summaryrefslogtreecommitdiff
path: root/ext/pdo_sqlite/sqlite/tool
diff options
context:
space:
mode:
authorSVN Migration <svn@php.net>2006-10-15 21:09:28 +0000
committerSVN Migration <svn@php.net>2006-10-15 21:09:28 +0000
commit88ec761548b66f58acc1a86cdd0fc164ca925476 (patch)
treed0af978fa00d83bb1d82c613f66477fbd6bb18aa /ext/pdo_sqlite/sqlite/tool
parent268984b4787e797db6054313fc9ba3b9e845306e (diff)
downloadphp-git-PECL_OPENSSL.tar.gz
This commit was manufactured by cvs2svn to create branch 'PECL_OPENSSL'.PECL_OPENSSL
Diffstat (limited to 'ext/pdo_sqlite/sqlite/tool')
-rw-r--r--ext/pdo_sqlite/sqlite/tool/diffdb.c44
-rw-r--r--ext/pdo_sqlite/sqlite/tool/lemon.c4767
-rw-r--r--ext/pdo_sqlite/sqlite/tool/lempar.c730
-rw-r--r--ext/pdo_sqlite/sqlite/tool/memleak.awk29
-rw-r--r--ext/pdo_sqlite/sqlite/tool/memleak2.awk29
-rw-r--r--ext/pdo_sqlite/sqlite/tool/memleak3.tcl233
-rw-r--r--ext/pdo_sqlite/sqlite/tool/mkkeywordhash.c507
-rwxr-xr-xext/pdo_sqlite/sqlite/tool/mkopts.tcl51
-rw-r--r--ext/pdo_sqlite/sqlite/tool/opcodeDoc.awk23
-rw-r--r--ext/pdo_sqlite/sqlite/tool/report1.txt66
-rw-r--r--ext/pdo_sqlite/sqlite/tool/showdb.c86
-rw-r--r--ext/pdo_sqlite/sqlite/tool/showjournal.c76
-rw-r--r--ext/pdo_sqlite/sqlite/tool/space_used.tcl111
-rw-r--r--ext/pdo_sqlite/sqlite/tool/spaceanal.tcl810
-rw-r--r--ext/pdo_sqlite/sqlite/tool/speedtest.tcl275
-rw-r--r--ext/pdo_sqlite/sqlite/tool/speedtest2.tcl207
16 files changed, 0 insertions, 8044 deletions
diff --git a/ext/pdo_sqlite/sqlite/tool/diffdb.c b/ext/pdo_sqlite/sqlite/tool/diffdb.c
deleted file mode 100644
index 0537d38723..0000000000
--- a/ext/pdo_sqlite/sqlite/tool/diffdb.c
+++ /dev/null
@@ -1,44 +0,0 @@
-/*
-** A utility for printing the differences between two SQLite database files.
-*/
-#include <stdio.h>
-#include <ctype.h>
-#include <sys/types.h>
-#include <sys/stat.h>
-#include <fcntl.h>
-#include <unistd.h>
-#include <stdlib.h>
-
-
-#define PAGESIZE 1024
-static int db1 = -1;
-static int db2 = -1;
-
-int main(int argc, char **argv){
- int iPg;
- unsigned char a1[PAGESIZE], a2[PAGESIZE];
- if( argc!=3 ){
- fprintf(stderr,"Usage: %s FILENAME FILENAME\n", argv[0]);
- exit(1);
- }
- db1 = open(argv[1], O_RDONLY);
- if( db1<0 ){
- fprintf(stderr,"%s: can't open %s\n", argv[0], argv[1]);
- exit(1);
- }
- db2 = open(argv[2], O_RDONLY);
- if( db2<0 ){
- fprintf(stderr,"%s: can't open %s\n", argv[0], argv[2]);
- exit(1);
- }
- iPg = 1;
- while( read(db1, a1, PAGESIZE)==PAGESIZE && read(db2,a2,PAGESIZE)==PAGESIZE ){
- if( memcmp(a1,a2,PAGESIZE) ){
- printf("Page %d\n", iPg);
- }
- iPg++;
- }
- printf("%d pages checked\n", iPg-1);
- close(db1);
- close(db2);
-}
diff --git a/ext/pdo_sqlite/sqlite/tool/lemon.c b/ext/pdo_sqlite/sqlite/tool/lemon.c
deleted file mode 100644
index 759e1c3786..0000000000
--- a/ext/pdo_sqlite/sqlite/tool/lemon.c
+++ /dev/null
@@ -1,4767 +0,0 @@
-/*
-** This file contains all sources (including headers) to the LEMON
-** LALR(1) parser generator. The sources have been combined into a
-** single file to make it easy to include LEMON in the source tree
-** and Makefile of another program.
