workspace, int wscount);
- The function pcre_dfa_exec() is called to match a subject string
- against a compiled pattern, using a matching algorithm that scans the
- subject string just once, and does not backtrack. This has different
- characteristics to the normal algorithm, and is not compatible with
- Perl. Some of the features of PCRE patterns are not supported. Never-
- theless, there are times when this kind of matching can be useful. For
+ The function pcre_dfa_exec() is called to match a subject string
+ against a compiled pattern, using a matching algorithm that scans the
+ subject string just once, and does not backtrack. This has different
+ characteristics to the normal algorithm, and is not compatible with
+ Perl. Some of the features of PCRE patterns are not supported. Never-
+ theless, there are times when this kind of matching can be useful. For
a discussion of the two matching algorithms, see the pcrematching docu-
mentation.
- The arguments for the pcre_dfa_exec() function are the same as for
+ The arguments for the pcre_dfa_exec() function are the same as for
pcre_exec(), plus two extras. The ovector argument is used in a differ-
- ent way, and this is described below. The other common arguments are
- used in the same way as for pcre_exec(), so their description is not
+ ent way, and this is described below. The other common arguments are
+ used in the same way as for pcre_exec(), so their description is not
repeated here.
- The two additional arguments provide workspace for the function. The
- workspace vector should contain at least 20 elements. It is used for
+ The two additional arguments provide workspace for the function. The
+ workspace vector should contain at least 20 elements. It is used for
keeping track of multiple paths through the pattern tree. More
- workspace will be needed for patterns and subjects where there are a
+ workspace will be needed for patterns and subjects where there are a
lot of potential matches.
Here is an example of a simple call to pcre_dfa_exec():
@@ -2206,47 +2295,47 @@ MATCHING A PATTERN: THE ALTERNATIVE FUNCTION
Option bits for pcre_dfa_exec()
- The unused bits of the options argument for pcre_dfa_exec() must be
- zero. The only bits that may be set are PCRE_ANCHORED, PCRE_NEW-
- LINE_xxx, PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY, PCRE_NO_UTF8_CHECK,
+ The unused bits of the options argument for pcre_dfa_exec() must be
+ zero. The only bits that may be set are PCRE_ANCHORED, PCRE_NEW-
+ LINE_xxx, PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY, PCRE_NO_UTF8_CHECK,
PCRE_PARTIAL, PCRE_DFA_SHORTEST, and PCRE_DFA_RESTART. All but the last
three of these are the same as for pcre_exec(), so their description is
not repeated here.
PCRE_PARTIAL
- This has the same general effect as it does for pcre_exec(), but the
- details are slightly different. When PCRE_PARTIAL is set for
- pcre_dfa_exec(), the return code PCRE_ERROR_NOMATCH is converted into
- PCRE_ERROR_PARTIAL if the end of the subject is reached, there have
+ This has the same general effect as it does for pcre_exec(), but the
+ details are slightly different. When PCRE_PARTIAL is set for
+ pcre_dfa_exec(), the return code PCRE_ERROR_NOMATCH is converted into
+ PCRE_ERROR_PARTIAL if the end of the subject is reached, there have
been no complete matches, but there is still at least one matching pos-
- sibility. The portion of the string that provided the partial match is
+ sibility. The portion of the string that provided the partial match is
set as the first matching string.
PCRE_DFA_SHORTEST
- Setting the PCRE_DFA_SHORTEST option causes the matching algorithm to
+ Setting the PCRE_DFA_SHORTEST option causes the matching algorithm to
stop as soon as it has found one match. Because of the way the alterna-
- tive algorithm works, this is necessarily the shortest possible match
+ tive algorithm works, this is necessarily the shortest possible match
at the first possible matching point in the subject string.
PCRE_DFA_RESTART
- When pcre_dfa_exec() is called with the PCRE_PARTIAL option, and
- returns a partial match, it is possible to call it again, with addi-
- tional subject characters, and have it continue with the same match.
- The PCRE_DFA_RESTART option requests this action; when it is set, the
- workspace and wscount options must reference the same vector as before
- because data about the match so far is left in them after a partial
- match. There is more discussion of this facility in the pcrepartial
+ When pcre_dfa_exec() is called with the PCRE_PARTIAL option, and
+ returns a partial match, it is possible to call it again, with addi-
+ tional subject characters, and have it continue with the same match.
+ The PCRE_DFA_RESTART option requests this action; when it is set, the
+ workspace and wscount options must reference the same vector as before
+ because data about the match so far is left in them after a partial
+ match. There is more discussion of this facility in the pcrepartial
documentation.
Successful returns from pcre_dfa_exec()
- When pcre_dfa_exec() succeeds, it may have matched more than one sub-
+ When pcre_dfa_exec() succeeds, it may have matched more than one sub-
string in the subject. Note, however, that all the matches from one run
- of the function start at the same point in the subject. The shorter
- matches are all initial substrings of the longer matches. For example,
+ of the function start at the same point in the subject. The shorter
+ matches are all initial substrings of the longer matches. For example,
if the pattern
<.*>
@@ -2261,65 +2350,75 @@ MATCHING A PATTERN: THE ALTERNATIVE FUNCTION
<something> <something else>
<something> <something else> <something further>
- On success, the yield of the function is a number greater than zero,
- which is the number of matched substrings. The substrings themselves
- are returned in ovector. Each string uses two elements; the first is
- the offset to the start, and the second is the offset to the end. In
- fact, all the strings have the same start offset. (Space could have
- been saved by giving this only once, but it was decided to retain some
- compatibility with the way pcre_exec() returns data, even though the
+ On success, the yield of the function is a number greater than zero,
+ which is the number of matched substrings. The substrings themselves
+ are returned in ovector. Each string uses two elements; the first is
+ the offset to the start, and the second is the offset to the end. In
+ fact, all the strings have the same start offset. (Space could have
+ been saved by giving this only once, but it was decided to retain some
+ compatibility with the way pcre_exec() returns data, even though the
meaning of the strings is different.)
The strings are returned in reverse order of length; that is, the long-
- est matching string is given first. If there were too many matches to
- fit into ovector, the yield of the function is zero, and the vector is
+ est matching string is given first. If there were too many matches to
+ fit into ovector, the yield of the function is zero, and the vector is
filled with the longest matches.
Error returns from pcre_dfa_exec()
- The pcre_dfa_exec() function returns a negative number when it fails.
- Many of the errors are the same as for pcre_exec(), and these are
- described above. There are in addition the following errors that are
+ The pcre_dfa_exec() function returns a negative number when it fails.
+ Many of the errors are the same as for pcre_exec(), and these are
+ described above. There are in addition the following errors that are
specific to pcre_dfa_exec():
PCRE_ERROR_DFA_UITEM (-16)
- This return is given if pcre_dfa_exec() encounters an item in the pat-
- tern that it does not support, for instance, the use of \C or a back
+ This return is given if pcre_dfa_exec() encounters an item in the pat-
+ tern that it does not support, for instance, the use of \C or a back
reference.
PCRE_ERROR_DFA_UCOND (-17)
- This return is given if pcre_dfa_exec() encounters a condition item
- that uses a back reference for the condition, or a test for recursion
+ This return is given if pcre_dfa_exec() encounters a condition item
+ that uses a back reference for the condition, or a test for recursion
in a specific group. These are not supported.
PCRE_ERROR_DFA_UMLIMIT (-18)
- This return is given if pcre_dfa_exec() is called with an extra block
+ This return is given if pcre_dfa_exec() is called with an extra block
that contains a setting of the match_limit field. This is not supported
(it is meaningless).
PCRE_ERROR_DFA_WSSIZE (-19)
- This return is given if pcre_dfa_exec() runs out of space in the
+ This return is given if pcre_dfa_exec() runs out of space in the
workspace vector.
PCRE_ERROR_DFA_RECURSE (-20)
- When a recursive subpattern is processed, the matching function calls
- itself recursively, using private vectors for ovector and workspace.
- This error is given if the output vector is not large enough. This
+ When a recursive subpattern is processed, the matching function calls
+ itself recursively, using private vectors for ovector and workspace.
+ This error is given if the output vector is not large enough. This
should be extremely rare, as a vector of size 1000 is used.
SEE ALSO
- pcrebuild(3), pcrecallout(3), pcrecpp(3)(3), pcrematching(3), pcrepar-
- tial(3), pcreposix(3), pcreprecompile(3), pcresample(3), pcrestack(3).
+ pcrebuild(3), pcrecallout(3), pcrecpp(3)(3), pcrematching(3), pcrepar-
+ tial(3), pcreposix(3), pcreprecompile(3), pcresample(3), pcrestack(3).