-**
-** The author of this program disclaims copyright.
-*/
-#include <stdio.h>
-#include <stdarg.h>
-#include <string.h>
-#include <ctype.h>
-#include <stdlib.h>
-
-#ifndef __WIN32__
-# if defined(_WIN32) || defined(WIN32)
-# define __WIN32__
-# endif
-#endif
-
-/* #define PRIVATE static */
-#define PRIVATE
-
-#ifdef TEST
-#define MAXRHS 5 /* Set low to exercise exception code */
-#else
-#define MAXRHS 1000
-#endif
-
-char *msort();
-extern void *malloc();
-
-/******** From the file "action.h" *************************************/
-struct action *Action_new();
-struct action *Action_sort();
-
-/********* From the file "assert.h" ************************************/
-void myassert();
-#ifndef NDEBUG
-# define assert(X) if(!(X))myassert(__FILE__,__LINE__)
-#else
-# define assert(X)
-#endif
-
-/********** From the file "build.h" ************************************/
-void FindRulePrecedences();
-void FindFirstSets();
-void FindStates();
-void FindLinks();
-void FindFollowSets();
-void FindActions();
-
-/********* From the file "configlist.h" *********************************/
-void Configlist_init(/* void */);
-struct config *Configlist_add(/* struct rule *, int */);
-struct config *Configlist_addbasis(/* struct rule *, int */);
-void Configlist_closure(/* void */);
-void Configlist_sort(/* void */);
-void Configlist_sortbasis(/* void */);
-struct config *Configlist_return(/* void */);
-struct config *Configlist_basis(/* void */);
-void Configlist_eat(/* struct config * */);
-void Configlist_reset(/* void */);
-
-/********* From the file "error.h" ***************************************/
-void ErrorMsg(const char *, int,const char *, ...);
-
-/****** From the file "option.h" ******************************************/
-struct s_options {
- enum { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR,
- OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR} type;
- char *label;
- char *arg;
- char *message;
-};
-int OptInit(/* char**,struct s_options*,FILE* */);
-int OptNArgs(/* void */);
-char *OptArg(/* int */);
-void OptErr(/* int */);
-void OptPrint(/* void */);
-
-/******** From the file "parse.h" *****************************************/
-void Parse(/* struct lemon *lemp */);
-
-/********* From the file "plink.h" ***************************************/
-struct plink *Plink_new(/* void */);
-void Plink_add(/* struct plink **, struct config * */);
-void Plink_copy(/* struct plink **, struct plink * */);
-void Plink_delete(/* struct plink * */);
-
-/********** From the file "report.h" *************************************/
-void Reprint(/* struct lemon * */);
-void ReportOutput(/* struct lemon * */);
-void ReportTable(/* struct lemon * */);
-void ReportHeader(/* struct lemon * */);
-void CompressTables(/* struct lemon * */);
-void ResortStates(/* struct lemon * */);
-
-/********** From the file "set.h" ****************************************/
-void SetSize(/* int N */); /* All sets will be of size N */
-char *SetNew(/* void */); /* A new set for element 0..N */
-void SetFree(/* char* */); /* Deallocate a set */
-
-int SetAdd(/* char*,int */); /* Add element to a set */
-int SetUnion(/* char *A,char *B */); /* A <- A U B, thru element N */
-
-#define SetFind(X,Y) (X[Y]) /* True if Y is in set X */
-
-/********** From the file "struct.h" *************************************/
-/*
-** Principal data structures for the LEMON parser generator.
-*/
-
-typedef enum {B_FALSE=0, B_TRUE} Boolean;
-
-/* Symbols (terminals and nonterminals) of the grammar are stored
-** in the following: */
-struct symbol {
- char *name; /* Name of the symbol */
- int index; /* Index number for this symbol */
- enum {
- TERMINAL,
- NONTERMINAL,
- MULTITERMINAL
- } type; /* Symbols are all either TERMINALS or NTs */
- struct rule *rule; /* Linked list of rules of this (if an NT) */
- struct symbol *fallback; /* fallback token in case this token doesn't parse */
- int prec; /* Precedence if defined (-1 otherwise) */
- enum e_assoc {
- LEFT,
- RIGHT,
- NONE,
- UNK
- } assoc; /* Associativity if predecence is defined */
- char *firstset; /* First-set for all rules of this symbol */
- Boolean lambda; /* True if NT and can generate an empty string */
- char *destructor; /* Code which executes whenever this symbol is
- ** popped from the stack during error processing */
- int destructorln; /* Line number of destructor code */
- char *datatype; /* The data type of information held by this
- ** object. Only used if type==NONTERMINAL */
- int dtnum; /* The data type number. In the parser, the value
- ** stack is a union. The .yy%d element of this
- ** union is the correct data type for this object */
- /* The following fields are used by MULTITERMINALs only */
- int nsubsym; /* Number of constituent symbols in the MULTI */
- struct symbol **subsym; /* Array of constituent symbols */
-};
-
-/* Each production rule in the grammar is stored in the following
-** structure. */
-struct rule {
- struct symbol *lhs; /* Left-hand side of the rule */
- char *lhsalias; /* Alias for the LHS (NULL if none) */
- int ruleline; /* Line number for the rule */
- int nrhs; /* Number of RHS symbols */
- struct symbol **rhs; /* The RHS symbols */
- char **rhsalias; /* An alias for each RHS symbol (NULL if none) */
- int line; /* Line number at which code begins */
- char *code; /* The code executed when this rule is reduced */
- struct symbol *precsym; /* Precedence symbol for this rule */
- int index; /* An index number for this rule */
- Boolean canReduce; /* True if this rule is ever reduced */
- struct rule *nextlhs; /* Next rule with the same LHS */
- struct rule *next; /* Next rule in the global list */
-};
-
-/* A configuration is a production rule of the grammar together with
-** a mark (dot) showing how much of that rule has been processed so far.
-** Configurations also contain a follow-set which is a list of terminal
-** symbols which are allowed to immediately follow the end of the rule.
-** Every configuration is recorded as an instance of the following: */
-struct config {
- struct rule *rp; /* The rule upon which the configuration is based */
- int dot; /* The parse point */
- char *fws; /* Follow-set for this configuration only */
- struct plink *fplp; /* Follow-set forward propagation links */
- struct plink *bplp; /* Follow-set backwards propagation links */
- struct state *stp; /* Pointer to state which contains this */
- enum {
- COMPLETE, /* The status is used during followset and */
- INCOMPLETE /* shift computations */
- } status;
- struct config *next; /* Next configuration in the state */
- struct config *bp; /* The next basis configuration */
-};
-
-/* Every shift or reduce operation is stored as one of the following */
-struct action {
- struct symbol *sp; /* The look-ahead symbol */
- enum e_action {
- SHIFT,
- ACCEPT,
- REDUCE,
- ERROR,
- CONFLICT, /* Was a reduce, but part of a conflict */
- SH_RESOLVED, /* Was a shift. Precedence resolved conflict */
- RD_RESOLVED, /* Was reduce. Precedence resolved conflict */
- NOT_USED /* Deleted by compression */
- } type;
- union {
- struct state *stp; /* The new state, if a shift */
- struct rule *rp; /* The rule, if a reduce */
- } x;
- struct action *next; /* Next action for this state */
- struct action *collide; /* Next action with the same hash */
-};
-
-/* Each state of the generated parser's finite state machine
-** is encoded as an instance of the following structure. */
-struct state {
- struct config *bp; /* The basis configurations for this state */
- struct config *cfp; /* All configurations in this set */
- int statenum; /* Sequencial number for this state */
- struct action *ap; /* Array of actions for this state */
- int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */
- int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */
- int iDflt; /* Default action */
-};
-#define NO_OFFSET (-2147483647)
-
-/* A followset propagation link indicates that the contents of one