+
-Last updated: 30 November 2006
-Copyright (c) 1997-2006 University of Cambridge.
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 13 June 2007
+ Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------
@@ -2346,7 +2445,7 @@ PCRE CALLOUTS
default value is zero. For example, this pattern has two callout
points:
- (?C1)eabc(?C2)def
+ (?C1)abc(?C2)def
If the PCRE_AUTO_CALLOUT option bit is set when pcre_compile() is
called, PCRE automatically inserts callouts, all with number 255,
@@ -2421,10 +2520,12 @@ THE CALLOUT INTERFACE
The subject and subject_length fields contain copies of the values that
were passed to pcre_exec().
- The start_match field contains the offset within the subject at which
- the current match attempt started. If the pattern is not anchored, the
- callout function may be called several times from the same point in the
- pattern for different starting points in the subject.
+ The start_match field normally contains the offset within the subject
+ at which the current match attempt started. However, if the escape
+ sequence \K has been encountered, this value is changed to reflect the
+ modified starting point. If the pattern is not anchored, the callout
+ function may be called several times from the same point in the pattern
+ for different starting points in the subject.
The current_position field contains the offset within the subject of
the current match pointer.
@@ -2477,8 +2578,18 @@ RETURN VALUES
reserved for use by callout functions; it will never be used by PCRE
itself.
-Last updated: 28 February 2005
-Copyright (c) 1997-2005 University of Cambridge.
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 29 May 2007
+ Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------
@@ -2493,8 +2604,8 @@ DIFFERENCES BETWEEN PCRE AND PERL
This document describes the differences in the ways that PCRE and Perl
handle regular expressions. The differences described here are mainly
- with respect to Perl 5.8, though PCRE version 7.0 contains some fea-
- tures that are expected to be in the forthcoming Perl 5.10.
+ with respect to Perl 5.8, though PCRE versions 7.0 and later contain
+ some features that are expected to be in the forthcoming Perl 5.10.
1. PCRE has only a subset of Perl's UTF-8 and Unicode support. Details
of what it does have are given in the section on UTF-8 support in the
@@ -2572,8 +2683,8 @@ DIFFERENCES BETWEEN PCRE AND PERL
meta-character matches only at the very end of the string.
(c) If PCRE_EXTRA is set, a backslash followed by a letter with no spe-
- cial meaning is faulted. Otherwise, like Perl, the backslash is
- ignored. (Perl can be made to issue a warning.)
+ cial meaning is faulted. Otherwise, like Perl, the backslash is quietly
+ ignored. (Perl can be made to issue a warning.)
(d) If PCRE_UNGREEDY is set, the greediness of the repetition quanti-
fiers is inverted, that is, by default they are not greedy, but if fol-
@@ -2595,8 +2706,18 @@ DIFFERENCES BETWEEN PCRE AND PERL
(j) The alternative matching function (pcre_dfa_exec()) matches in a
different way and is not Perl-compatible.
-Last updated: 28 November 2006
-Copyright (c) 1997-2006 University of Cambridge.
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 13 June 2007
+ Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------
@@ -2628,38 +2749,39 @@ PCRE REGULAR EXPRESSION DETAILS
ported by PCRE when its main matching function, pcre_exec(), is used.
From release 6.0, PCRE offers a second matching function,
pcre_dfa_exec(), which matches using a different algorithm that is not
- Perl-compatible. The advantages and disadvantages of the alternative
- function, and how it differs from the normal function, are discussed in
- the pcrematching page.
+ Perl-compatible. Some of the features discussed below are not available
+ when pcre_dfa_exec() is used. The advantages and disadvantages of the
+ alternative function, and how it differs from the normal function, are
+ discussed in the pcrematching page.
CHARACTERS AND METACHARACTERS
- A regular expression is a pattern that is matched against a subject
- string from left to right. Most characters stand for themselves in a
- pattern, and match the corresponding characters in the subject. As a
+ A regular expression is a pattern that is matched against a subject
+ string from left to right. Most characters stand for themselves in a
+ pattern, and match the corresponding characters in the subject. As a
trivial example, the pattern
The quick brown fox
matches a portion of a subject string that is identical to itself. When
- caseless matching is specified (the PCRE_CASELESS option), letters are
- matched independently of case. In UTF-8 mode, PCRE always understands
- the concept of case for characters whose values are less than 128, so
- caseless matching is always possible. For characters with higher val-
- ues, the concept of case is supported if PCRE is compiled with Unicode
- property support, but not otherwise. If you want to use caseless
- matching for characters 128 and above, you must ensure that PCRE is
+ caseless matching is specified (the PCRE_CASELESS option), letters are
+ matched independently of case. In UTF-8 mode, PCRE always understands
+ the concept of case for characters whose values are less than 128, so
+ caseless matching is always possible. For characters with higher val-
+ ues, the concept of case is supported if PCRE is compiled with Unicode
+ property support, but not otherwise. If you want to use caseless
+ matching for characters 128 and above, you must ensure that PCRE is
compiled with Unicode property support as well as with UTF-8 support.
- The power of regular expressions comes from the ability to include
- alternatives and repetitions in the pattern. These are encoded in the
+ The power of regular expressions comes from the ability to include
+ alternatives and repetitions in the pattern. These are encoded in the
pattern by the use of metacharacters, which do not stand for themselves
but instead are interpreted in some special way.
- There are two different sets of metacharacters: those that are recog-
- nized anywhere in the pattern except within square brackets, and those
- that are recognized within square brackets. Outside square brackets,
+ There are two different sets of metacharacters: those that are recog-
+ nized anywhere in the pattern except within square brackets, and those
+ that are recognized within square brackets. Outside square brackets,
the metacharacters are as follows:
\ general escape character with several uses
@@ -2678,7 +2800,7 @@ CHARACTERS AND METACHARACTERS
also "possessive quantifier"
{ start min/max quantifier
- Part of a pattern that is in square brackets is called a "character
+ Part of a pattern that is in square brackets is called a "character
class". In a character class the only metacharacters are:
\ general escape character
@@ -2688,33 +2810,33 @@ CHARACTERS AND METACHARACTERS
syntax)
] terminates the character class
- The following sections describe the use of each of the metacharacters.
+ The following sections describe the use of each of the metacharacters.
BACKSLASH
The backslash character has several uses. Firstly, if it is followed by
- a non-alphanumeric character, it takes away any special meaning that
- character may have. This use of backslash as an escape character
+ a non-alphanumeric character, it takes away any special meaning that
+ character may have. This use of backslash as an escape character
applies both inside and outside character classes.
- For example, if you want to match a * character, you write \* in the
- pattern. This escaping action applies whether or not the following
- character would otherwise be interpreted as a metacharacter, so it is
- always safe to precede a non-alphanumeric with backslash to specify
- that it stands for itself. In particular, if you want to match a back-
+ For example, if you want to match a * character, you write \* in the
+ pattern. This escaping action applies whether or not the following
+ character would otherwise be interpreted as a metacharacter, so it is
+ always safe to precede a non-alphanumeric with backslash to specify
+ that it stands for itself. In particular, if you want to match a back-
slash, you write \\.
- If a pattern is compiled with the PCRE_EXTENDED option, whitespace in
- the pattern (other than in a character class) and characters between a
+ If a pattern is compiled with the PCRE_EXTENDED option, whitespace in
+ the pattern (other than in a character class) and characters between a
# outside a character class and the next newline are ignored. An escap-
- ing backslash can be used to include a whitespace or # character as
+ ing backslash can be used to include a whitespace or # character as
part of the pattern.
- If you want to remove the special meaning from a sequence of charac-
- ters, you can do so by putting them between \Q and \E. This is differ-
- ent from Perl in that $ and @ are handled as literals in \Q...\E
- sequences in PCRE, whereas in Perl, $ and @ cause variable interpola-
+ If you want to remove the special meaning from a sequence of charac-
+ ters, you can do so by putting them between \Q and \E. This is differ-
+ ent from Perl in that $ and @ are handled as literals in \Q...\E
+ sequences in PCRE, whereas in Perl, $ and @ cause variable interpola-
tion. Note the following examples:
Pattern PCRE matches Perl matches
@@ -2724,16 +2846,16 @@ BACKSLASH
\Qabc\$xyz\E abc\$xyz abc\$xyz
\Qabc\E\$\Qxyz\E abc$xyz abc$xyz
- The \Q...\E sequence is recognized both inside and outside character
+ The \Q...\E sequence is recognized both inside and outside character
classes.