-** configuration followset should be propagated to another whenever
-** the first changes. */
-struct plink {
- struct config *cfp; /* The configuration to which linked */
- struct plink *next; /* The next propagate link */
-};
-
-/* The state vector for the entire parser generator is recorded as
-** follows. (LEMON uses no global variables and makes little use of
-** static variables. Fields in the following structure can be thought
-** of as begin global variables in the program.) */
-struct lemon {
- struct state **sorted; /* Table of states sorted by state number */
- struct rule *rule; /* List of all rules */
- int nstate; /* Number of states */
- int nrule; /* Number of rules */
- int nsymbol; /* Number of terminal and nonterminal symbols */
- int nterminal; /* Number of terminal symbols */
- struct symbol **symbols; /* Sorted array of pointers to symbols */
- int errorcnt; /* Number of errors */
- struct symbol *errsym; /* The error symbol */
- struct symbol *wildcard; /* Token that matches anything */
- char *name; /* Name of the generated parser */
- char *arg; /* Declaration of the 3th argument to parser */
- char *tokentype; /* Type of terminal symbols in the parser stack */
- char *vartype; /* The default type of non-terminal symbols */
- char *start; /* Name of the start symbol for the grammar */
- char *stacksize; /* Size of the parser stack */
- char *include; /* Code to put at the start of the C file */
- int includeln; /* Line number for start of include code */
- char *error; /* Code to execute when an error is seen */
- int errorln; /* Line number for start of error code */
- char *overflow; /* Code to execute on a stack overflow */
- int overflowln; /* Line number for start of overflow code */
- char *failure; /* Code to execute on parser failure */
- int failureln; /* Line number for start of failure code */
- char *accept; /* Code to execute when the parser excepts */
- int acceptln; /* Line number for the start of accept code */
- char *extracode; /* Code appended to the generated file */
- int extracodeln; /* Line number for the start of the extra code */
- char *tokendest; /* Code to execute to destroy token data */
- int tokendestln; /* Line number for token destroyer code */
- char *vardest; /* Code for the default non-terminal destructor */
- int vardestln; /* Line number for default non-term destructor code*/
- char *filename; /* Name of the input file */
- char *outname; /* Name of the current output file */
- char *tokenprefix; /* A prefix added to token names in the .h file */
- int nconflict; /* Number of parsing conflicts */
- int tablesize; /* Size of the parse tables */
- int basisflag; /* Print only basis configurations */
- int has_fallback; /* True if any %fallback is seen in the grammer */
- char *argv0; /* Name of the program */
-};
-
-#define MemoryCheck(X) if((X)==0){ \
- extern void memory_error(); \
- memory_error(); \
-}
-
-/**************** From the file "table.h" *********************************/
-/*
-** All code in this file has been automatically generated
-** from a specification in the file
-** "table.q"
-** by the associative array code building program "aagen".
-** Do not edit this file! Instead, edit the specification
-** file, then rerun aagen.
-*/
-/*
-** Code for processing tables in the LEMON parser generator.
-*/
-
-/* Routines for handling a strings */
-
-char *Strsafe();
-
-void Strsafe_init(/* void */);
-int Strsafe_insert(/* char * */);
-char *Strsafe_find(/* char * */);
-
-/* Routines for handling symbols of the grammar */
-
-struct symbol *Symbol_new();
-int Symbolcmpp(/* struct symbol **, struct symbol ** */);
-void Symbol_init(/* void */);
-int Symbol_insert(/* struct symbol *, char * */);
-struct symbol *Symbol_find(/* char * */);
-struct symbol *Symbol_Nth(/* int */);
-int Symbol_count(/* */);
-struct symbol **Symbol_arrayof(/* */);
-
-/* Routines to manage the state table */
-
-int Configcmp(/* struct config *, struct config * */);
-struct state *State_new();
-void State_init(/* void */);
-int State_insert(/* struct state *, struct config * */);
-struct state *State_find(/* struct config * */);
-struct state **State_arrayof(/* */);
-
-/* Routines used for efficiency in Configlist_add */
-
-void Configtable_init(/* void */);
-int Configtable_insert(/* struct config * */);
-struct config *Configtable_find(/* struct config * */);
-void Configtable_clear(/* int(*)(struct config *) */);
-/****************** From the file "action.c" *******************************/
-/*
-** Routines processing parser actions in the LEMON parser generator.