Non-printing characters
A second use of backslash provides a way of encoding non-printing char-
- acters in patterns in a visible manner. There is no restriction on the
- appearance of non-printing characters, apart from the binary zero that
- terminates a pattern, but when a pattern is being prepared by text
- editing, it is usually easier to use one of the following escape
+ acters in patterns in a visible manner. There is no restriction on the
+ appearance of non-printing characters, apart from the binary zero that
+ terminates a pattern, but when a pattern is being prepared by text
+ editing, it is usually easier to use one of the following escape
sequences than the binary character it represents:
\a alarm, that is, the BEL character (hex 07)
@@ -2747,45 +2869,45 @@ BACKSLASH
\xhh character with hex code hh
\x{hhh..} character with hex code hhh..
- The precise effect of \cx is as follows: if x is a lower case letter,
- it is converted to upper case. Then bit 6 of the character (hex 40) is
- inverted. Thus \cz becomes hex 1A, but \c{ becomes hex 3B, while \c;
+ The precise effect of \cx is as follows: if x is a lower case letter,
+ it is converted to upper case. Then bit 6 of the character (hex 40) is
+ inverted. Thus \cz becomes hex 1A, but \c{ becomes hex 3B, while \c;
becomes hex 7B.
- After \x, from zero to two hexadecimal digits are read (letters can be
- in upper or lower case). Any number of hexadecimal digits may appear
- between \x{ and }, but the value of the character code must be less
+ After \x, from zero to two hexadecimal digits are read (letters can be
+ in upper or lower case). Any number of hexadecimal digits may appear
+ between \x{ and }, but the value of the character code must be less
than 256 in non-UTF-8 mode, and less than 2**31 in UTF-8 mode (that is,
- the maximum hexadecimal value is 7FFFFFFF). If characters other than
- hexadecimal digits appear between \x{ and }, or if there is no termi-
- nating }, this form of escape is not recognized. Instead, the initial
+ the maximum hexadecimal value is 7FFFFFFF). If characters other than
+ hexadecimal digits appear between \x{ and }, or if there is no termi-
+ nating }, this form of escape is not recognized. Instead, the initial
\x will be interpreted as a basic hexadecimal escape, with no following
digits, giving a character whose value is zero.
Characters whose value is less than 256 can be defined by either of the
- two syntaxes for \x. There is no difference in the way they are han-
+ two syntaxes for \x. There is no difference in the way they are han-
dled. For example, \xdc is exactly the same as \x{dc}.
- After \0 up to two further octal digits are read. If there are fewer
- than two digits, just those that are present are used. Thus the
+ After \0 up to two further octal digits are read. If there are fewer
+ than two digits, just those that are present are used. Thus the
sequence \0\x\07 specifies two binary zeros followed by a BEL character
- (code value 7). Make sure you supply two digits after the initial zero
+ (code value 7). Make sure you supply two digits after the initial zero
if the pattern character that follows is itself an octal digit.
The handling of a backslash followed by a digit other than 0 is compli-
cated. Outside a character class, PCRE reads it and any following dig-
- its as a decimal number. If the number is less than 10, or if there
+ its as a decimal number. If the number is less than 10, or if there
have been at least that many previous capturing left parentheses in the
- expression, the entire sequence is taken as a back reference. A
- description of how this works is given later, following the discussion
+ expression, the entire sequence is taken as a back reference. A
+ description of how this works is given later, following the discussion
of parenthesized subpatterns.
- Inside a character class, or if the decimal number is greater than 9
- and there have not been that many capturing subpatterns, PCRE re-reads
+ Inside a character class, or if the decimal number is greater than 9
+ and there have not been that many capturing subpatterns, PCRE re-reads
up to three octal digits following the backslash, and uses them to gen-
- erate a data character. Any subsequent digits stand for themselves. In
- non-UTF-8 mode, the value of a character specified in octal must be
- less than \400. In UTF-8 mode, values up to \777 are permitted. For
+ erate a data character. Any subsequent digits stand for themselves. In
+ non-UTF-8 mode, the value of a character specified in octal must be
+ less than \400. In UTF-8 mode, values up to \777 are permitted. For
example:
\040 is another way of writing a space
@@ -2803,22 +2925,22 @@ BACKSLASH
\81 is either a back reference, or a binary zero
followed by the two characters "8" and "1"
- Note that octal values of 100 or greater must not be introduced by a
+ Note that octal values of 100 or greater must not be introduced by a
leading zero, because no more than three octal digits are ever read.
All the sequences that define a single character value can be used both
- inside and outside character classes. In addition, inside a character
- class, the sequence \b is interpreted as the backspace character (hex
- 08), and the sequences \R and \X are interpreted as the characters "R"
- and "X", respectively. Outside a character class, these sequences have
+ inside and outside character classes. In addition, inside a character
+ class, the sequence \b is interpreted as the backspace character (hex
+ 08), and the sequences \R and \X are interpreted as the characters "R"
+ and "X", respectively. Outside a character class, these sequences have
different meanings (see below).
Absolute and relative back references
- The sequence \g followed by a positive or negative number, optionally
- enclosed in braces, is an absolute or relative back reference. Back
- references are discussed later, following the discussion of parenthe-
- sized subpatterns.
+ The sequence \g followed by a positive or negative number, optionally
+ enclosed in braces, is an absolute or relative back reference. A named
+ back reference can be coded as \g{name}. Back references are discussed
+ later, following the discussion of parenthesized subpatterns.
Generic character types
@@ -2827,57 +2949,97 @@ BACKSLASH
\d any decimal digit
\D any character that is not a decimal digit
+ \h any horizontal whitespace character
+ \H any character that is not a horizontal whitespace character
\s any whitespace character
\S any character that is not a whitespace character
+ \v any vertical whitespace character
+ \V any character that is not a vertical whitespace character
\w any "word" character
\W any "non-word" character
Each pair of escape sequences partitions the complete set of characters
- into two disjoint sets. Any given character matches one, and only one,
+ into two disjoint sets. Any given character matches one, and only one,
of each pair.
These character type sequences can appear both inside and outside char-
- acter classes. They each match one character of the appropriate type.
- If the current matching point is at the end of the subject string, all
+ acter classes. They each match one character of the appropriate type.
+ If the current matching point is at the end of the subject string, all
of them fail, since there is no character to match.
- For compatibility with Perl, \s does not match the VT character (code
- 11). This makes it different from the the POSIX "space" class. The \s
- characters are HT (9), LF (10), FF (12), CR (13), and space (32). (If
+ For compatibility with Perl, \s does not match the VT character (code
+ 11). This makes it different from the the POSIX "space" class. The \s
+ characters are HT (9), LF (10), FF (12), CR (13), and space (32). If
"use locale;" is included in a Perl script, \s may match the VT charac-
- ter. In PCRE, it never does.)
+ ter. In PCRE, it never does.
- A "word" character is an underscore or any character less than 256 that
- is a letter or digit. The definition of letters and digits is con-
- trolled by PCRE's low-valued character tables, and may vary if locale-
- specific matching is taking place (see "Locale support" in the pcreapi
- page). For example, in the "fr_FR" (French) locale, some character
- codes greater than 128 are used for accented letters, and these are
- matched by \w.
-
- In UTF-8 mode, characters with values greater than 128 never match \d,
+ In UTF-8 mode, characters with values greater than 128 never match \d,
\s, or \w, and always match \D, \S, and \W. This is true even when Uni-
- code character property support is available. The use of locales with
- Unicode is discouraged.
+ code character property support is available. These sequences retain
+ their original meanings from before UTF-8 support was available, mainly
+ for efficiency reasons.
+
+ The sequences \h, \H, \v, and \V are Perl 5.10 features. In contrast to
+ the other sequences, these do match certain high-valued codepoints in
+ UTF-8 mode. The horizontal space characters are:
+
+ U+0009 Horizontal tab
+ U+0020 Space
+ U+00A0 Non-break space
+ U+1680 Ogham space mark
+ U+180E Mongolian vowel separator
+ U+2000 En quad
+ U+2001 Em quad
+ U+2002 En space
+ U+2003 Em space
+ U+2004 Three-per-em space
+ U+2005 Four-per-em space
+ U+2006 Six-per-em space
+ U+2007 Figure space
+ U+2008 Punctuation space
+ U+2009 Thin space
+ U+200A Hair space
+ U+202F Narrow no-break space
+ U+205F Medium mathematical space
+ U+3000 Ideographic space
+
+ The vertical space characters are:
+
+ U+000A Linefeed
+ U+000B Vertical tab
+ U+000C Formfeed
+ U+000D Carriage return
+ U+0085 Next line
+ U+2028 Line separator
+ U+2029 Paragraph separator
+
+ A "word" character is an underscore or any character less than 256 that
+ is a letter or digit. The definition of letters and digits is con-
+ trolled by PCRE's low-valued character tables, and may vary if locale-
+ specific matching is taking place (see "Locale support" in the pcreapi
+ page). For example, in a French locale such as "fr_FR" in Unix-like
+ systems, or "french" in Windows, some character codes greater than 128
+ are used for accented letters, and these are matched by \w. The use of
+ locales with Unicode is discouraged.
Newline sequences
- Outside a character class, the escape sequence \R matches any Unicode
- newline sequence. This is an extension to Perl. In non-UTF-8 mode \R is
+ Outside a character class, the escape sequence \R matches any Unicode
+ newline sequence. This is a Perl 5.10 feature. In non-UTF-8 mode \R is
equivalent to the following:
(?>\r\n|\n|\x0b|\f|\r|\x85)
- This is an example of an "atomic group", details of which are given
+ This is an example of an "atomic group", details of which are given
below. This particular group matches either the two-character sequence
- CR followed by LF, or one of the single characters LF (linefeed,
+ CR followed by LF, or one of the single characters LF (linefeed,
U+000A), VT (vertical tab, U+000B), FF (formfeed, U+000C), CR (carriage
return, U+000D), or NEL (next line, U+0085). The two-character sequence
is treated as a single unit that cannot be split.
- In UTF-8 mode, two additional characters whose codepoints are greater
+ In UTF-8 mode, two additional characters whose codepoints are greater
than 255 are added: LS (line separator, U+2028) and PS (paragraph sepa-
- rator, U+2029). Unicode character property support is not needed for
+ rator, U+2029). Unicode character property support is not needed for
these characters to be recognized.
Inside a character class, \R matches the letter "R".
@@ -2885,47 +3047,47 @@ BACKSLASH
Unicode character properties
When PCRE is built with Unicode character property support, three addi-
- tional escape sequences to match character properties are available
+ tional escape sequences to match character properties are available
when UTF-8 mode is selected. They are:
\p{xx} a character with the xx property
\P{xx} a character without the xx property
\X an extended Unicode sequence
- The property names represented by xx above are limited to the Unicode
+ The property names represented by xx above are limited to the Unicode
script names, the general category properties, and "Any", which matches
any character (including newline). Other properties such as "InMusical-
- Symbols" are not currently supported by PCRE. Note that \P{Any} does
+ Symbols" are not currently supported by PCRE. Note that \P{Any} does
not match any characters, so always causes a match failure.
Sets of Unicode characters are defined as belonging to certain scripts.
- A character from one of these sets can be matched using a script name.
+ A character from one of these sets can be matched using a script name.
For example:
\p{Greek}
\P{Han}
- Those that are not part of an identified script are lumped together as
+ Those that are not part of an identified script are lumped together as
"Common". The current list of scripts is:
Arabic, Armenian, Balinese, Bengali, Bopomofo, Braille, Buginese,
- Buhid, Canadian_Aboriginal, Cherokee, Common, Coptic, Cuneiform,
+ Buhid, Canadian_Aboriginal, Cherokee, Common, Coptic, Cuneiform,
Cypriot, Cyrillic, Deseret, Devanagari, Ethiopic, Georgian, Glagolitic,
- Gothic, Greek, Gujarati, Gurmukhi, Han, Hangul, Hanunoo, Hebrew, Hira-
- gana, Inherited, Kannada, Katakana, Kharoshthi, Khmer, Lao, Latin,
+ Gothic, Greek, Gujarati, Gurmukhi, Han, Hangul, Hanunoo, Hebrew, Hira-
+ gana, Inherited, Kannada, Katakana, Kharoshthi, Khmer, Lao, Latin,
Limbu, Linear_B, Malayalam, Mongolian, Myanmar, New_Tai_Lue, Nko,
- Ogham, Old_Italic, Old_Persian, Oriya, Osmanya, Phags_Pa, Phoenician,
+ Ogham, Old_Italic, Old_Persian, Oriya, Osmanya, Phags_Pa, Phoenician,
Runic, Shavian, Sinhala, Syloti_Nagri, Syriac, Tagalog, Tagbanwa,
Tai_Le, Tamil, Telugu, Thaana, Thai, Tibetan, Tifinagh, Ugaritic, Yi.
- Each character has exactly one general category property, specified by
+ Each character has exactly one general category property, specified by
a two-letter abbreviation. For compatibility with Perl, negation can be
- specified by including a circumflex between the opening brace and the
+ specified by including a circumflex between the opening brace and the
property name. For example, \p{^Lu} is the same as \P{Lu}.
If only one letter is specified with \p or \P, it includes all the gen-
- eral category properties that start with that letter. In this case, in
- the absence of negation, the curly brackets in the escape sequence are
+ eral category properties that start with that letter. In this case, in
+ the absence of negation, the curly brackets in the escape sequence are
optional; these two examples have the same effect:
\p{L}
@@ -2977,36 +3139,55 @@ BACKSLASH
Zp Paragraph separator
Zs Space separator
- The special property L& is also supported: it matches a character that
- has the Lu, Ll, or Lt property, in other words, a letter that is not
+ The special property L& is also supported: it matches a character that
+ has the Lu, Ll, or Lt property, in other words, a letter that is not
classified as a modifier or "other".
- The long synonyms for these properties that Perl supports (such as
- \p{Letter}) are not supported by PCRE, nor is it permitted to prefix
+ The long synonyms for these properties that Perl supports (such as
+ \p{Letter}) are not supported by PCRE, nor is it permitted to prefix
any of these properties with "Is".
No character that is in the Unicode table has the Cn (unassigned) prop-
erty. Instead, this property is assumed for any code point that is not
in the Unicode table.
- Specifying caseless matching does not affect these escape sequences.
+ Specifying caseless matching does not affect these escape sequences.
For example, \p{Lu} always matches only upper case letters.
- The \X escape matches any number of Unicode characters that form an
+ The \X escape matches any number of Unicode characters that form an
extended Unicode sequence. \X is equivalent to
(?>\PM\pM*)
- That is, it matches a character without the "mark" property, followed
- by zero or more characters with the "mark" property, and treats the
- sequence as an atomic group (see below). Characters with the "mark"
+ That is, it matches a character without the "mark" property, followed
+ by zero or more characters with the "mark" property, and treats the
+ sequence as an atomic group (see below). Characters with the "mark"
property are typically accents that affect the preceding character.
- Matching characters by Unicode property is not fast, because PCRE has
- to search a structure that contains data for over fifteen thousand
+ Matching characters by Unicode property is not fast, because PCRE has
+ to search a structure that contains data for over fifteen thousand
characters. That is why the traditional escape sequences such as \d and
\w do not use Unicode properties in PCRE.
+ Resetting the match start
+
+ The escape sequence \K, which is a Perl 5.10 feature, causes any previ-
+ ously matched characters not to be included in the final matched
+ sequence. For example, the pattern:
+
+ foo\Kbar
+
+ matches "foobar", but reports that it has matched "bar". This feature
+ is similar to a lookbehind assertion (described below). However, in
+ this case, the part of the subject before the real match does not have
+ to be of fixed length, as lookbehind assertions do. The use of \K does
+ not interfere with the setting of captured substrings. For example,
+ when the pattern
+
+ (foo)\Kbar
+
+ matches "foobar", the first substring is still set to "foo".
+
Simple assertions
The final use of backslash is for certain simple assertions. An asser-
@@ -3222,7 +3403,7 @@ SQUARE BRACKETS AND CHARACTER CLASSES
If a range that includes letters is used when caseless matching is set,
it matches the letters in either case. For example, [W-c] is equivalent
to [][\\^_`wxyzabc], matched caselessly, and in non-UTF-8 mode, if
- character tables for the "fr_FR" locale are in use, [\xc8-\xcb] matches
+ character tables for a French locale are in use, [\xc8-\xcb] matches
accented E characters in both cases. In UTF-8 mode, PCRE supports the
concept of case for characters with values greater than 128 only when
it is compiled with Unicode property support.
@@ -3407,6 +3588,37 @@ SUBPATTERNS
"Saturday".
+DUPLICATE SUBPATTERN NUMBERS
+
+ Perl 5.10 introduced a feature whereby each alternative in a subpattern
+ uses the same numbers for its capturing parentheses. Such a subpattern
+ starts with (?| and is itself a non-capturing subpattern. For example,
+ consider this pattern:
+
+ (?|(Sat)ur|(Sun))day
+
+ Because the two alternatives are inside a (?| group, both sets of cap-
+ turing parentheses are numbered one. Thus, when the pattern matches,
+ you can look at captured substring number one, whichever alternative
+ matched. This construct is useful when you want to capture part, but
+ not all, of one of a number of alternatives. Inside a (?| group, paren-
+ theses are numbered as usual, but the number is reset at the start of
+ each branch. The numbers of any capturing buffers that follow the sub-
+ pattern start after the highest number used in any branch. The follow-
+ ing example is taken from the Perl documentation. The numbers under-
+ neath show in which buffer the captured content will be stored.