-*/
-
-/* Allocate a new parser action */
-struct action *Action_new(){
- static struct action *freelist = 0;
- struct action *new;
-
- if( freelist==0 ){
- int i;
- int amt = 100;
- freelist = (struct action *)malloc( sizeof(struct action)*amt );
- if( freelist==0 ){
- fprintf(stderr,"Unable to allocate memory for a new parser action.");
- exit(1);
- }
- for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
- freelist[amt-1].next = 0;
- }
- new = freelist;
- freelist = freelist->next;
- return new;
-}
-
-/* Compare two actions */
-static int actioncmp(ap1,ap2)
-struct action *ap1;
-struct action *ap2;
-{
- int rc;
- rc = ap1->sp->index - ap2->sp->index;
- if( rc==0 ) rc = (int)ap1->type - (int)ap2->type;
- if( rc==0 ){
- assert( ap1->type==REDUCE || ap1->type==RD_RESOLVED || ap1->type==CONFLICT);
- assert( ap2->type==REDUCE || ap2->type==RD_RESOLVED || ap2->type==CONFLICT);
- rc = ap1->x.rp->index - ap2->x.rp->index;
- }
- return rc;
-}
-
-/* Sort parser actions */
-struct action *Action_sort(ap)
-struct action *ap;
-{
- ap = (struct action *)msort((char *)ap,(char **)&ap->next,actioncmp);
- return ap;
-}
-
-void Action_add(app,type,sp,arg)
-struct action **app;
-enum e_action type;
-struct symbol *sp;
-char *arg;
-{
- struct action *new;
- new = Action_new();
- new->next = *app;
- *app = new;
- new->type = type;
- new->sp = sp;
- if( type==SHIFT ){
- new->x.stp = (struct state *)arg;
- }else{
- new->x.rp = (struct rule *)arg;
- }
-}
-/********************** New code to implement the "acttab" module ***********/
-/*
-** This module implements routines use to construct the yy_action[] table.
-*/
-
-/*
-** The state of the yy_action table under construction is an instance of
-** the following structure
-*/
-typedef struct acttab acttab;
-struct acttab {
- int nAction; /* Number of used slots in aAction[] */
- int nActionAlloc; /* Slots allocated for aAction[] */
- struct {
- int lookahead; /* Value of the lookahead token */
- int action; /* Action to take on the given lookahead */
- } *aAction, /* The yy_action[] table under construction */
- *aLookahead; /* A single new transaction set */
- int mnLookahead; /* Minimum aLookahead[].lookahead */
- int mnAction; /* Action associated with mnLookahead */
- int mxLookahead; /* Maximum aLookahead[].lookahead */
- int nLookahead; /* Used slots in aLookahead[] */
- int nLookaheadAlloc; /* Slots allocated in aLookahead[] */
-};
-
-/* Return the number of entries in the yy_action table */
-#define acttab_size(X) ((X)->nAction)
-
-/* The value for the N-th entry in yy_action */
-#define acttab_yyaction(X,N) ((X)->aAction[N].action)
-
-/* The value for the N-th entry in yy_lookahead */
-#define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead)
-
-/* Free all memory associated with the given acttab */
-void acttab_free(acttab *p){
- free( p->aAction );
- free( p->aLookahead );
- free( p );
-}
-
-/* Allocate a new acttab structure */
-acttab *acttab_alloc(void){
- acttab *p = malloc( sizeof(*p) );
- if( p==0 ){
- fprintf(stderr,"Unable to allocate memory for a new acttab.");
- exit(1);
- }
- memset(p, 0, sizeof(*p));
- return p;
-}
-
-/* Add a new action to the current transaction set
-*/
-void acttab_action(acttab *p, int lookahead, int action){
- if( p->nLookahead>=p->nLookaheadAlloc ){
- p->nLookaheadAlloc += 25;
- p->aLookahead = realloc( p->aLookahead,
- sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
- if( p->aLookahead==0 ){
- fprintf(stderr,"malloc failed\n");
- exit(1);
- }
- }
- if( p->nLookahead==0 ){
- p->mxLookahead = lookahead;
- p->mnLookahead = lookahead;
- p->mnAction = action;
- }else{
- if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
- if( p->mnLookahead>lookahead ){
- p->mnLookahead = lookahead;
- p->mnAction = action;
- }
- }
- p->aLookahead[p->nLookahead].lookahead = lookahead;
- p->aLookahead[p->nLookahead].action = action;
- p->nLookahead++;
-}
-
-/*
-** Add the transaction set built up with prior calls to acttab_action()
-** into the current action table. Then reset the transaction set back
-** to an empty set in preparation for a new round of acttab_action() calls.
-**
-** Return the offset into the action table of the new transaction.