+
+ # before ---------------branch-reset----------- after
+ / ( a ) (?| x ( y ) z | (p (q) r) | (t) u (v) ) ( z ) /x
+ # 1 2 2 3 2 3 4
+
+ A backreference or a recursive call to a numbered subpattern always
+ refers to the first one in the pattern with the given number.
+
+ An alternative approach to using this "branch reset" feature is to use
+ duplicate named subpatterns, as described in the next section.
+
+
NAMED SUBPATTERNS
Identifying capturing parentheses by number is simple, but it can be
@@ -3446,14 +3658,16 @@ NAMED SUBPATTERNS
(?<DN>Sat)(?:urday)?
There are five capturing substrings, but only one is ever set after a
- match. The convenience function for extracting the data by name
- returns the substring for the first (and in this example, the only)
- subpattern of that name that matched. This saves searching to find
- which numbered subpattern it was. If you make a reference to a non-
- unique named subpattern from elsewhere in the pattern, the one that
- corresponds to the lowest number is used. For further details of the
- interfaces for handling named subpatterns, see the pcreapi documenta-
- tion.
+ match. (An alternative way of solving this problem is to use a "branch
+ reset" subpattern, as described in the previous section.)
+
+ The convenience function for extracting the data by name returns the
+ substring for the first (and in this example, the only) subpattern of
+ that name that matched. This saves searching to find which numbered
+ subpattern it was. If you make a reference to a non-unique named sub-
+ pattern from elsewhere in the pattern, the one that corresponds to the
+ lowest number is used. For further details of the interfaces for han-
+ dling named subpatterns, see the pcreapi documentation.
REPETITION
@@ -3768,64 +3982,69 @@ BACK REFERENCES
matches "rah rah" and "RAH RAH", but not "RAH rah", even though the
original capturing subpattern is matched caselessly.
- Back references to named subpatterns use the Perl syntax \k<name> or
- \k'name' or the Python syntax (?P=name). We could rewrite the above
- example in either of the following ways:
+ There are several different ways of writing back references to named
+ subpatterns. The .NET syntax \k{name} and the Perl syntax \k<name> or
+ \k'name' are supported, as is the Python syntax (?P=name). Perl 5.10's
+ unified back reference syntax, in which \g can be used for both numeric
+ and named references, is also supported. We could rewrite the above
+ example in any of the following ways:
(?<p1>(?i)rah)\s+\k<p1>
+ (?'p1'(?i)rah)\s+\k{p1}
(?P<p1>(?i)rah)\s+(?P=p1)
+ (?<p1>(?i)rah)\s+\g{p1}
- A subpattern that is referenced by name may appear in the pattern
+ A subpattern that is referenced by name may appear in the pattern
before or after the reference.
- There may be more than one back reference to the same subpattern. If a
- subpattern has not actually been used in a particular match, any back
+ There may be more than one back reference to the same subpattern. If a
+ subpattern has not actually been used in a particular match, any back
references to it always fail. For example, the pattern
(a|(bc))\2
- always fails if it starts to match "a" rather than "bc". Because there
- may be many capturing parentheses in a pattern, all digits following
- the backslash are taken as part of a potential back reference number.
+ always fails if it starts to match "a" rather than "bc". Because there
+ may be many capturing parentheses in a pattern, all digits following
+ the backslash are taken as part of a potential back reference number.
If the pattern continues with a digit character, some delimiter must be
- used to terminate the back reference. If the PCRE_EXTENDED option is
- set, this can be whitespace. Otherwise an empty comment (see "Com-
+ used to terminate the back reference. If the PCRE_EXTENDED option is
+ set, this can be whitespace. Otherwise an empty comment (see "Com-
ments" below) can be used.
- A back reference that occurs inside the parentheses to which it refers
- fails when the subpattern is first used, so, for example, (a\1) never
- matches. However, such references can be useful inside repeated sub-
+ A back reference that occurs inside the parentheses to which it refers
+ fails when the subpattern is first used, so, for example, (a\1) never
+ matches. However, such references can be useful inside repeated sub-
patterns. For example, the pattern
(a|b\1)+
matches any number of "a"s and also "aba", "ababbaa" etc. At each iter-
- ation of the subpattern, the back reference matches the character
- string corresponding to the previous iteration. In order for this to
- work, the pattern must be such that the first iteration does not need
- to match the back reference. This can be done using alternation, as in
+ ation of the subpattern, the back reference matches the character
+ string corresponding to the previous iteration. In order for this to
+ work, the pattern must be such that the first iteration does not need
+ to match the back reference. This can be done using alternation, as in
the example above, or by a quantifier with a minimum of zero.
ASSERTIONS
- An assertion is a test on the characters following or preceding the
- current matching point that does not actually consume any characters.
- The simple assertions coded as \b, \B, \A, \G, \Z, \z, ^ and $ are
+ An assertion is a test on the characters following or preceding the
+ current matching point that does not actually consume any characters.
+ The simple assertions coded as \b, \B, \A, \G, \Z, \z, ^ and $ are
described above.
- More complicated assertions are coded as subpatterns. There are two
- kinds: those that look ahead of the current position in the subject
- string, and those that look behind it. An assertion subpattern is
- matched in the normal way, except that it does not cause the current
+ More complicated assertions are coded as subpatterns. There are two
+ kinds: those that look ahead of the current position in the subject
+ string, and those that look behind it. An assertion subpattern is
+ matched in the normal way, except that it does not cause the current
matching position to be changed.
- Assertion subpatterns are not capturing subpatterns, and may not be
- repeated, because it makes no sense to assert the same thing several
- times. If any kind of assertion contains capturing subpatterns within
- it, these are counted for the purposes of numbering the capturing sub-
+ Assertion subpatterns are not capturing subpatterns, and may not be
+ repeated, because it makes no sense to assert the same thing several
+ times. If any kind of assertion contains capturing subpatterns within
+ it, these are counted for the purposes of numbering the capturing sub-
patterns in the whole pattern. However, substring capturing is carried
- out only for positive assertions, because it does not make sense for
+ out only for positive assertions, because it does not make sense for
negative assertions.
Lookahead assertions
@@ -3835,37 +4054,37 @@ ASSERTIONS
\w+(?=;)
- matches a word followed by a semicolon, but does not include the semi-
+ matches a word followed by a semicolon, but does not include the semi-
colon in the match, and
foo(?!bar)
- matches any occurrence of "foo" that is not followed by "bar". Note
+ matches any occurrence of "foo" that is not followed by "bar". Note
that the apparently similar pattern
(?!foo)bar
- does not find an occurrence of "bar" that is preceded by something
- other than "foo"; it finds any occurrence of "bar" whatsoever, because
+ does not find an occurrence of "bar" that is preceded by something
+ other than "foo"; it finds any occurrence of "bar" whatsoever, because
the assertion (?!foo) is always true when the next three characters are
"bar". A lookbehind assertion is needed to achieve the other effect.
If you want to force a matching failure at some point in a pattern, the
- most convenient way to do it is with (?!) because an empty string
- always matches, so an assertion that requires there not to be an empty
+ most convenient way to do it is with (?!) because an empty string
+ always matches, so an assertion that requires there not to be an empty
string must always fail.
Lookbehind assertions
- Lookbehind assertions start with (?<= for positive assertions and (?<!
+ Lookbehind assertions start with (?<= for positive assertions and (?<!
for negative assertions. For example,
(?<!foo)bar
- does find an occurrence of "bar" that is not preceded by "foo". The
- contents of a lookbehind assertion are restricted such that all the
+ does find an occurrence of "bar" that is not preceded by "foo". The
+ contents of a lookbehind assertion are restricted such that all the
strings it matches must have a fixed length. However, if there are sev-
- eral top-level alternatives, they do not all have to have the same
+ eral top-level alternatives, they do not all have to have the same
fixed length. Thus
(?<=bullock|donkey)
@@ -3874,55 +4093,59 @@ ASSERTIONS
(?<!dogs?|cats?)
- causes an error at compile time. Branches that match different length
- strings are permitted only at the top level of a lookbehind assertion.
- This is an extension compared with Perl (at least for 5.8), which
- requires all branches to match the same length of string. An assertion
+ causes an error at compile time. Branches that match different length
+ strings are permitted only at the top level of a lookbehind assertion.
+ This is an extension compared with Perl (at least for 5.8), which
+ requires all branches to match the same length of string. An assertion
such as
(?<=ab(c|de))
- is not permitted, because its single top-level branch can match two
- different lengths, but it is acceptable if rewritten to use two top-
+ is not permitted, because its single top-level branch can match two
+ different lengths, but it is acceptable if rewritten to use two top-
level branches:
(?<=abc|abde)
- The implementation of lookbehind assertions is, for each alternative,
- to temporarily move the current position back by the fixed length and
+ In some cases, the Perl 5.10 escape sequence \K (see above) can be used
+ instead of a lookbehind assertion; this is not restricted to a fixed-
+ length.
+
+ The implementation of lookbehind assertions is, for each alternative,
+ to temporarily move the current position back by the fixed length and
then try to match. If there are insufficient characters before the cur-
rent position, the assertion fails.
PCRE does not allow the \C escape (which matches a single byte in UTF-8
- mode) to appear in lookbehind assertions, because it makes it impossi-
- ble to calculate the length of the lookbehind. The \X and \R escapes,
+ mode) to appear in lookbehind assertions, because it makes it impossi-
+ ble to calculate the length of the lookbehind. The \X and \R escapes,
which can match different numbers of bytes, are also not permitted.
- Possessive quantifiers can be used in conjunction with lookbehind
- assertions to specify efficient matching at the end of the subject
+ Possessive quantifiers can be used in conjunction with lookbehind
+ assertions to specify efficient matching at the end of the subject
string. Consider a simple pattern such as
abcd$
- when applied to a long string that does not match. Because matching
+ when applied to a long string that does not match. Because matching
proceeds from left to right, PCRE will look for each "a" in the subject
- and then see if what follows matches the rest of the pattern. If the
+ and then see if what follows matches the rest of the pattern. If the
pattern is specified as
^.*abcd$
- the initial .* matches the entire string at first, but when this fails
+ the initial .* matches the entire string at first, but when this fails
(because there is no following "a"), it backtracks to match all but the
- last character, then all but the last two characters, and so on. Once
- again the search for "a" covers the entire string, from right to left,
+ last character, then all but the last two characters, and so on. Once
+ again the search for "a" covers the entire string, from right to left,
so we are no better off. However, if the pattern is written as
^.*+(?<=abcd)
- there can be no backtracking for the .*+ item; it can match only the
- entire string. The subsequent lookbehind assertion does a single test
- on the last four characters. If it fails, the match fails immediately.
- For long strings, this approach makes a significant difference to the
+ there can be no backtracking for the .*+ item; it can match only the
+ entire string. The subsequent lookbehind assertion does a single test
+ on the last four characters. If it fails, the match fails immediately.
+ For long strings, this approach makes a significant difference to the
processing time.
Using multiple assertions
@@ -3931,18 +4154,18 @@ ASSERTIONS
(?<=\d{3})(?<!999)foo
- matches "foo" preceded by three digits that are not "999". Notice that
- each of the assertions is applied independently at the same point in
- the subject string. First there is a check that the previous three
- characters are all digits, and then there is a check that the same
+ matches "foo" preceded by three digits that are not "999". Notice that
+ each of the assertions is applied independently at the same point in
+ the subject string. First there is a check that the previous three
+ characters are all digits, and then there is a check that the same
three characters are not "999". This pattern does not match "foo" pre-
- ceded by six characters, the first of which are digits and the last
- three of which are not "999". For example, it doesn't match "123abc-
+ ceded by six characters, the first of which are digits and the last
+ three of which are not "999". For example, it doesn't match "123abc-
foo". A pattern to do that is
(?<=\d{3}...)(?<!999)foo
- This time the first assertion looks at the preceding six characters,
+ This time the first assertion looks at the preceding six characters,
checking that the first three are digits, and then the second assertion
checks that the preceding three characters are not "999".
@@ -3950,38 +4173,43 @@ ASSERTIONS
(?<=(?<!foo)bar)baz
- matches an occurrence of "baz" that is preceded by "bar" which in turn
+ matches an occurrence of "baz" that is preceded by "bar" which in turn
is not preceded by "foo", while
(?<=\d{3}(?!999)...)foo
- is another pattern that matches "foo" preceded by three digits and any
+ is another pattern that matches "foo" preceded by three digits and any
three characters that are not "999".
CONDITIONAL SUBPATTERNS
- It is possible to cause the matching process to obey a subpattern con-
- ditionally or to choose between two alternative subpatterns, depending
- on the result of an assertion, or whether a previous capturing subpat-
- tern matched or not. The two possible forms of conditional subpattern
+ It is possible to cause the matching process to obey a subpattern con-
+ ditionally or to choose between two alternative subpatterns, depending
+ on the result of an assertion, or whether a previous capturing subpat-
+ tern matched or not. The two possible forms of conditional subpattern
are
(?(condition)yes-pattern)
(?(condition)yes-pattern|no-pattern)
- If the condition is satisfied, the yes-pattern is used; otherwise the
- no-pattern (if present) is used. If there are more than two alterna-
+ If the condition is satisfied, the yes-pattern is used; otherwise the
+ no-pattern (if present) is used. If there are more than two alterna-
tives in the subpattern, a compile-time error occurs.
- There are four kinds of condition: references to subpatterns, refer-
+ There are four kinds of condition: references to subpatterns, refer-
ences to recursion, a pseudo-condition called DEFINE, and assertions.
Checking for a used subpattern by number
- If the text between the parentheses consists of a sequence of digits,
- the condition is true if the capturing subpattern of that number has
- previously matched.
+ If the text between the parentheses consists of a sequence of digits,
+ the condition is true if the capturing subpattern of that number has
+ previously matched. An alternative notation is to precede the digits
+ with a plus or minus sign. In this case, the subpattern number is rela-
+ tive rather than absolute. The most recently opened parentheses can be
+ referenced by (?(-1), the next most recent by (?(-2), and so on. In
+ looping constructs it can also make sense to refer to subsequent groups
+ with constructs such as (?(+2).
Consider the following pattern, which contains non-significant white
space to make it more readable (assume the PCRE_EXTENDED option) and to
@@ -4000,6 +4228,14 @@ CONDITIONAL SUBPATTERNS
other words, this pattern matches a sequence of non-parentheses,
optionally enclosed in parentheses.
+ If you were embedding this pattern in a larger one, you could use a
+ relative reference:
+
+ ...other stuff... ( \( )? [^()]+ (?(-1) \) ) ...
+
+ This makes the fragment independent of the parentheses in the larger
+ pattern.
+
Checking for a used subpattern by name
Perl uses the syntax (?(<name>)...) or (?('name')...) to test for a
@@ -4141,19 +4377,35 @@ RECURSIVE PATTERNS
( \( ( (?>[^()]+) | (?1) )* \) )
We have put the pattern into parentheses, and caused the recursion to
- refer to them instead of the whole pattern. In a larger pattern, keep-
- ing track of parenthesis numbers can be tricky. It may be more conve-
- nient to use named parentheses instead. The Perl syntax for this is
- (?&name); PCRE's earlier syntax (?P>name) is also supported. We could
- rewrite the above example as follows:
+ refer to them instead of the whole pattern.
+
+ In a larger pattern, keeping track of parenthesis numbers can be
+ tricky. This is made easier by the use of relative references. (A Perl
+ 5.10 feature.) Instead of (?1) in the pattern above you can write
+ (?-2) to refer to the second most recently opened parentheses preceding
+ the recursion. In other words, a negative number counts capturing
+ parentheses leftwards from the point at which it is encountered.
+
+ It is also possible to refer to subsequently opened parentheses, by
+ writing references such as (?+2). However, these cannot be recursive
+ because the reference is not inside the parentheses that are refer-
+ enced. They are always "subroutine" calls, as described in the next
+ section.
+
+ An alternative approach is to use named parentheses instead. The Perl
+ syntax for this is (?&name); PCRE's earlier syntax (?P>name) is also
+ supported. We could rewrite the above example as follows:
(?<pn> \( ( (?>[^()]+) | (?&pn) )* \) )
- If there is more than one subpattern with the same name, the earliest
- one is used. This particular example pattern contains nested unlimited
- repeats, and so the use of atomic grouping for matching strings of non-
- parentheses is important when applying the pattern to strings that do
- not match. For example, when this pattern is applied to
+ If there is more than one subpattern with the same name, the earliest
+ one is used.