-*/
-int acttab_insert(acttab *p){
- int i, j, k, n;
- assert( p->nLookahead>0 );
-
- /* Make sure we have enough space to hold the expanded action table
- ** in the worst case. The worst case occurs if the transaction set
- ** must be appended to the current action table
- */
- n = p->mxLookahead + 1;
- if( p->nAction + n >= p->nActionAlloc ){
- int oldAlloc = p->nActionAlloc;
- p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
- p->aAction = realloc( p->aAction,
- sizeof(p->aAction[0])*p->nActionAlloc);
- if( p->aAction==0 ){
- fprintf(stderr,"malloc failed\n");
- exit(1);
- }
- for(i=oldAlloc; i<p->nActionAlloc; i++){
- p->aAction[i].lookahead = -1;
- p->aAction[i].action = -1;
- }
- }
-
- /* Scan the existing action table looking for an offset where we can
- ** insert the current transaction set. Fall out of the loop when that
- ** offset is found. In the worst case, we fall out of the loop when
- ** i reaches p->nAction, which means we append the new transaction set.
- **
- ** i is the index in p->aAction[] where p->mnLookahead is inserted.
- */
- for(i=0; i<p->nAction+p->mnLookahead; i++){
- if( p->aAction[i].lookahead<0 ){
- for(j=0; j<p->nLookahead; j++){
- k = p->aLookahead[j].lookahead - p->mnLookahead + i;
- if( k<0 ) break;
- if( p->aAction[k].lookahead>=0 ) break;
- }
- if( j<p->nLookahead ) continue;
- for(j=0; j<p->nAction; j++){
- if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
- }
- if( j==p->nAction ){
- break; /* Fits in empty slots */
- }
- }else if( p->aAction[i].lookahead==p->mnLookahead ){
- if( p->aAction[i].action!=p->mnAction ) continue;
- for(j=0; j<p->nLookahead; j++){
- k = p->aLookahead[j].lookahead - p->mnLookahead + i;
- if( k<0 || k>=p->nAction ) break;
- if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
- if( p->aLookahead[j].action!=p->aAction[k].action ) break;
- }
- if( j<p->nLookahead ) continue;
- n = 0;
- for(j=0; j<p->nAction; j++){
- if( p->aAction[j].lookahead<0 ) continue;
- if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
- }
- if( n==p->nLookahead ){
- break; /* Same as a prior transaction set */
- }
- }
- }
- /* Insert transaction set at index i. */
- for(j=0; j<p->nLookahead; j++){
- k = p->aLookahead[j].lookahead - p->mnLookahead + i;
- p->aAction[k] = p->aLookahead[j];
- if( k>=p->nAction ) p->nAction = k+1;
- }
- p->nLookahead = 0;
-
- /* Return the offset that is added to the lookahead in order to get the
- ** index into yy_action of the action */
- return i - p->mnLookahead;
-}
-
-/********************** From the file "assert.c" ****************************/
-/*
-** A more efficient way of handling assertions.
-*/
-void myassert(file,line)
-char *file;
-int line;
-{
- fprintf(stderr,"Assertion failed on line %d of file \"%s\"\n",line,file);
- exit(1);
-}
-/********************** From the file "build.c" *****************************/
-/*
-** Routines to construction the finite state machine for the LEMON
-** parser generator.
-*/
-
-/* Find a precedence symbol of every rule in the grammar.
-**
-** Those rules which have a precedence symbol coded in the input
-** grammar using the "[symbol]" construct will already have the
-** rp->precsym field filled. Other rules take as their precedence
-** symbol the first RHS symbol with a defined precedence. If there
-** are not RHS symbols with a defined precedence, the precedence
-** symbol field is left blank.
-*/
-void FindRulePrecedences(xp)
-struct lemon *xp;
-{
- struct rule *rp;
- for(rp=xp->rule; rp; rp=rp->next){
- if( rp->precsym==0 ){
- int i, j;
- for(i=0; i<rp->nrhs && rp->precsym==0; i++){
- struct symbol *sp = rp->rhs[i];
- if( sp->type==MULTITERMINAL ){
- for(j=0; j<sp->nsubsym; j++){
- if( sp->subsym[j]->prec>=0 ){
- rp->precsym = sp->subsym[j];
- break;
- }
- }
- }else if( sp->prec>=0 ){
- rp->precsym = rp->rhs[i];
- }
- }
- }
- }
- return;
-}
-
-/* Find all nonterminals which will generate the empty string.