+
+ This particular example pattern that we have been looking at contains
+ nested unlimited repeats, and so the use of atomic grouping for match-
+ ing strings of non-parentheses is important when applying the pattern
+ to strings that do not match. For example, when this pattern is applied
+ to
(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa()
@@ -4203,8 +4455,14 @@ SUBPATTERNS AS SUBROUTINES
If the syntax for a recursive subpattern reference (either by number or
by name) is used outside the parentheses to which it refers, it oper-
ates like a subroutine in a programming language. The "called" subpat-
- tern may be defined before or after the reference. An earlier example
- pointed out that the pattern
+ tern may be defined before or after the reference. A numbered reference
+ can be absolute or relative, as in these examples:
+
+ (...(absolute)...)...(?2)...
+ (...(relative)...)...(?-1)...
+ (...(?+1)...(relative)...
+
+ An earlier example pointed out that the pattern
(sens|respons)e and \1ibility
@@ -4226,7 +4484,7 @@ SUBPATTERNS AS SUBROUTINES
case-independence are fixed when the subpattern is defined. They cannot
be changed for different calls. For example, consider this pattern:
- (abc)(?i:(?1))
+ (abc)(?i:(?-1))
It matches "abcabc". It does not match "abcABC" because the change of
processing option does not affect the called subpattern.
@@ -4271,8 +4529,18 @@ SEE ALSO
pcreapi(3), pcrecallout(3), pcrematching(3), pcre(3).
-Last updated: 06 December 2006
-Copyright (c) 1997-2006 University of Cambridge.
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 13 June 2007
+ Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------
@@ -4352,12 +4620,13 @@ RESTRICTED PATTERNS FOR PCRE_PARTIAL
If PCRE_PARTIAL is set for a pattern that does not conform to the
restrictions, pcre_exec() returns the error code PCRE_ERROR_BADPARTIAL
- (-13).
+ (-13). You can use the PCRE_INFO_OKPARTIAL call to pcre_fullinfo() to
+ find out if a compiled pattern can be used for partial matching.
EXAMPLE OF PARTIAL MATCHING USING PCRETEST
- If the escape sequence \P is present in a pcretest data line, the
+ If the escape sequence \P is present in a pcretest data line, the
PCRE_PARTIAL flag is used for the match. Here is a run of pcretest that
uses the date example quoted above:
@@ -4374,13 +4643,13 @@ EXAMPLE OF PARTIAL MATCHING USING PCRETEST
data> j\P
No match
- The first data string is matched completely, so pcretest shows the
- matched substrings. The remaining four strings do not match the com-
- plete pattern, but the first two are partial matches. The same test,
- using pcre_dfa_exec() matching (by means of the \D escape sequence),
+ The first data string is matched completely, so pcretest shows the
+ matched substrings. The remaining four strings do not match the com-
+ plete pattern, but the first two are partial matches. The same test,
+ using pcre_dfa_exec() matching (by means of the \D escape sequence),
produces the following output:
- re> /^?(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)$/
+ re> /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
data> 25jun04\P\D
0: 25jun04
data> 23dec3\P\D
@@ -4392,58 +4661,57 @@ EXAMPLE OF PARTIAL MATCHING USING PCRETEST
data> j\P\D
No match
- Notice that in this case the portion of the string that was matched is
+ Notice that in this case the portion of the string that was matched is
made available.
MULTI-SEGMENT MATCHING WITH pcre_dfa_exec()
When a partial match has been found using pcre_dfa_exec(), it is possi-
- ble to continue the match by providing additional subject data and
- calling pcre_dfa_exec() again with the same compiled regular expres-
+ ble to continue the match by providing additional subject data and
+ calling pcre_dfa_exec() again with the same compiled regular expres-
sion, this time setting the PCRE_DFA_RESTART option. You must also pass
- the same working space as before, because this is where details of the
- previous partial match are stored. Here is an example using pcretest,
+ the same working space as before, because this is where details of the
+ previous partial match are stored. Here is an example using pcretest,
using the \R escape sequence to set the PCRE_DFA_RESTART option (\P and
\D are as above):
- re> /^?(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)$/
+ re> /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
data> 23ja\P\D
Partial match: 23ja
data> n05\R\D
0: n05
- The first call has "23ja" as the subject, and requests partial match-
- ing; the second call has "n05" as the subject for the continued
- (restarted) match. Notice that when the match is complete, only the
- last part is shown; PCRE does not retain the previously partially-
- matched string. It is up to the calling program to do that if it needs
+ The first call has "23ja" as the subject, and requests partial match-
+ ing; the second call has "n05" as the subject for the continued
+ (restarted) match. Notice that when the match is complete, only the
+ last part is shown; PCRE does not retain the previously partially-
+ matched string. It is up to the calling program to do that if it needs
to.
- You can set PCRE_PARTIAL with PCRE_DFA_RESTART to continue partial
+ You can set PCRE_PARTIAL with PCRE_DFA_RESTART to continue partial
matching over multiple segments. This facility can be used to pass very
- long subject strings to pcre_dfa_exec(). However, some care is needed
+ long subject strings to pcre_dfa_exec(). However, some care is needed
for certain types of pattern.
- 1. If the pattern contains tests for the beginning or end of a line,
- you need to pass the PCRE_NOTBOL or PCRE_NOTEOL options, as appropri-
- ate, when the subject string for any call does not contain the begin-
+ 1. If the pattern contains tests for the beginning or end of a line,
+ you need to pass the PCRE_NOTBOL or PCRE_NOTEOL options, as appropri-
+ ate, when the subject string for any call does not contain the begin-
ning or end of a line.
- 2. If the pattern contains backward assertions (including \b or \B),
- you need to arrange for some overlap in the subject strings to allow
- for this. For example, you could pass the subject in chunks that are
- 500 bytes long, but in a buffer of 700 bytes, with the starting offset
+ 2. If the pattern contains backward assertions (including \b or \B),
+ you need to arrange for some overlap in the subject strings to allow
+ for this. For example, you could pass the subject in chunks that are
+ 500 bytes long, but in a buffer of 700 bytes, with the starting offset
set to 200 and the previous 200 bytes at the start of the buffer.
- 3. Matching a subject string that is split into multiple segments does
- not always produce exactly the same result as matching over one single
- long string. The difference arises when there are multiple matching
- possibilities, because a partial match result is given only when there
- are no completed matches in a call to fBpcre_dfa_exec(). This means
- that as soon as the shortest match has been found, continuation to a
- new subject segment is no longer possible. Consider this pcretest
- example:
+ 3. Matching a subject string that is split into multiple segments does
+ not always produce exactly the same result as matching over one single
+ long string. The difference arises when there are multiple matching
+ possibilities, because a partial match result is given only when there
+ are no completed matches in a call to pcre_dfa_exec(). This means that
+ as soon as the shortest match has been found, continuation to a new
+ subject segment is no longer possible. Consider this pcretest example:
re> /dog(sbody)?/
data> do\P\D
@@ -4454,13 +4722,13 @@ MULTI-SEGMENT MATCHING WITH pcre_dfa_exec()
0: dogsbody
1: dog
- The pattern matches the words "dog" or "dogsbody". When the subject is
- presented in several parts ("do" and "gsb" being the first two) the
- match stops when "dog" has been found, and it is not possible to con-
- tinue. On the other hand, if "dogsbody" is presented as a single
+ The pattern matches the words "dog" or "dogsbody". When the subject is
+ presented in several parts ("do" and "gsb" being the first two) the
+ match stops when "dog" has been found, and it is not possible to con-
+ tinue. On the other hand, if "dogsbody" is presented as a single
string, both matches are found.
- Because of this phenomenon, it does not usually make sense to end a
+ Because of this phenomenon, it does not usually make sense to end a
pattern that is going to be matched in this way with a variable repeat.
4. Patterns that contain alternatives at the top level which do not all
@@ -4469,21 +4737,31 @@ MULTI-SEGMENT MATCHING WITH pcre_dfa_exec()
1234|3789
- If the first part of the subject is "ABC123", a partial match of the
- first alternative is found at offset 3. There is no partial match for
+ If the first part of the subject is "ABC123", a partial match of the
+ first alternative is found at offset 3. There is no partial match for
the second alternative, because such a match does not start at the same
- point in the subject string. Attempting to continue with the string
+ point in the subject string. Attempting to continue with the string
"789" does not yield a match because only those alternatives that match
- at one point in the subject are remembered. The problem arises because
- the start of the second alternative matches within the first alterna-
+ at one point in the subject are remembered. The problem arises because
+ the start of the second alternative matches within the first alterna-
tive. There is no problem with anchored patterns or patterns such as:
1234|ABCD
where no string can be a partial match for both alternatives.
-Last updated: 30 November 2006
-Copyright (c) 1997-2006 University of Cambridge.
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 04 June 2007
+ Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------
@@ -4507,7 +4785,9 @@ SAVING AND RE-USING PRECOMPILED PCRE PATTERNS
ent host and run them there. This works even if the new host has the
opposite endianness to the one on which the patterns were compiled.
There may be a small performance penalty, but it should be insignifi-
- cant.
+ cant. However, compiling regular expressions with one version of PCRE
+ for use with a different version is not guaranteed to work and may
+ cause crashes.
SAVING A COMPILED PATTERN
@@ -4590,22 +4870,22 @@ RE-USING A PRECOMPILED PATTERN
COMPATIBILITY WITH DIFFERENT PCRE RELEASES
- The layout of the control block that is at the start of the data that
- makes up a compiled pattern was changed for release 5.0. If you have
- any saved patterns that were compiled with previous releases (not a
- facility that was previously advertised), you will have to recompile
- them for release 5.0 and above.
+ In general, it is safest to recompile all saved patterns when you
+ update to a new PCRE release, though not all updates actually require
+ this. Recompiling is definitely needed for release 7.2.
+
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
- If you have any saved patterns in UTF-8 mode that use \p or \P that
- were compiled with any release up to and including 6.4, you will have
- to recompile them for release 6.5 and above.
- All saved patterns from earlier releases must be recompiled for release
- 7.0 or higher, because there was an internal reorganization at that
- release.
+REVISION
-Last updated: 28 November 2006
-Copyright (c) 1997-2006 University of Cambridge.
+ Last updated: 13 June 2007
+ Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------
@@ -4744,8 +5024,18 @@ PROCESSING TIME
In many cases, the solution to this kind of performance issue is to use
an atomic group or a possessive quantifier.
-Last updated: 20 September 2006
-Copyright (c) 1997-2006 University of Cambridge.
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 06 March 2007
+ Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------
@@ -4958,11 +5248,14 @@ MEMORY USAGE
AUTHOR
Philip Hazel
- University Computing Service,
+ University Computing Service
Cambridge CB2 3QH, England.
-Last updated: 16 January 2006
-Copyright (c) 1997-2006 University of Cambridge.
+
+REVISION
+
+ Last updated: 06 March 2007
+ Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------
@@ -5059,7 +5352,7 @@ MATCHING INTERFACE
return false (because the empty string is not a valid number):
int number;
- pcrecpp::RE::FullMatch("abc", "[a-z]+(\d+)?", &number);
+ pcrecpp::RE::FullMatch("abc", "[a-z]+(\\d+)?", &number);
The matching interface supports at most 16 arguments per call. If you
need more, consider using the more general interface
@@ -5293,7 +5586,12 @@ REPLACING PARTS OF STRINGS
AUTHOR
The C++ wrapper was contributed by Google Inc.
- Copyright (c) 2006 Google Inc.
+ Copyright (c) 2007 Google Inc.
+
+
+REVISION
+
+ Last updated: 06 March 2007
------------------------------------------------------------------------------
@@ -5321,28 +5619,29 @@ PCRE SAMPLE PROGRAM
bility of matching an empty string. Comments in the code explain what
is going on.
- If PCRE is installed in the standard include and library directories
- for your system, you should be able to compile the demonstration pro-
- gram using this command:
+ The demonstration program is automatically built if you use "./config-
+ ure;make" to build PCRE. Otherwise, if PCRE is installed in the stan-
+ dard include and library directories for your system, you should be
+ able to compile the demonstration program using this command:
gcc -o pcredemo pcredemo.c -lpcre
- If PCRE is installed elsewhere, you may need to add additional options
- to the command line. For example, on a Unix-like system that has PCRE
- installed in /usr/local, you can compile the demonstration program
+ If PCRE is installed elsewhere, you may need to add additional options
+ to the command line. For example, on a Unix-like system that has PCRE
+ installed in /usr/local, you can compile the demonstration program
using a command like this:
gcc -o pcredemo -I/usr/local/include pcredemo.c \
-L/usr/local/lib -lpcre
- Once you have compiled the demonstration program, you can run simple
+ Once you have compiled the demonstration program, you can run simple
tests like this:
./pcredemo 'cat|dog' 'the cat sat on the mat'
./pcredemo -g 'cat|dog' 'the dog sat on the cat'
- Note that there is a much more comprehensive test program, called
- pcretest, which supports many more facilities for testing regular
+ Note that there is a much more comprehensive test program, called
+ pcretest, which supports many more facilities for testing regular
expressions and the PCRE library. The pcredemo program is provided as a
simple coding example.
@@ -5350,18 +5649,28 @@ PCRE SAMPLE PROGRAM
the standard library directory, you may get an error like this when you
try to run pcredemo:
- ld.so.1: a.out: fatal: libpcre.so.0: open failed: No such file or
+ ld.so.1: a.out: fatal: libpcre.so.0: open failed: No such file or
directory
- This is caused by the way shared library support works on those sys-
+ This is caused by the way shared library support works on those sys-
tems. You need to add
-R/usr/local/lib
(for example) to the compile command to get round this problem.
-Last updated: 09 September 2004
-Copyright (c) 1997-2004 University of Cambridge.
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 13 June 2007
+ Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------
PCRESTACK(3) PCRESTACK(3)
@@ -5414,7 +5723,7 @@ PCRE DISCUSSION OF STACK USAGE
ter. For a long string, a lot of stack is required. Consider now this
rewritten pattern, which matches exactly the same strings:
- ([^<]++|<(?!inet))
+ ([^<]++|<(?!inet))+
This uses very much less stack, because runs of characters that do not
contain "<" are "swallowed" in one item inside the parentheses. Recur-
@@ -5430,17 +5739,24 @@ PCRE DISCUSSION OF STACK USAGE
In environments where stack memory is constrained, you might want to
compile PCRE to use heap memory instead of stack for remembering back-
up points. This makes it run a lot more slowly, however. Details of how
- to do this are given in the pcrebuild documentation.
-
- In Unix-like environments, there is not often a problem with the stack
- unless very long strings are involved, though the default limit on
- stack size varies from system to system. Values from 8Mb to 64Mb are
+ to do this are given in the pcrebuild documentation. When built in this
+ way, instead of using the stack, PCRE obtains and frees memory by call-
+ ing the functions that are pointed to by the pcre_stack_malloc and
+ pcre_stack_free variables. By default, these point to malloc() and
+ free(), but you can replace the pointers to cause PCRE to use your own
+ functions. Since the block sizes are always the same, and are always
+ freed in reverse order, it may be possible to implement customized mem-
+ ory handlers that are more efficient than the standard functions.
+
+ In Unix-like environments, there is not often a problem with the stack
+ unless very long strings are involved, though the default limit on
+ stack size varies from system to system. Values from 8Mb to 64Mb are
common. You can find your default limit by running the command:
ulimit -s
- Unfortunately, the effect of running out of stack is often SIGSEGV,
- though sometimes a more explicit error message is given. You can nor-
+ Unfortunately, the effect of running out of stack is often SIGSEGV,
+ though sometimes a more explicit error message is given. You can nor-
mally increase the limit on stack size by code such as this:
struct rlimit rlim;
@@ -5448,26 +5764,36 @@ PCRE DISCUSSION OF STACK USAGE
rlim.rlim_cur = 100*1024*1024;
setrlimit(RLIMIT_STACK, &rlim);
- This reads the current limits (soft and hard) using getrlimit(), then
- attempts to increase the soft limit to 100Mb using setrlimit(). You
+ This reads the current limits (soft and hard) using getrlimit(), then
+ attempts to increase the soft limit to 100Mb using setrlimit(). You
must do this before calling pcre_exec().
- PCRE has an internal counter that can be used to limit the depth of
- recursion, and thus cause pcre_exec() to give an error code before it
- runs out of stack. By default, the limit is very large, and unlikely
- ever to operate. It can be changed when PCRE is built, and it can also
+ PCRE has an internal counter that can be used to limit the depth of
+ recursion, and thus cause pcre_exec() to give an error code before it
+ runs out of stack. By default, the limit is very large, and unlikely
+ ever to operate. It can be changed when PCRE is built, and it can also
be set when pcre_exec() is called. For details of these interfaces, see
the pcrebuild and pcreapi documentation.
As a very rough rule of thumb, you should reckon on about 500 bytes per
- recursion. Thus, if you want to limit your stack usage to 8Mb, you
- should set the limit at 16000 recursions. A 64Mb stack, on the other
- hand, can support around 128000 recursions. The pcretest test program
+ recursion. Thus, if you want to limit your stack usage to 8Mb, you
+ should set the limit at 16000 recursions. A 64Mb stack, on the other
+ hand, can support around 128000 recursions. The pcretest test program
has a command line option (-S) that can be used to increase the size of
its stack.
-Last updated: 14 September 2006
-Copyright (c) 1997-2006 University of Cambridge.
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 05 June 2007
+ Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------