-** Then go back and compute the first sets of every nonterminal.
-** The first set is the set of all terminal symbols which can begin
-** a string generated by that nonterminal.
-*/
-void FindFirstSets(lemp)
-struct lemon *lemp;
-{
- int i, j;
- struct rule *rp;
- int progress;
-
- for(i=0; i<lemp->nsymbol; i++){
- lemp->symbols[i]->lambda = B_FALSE;
- }
- for(i=lemp->nterminal; i<lemp->nsymbol; i++){
- lemp->symbols[i]->firstset = SetNew();
- }
-
- /* First compute all lambdas */
- do{
- progress = 0;
- for(rp=lemp->rule; rp; rp=rp->next){
- if( rp->lhs->lambda ) continue;
- for(i=0; i<rp->nrhs; i++){
- struct symbol *sp = rp->rhs[i];
- if( sp->type!=TERMINAL || sp->lambda==B_FALSE ) break;
- }
- if( i==rp->nrhs ){
- rp->lhs->lambda = B_TRUE;
- progress = 1;
- }
- }
- }while( progress );
-
- /* Now compute all first sets */
- do{
- struct symbol *s1, *s2;
- progress = 0;
- for(rp=lemp->rule; rp; rp=rp->next){
- s1 = rp->lhs;
- for(i=0; i<rp->nrhs; i++){
- s2 = rp->rhs[i];
- if( s2->type==TERMINAL ){
- progress += SetAdd(s1->firstset,s2->index);
- break;
- }else if( s2->type==MULTITERMINAL ){
- for(j=0; j<s2->nsubsym; j++){
- progress += SetAdd(s1->firstset,s2->subsym[j]->index);
- }
- break;
- }else if( s1==s2 ){
- if( s1->lambda==B_FALSE ) break;
- }else{
- progress += SetUnion(s1->firstset,s2->firstset);
- if( s2->lambda==B_FALSE ) break;
- }
- }
- }
- }while( progress );
- return;
-}
-
-/* Compute all LR(0) states for the grammar. Links
-** are added to between some states so that the LR(1) follow sets
-** can be computed later.
-*/
-PRIVATE struct state *getstate(/* struct lemon * */); /* forward reference */
-void FindStates(lemp)
-struct lemon *lemp;
-{
- struct symbol *sp;
- struct rule *rp;
-
- Configlist_init();
-
- /* Find the start symbol */
- if( lemp->start ){
- sp = Symbol_find(lemp->start);
- if( sp==0 ){
- ErrorMsg(lemp->filename,0,
-"The specified start symbol \"%s\" is not \
-in a nonterminal of the grammar. \"%s\" will be used as the start \
-symbol instead.",lemp->start,lemp->rule->lhs->name);
- lemp->errorcnt++;
- sp = lemp->rule->lhs;
- }
- }else{
- sp = lemp->rule->lhs;
- }
-
- /* Make sure the start symbol doesn't occur on the right-hand side of
- ** any rule. Report an error if it does. (YACC would generate a new
- ** start symbol in this case.) */
- for(rp=lemp->rule; rp; rp=rp->next){
- int i;
- for(i=0; i<rp->nrhs; i++){
- if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */
- ErrorMsg(lemp->filename,0,
-"The start symbol \"%s\" occurs on the \
-right-hand side of a rule. This will result in a parser which \
-does not work properly.",sp->name);
- lemp->errorcnt++;
- }
- }
- }
-
- /* The basis configuration set for the first state
- ** is all rules which have the start symbol as their
- ** left-hand side */
- for(rp=sp->rule; rp; rp=rp->nextlhs){
- struct config *newcfp;
- newcfp = Configlist_addbasis(rp,0);
- SetAdd(newcfp->fws,0);
- }
-
- /* Compute the first state. All other states will be
- ** computed automatically during the computation of the first one.
- ** The returned pointer to the first state is not used. */
- (void)getstate(lemp);
- return;
-}
-
-/* Return a pointer to a state which is described by the configuration
-** list which has been built from calls to Configlist_add.
-*/
-PRIVATE void buildshifts(/* struct lemon *, struct state * */); /* Forwd ref */
-PRIVATE struct state *getstate(lemp)
-struct lemon *lemp;
-{
- struct config *cfp, *bp;
- struct state *stp;
-
- /* Extract the sorted basis of the new state. The basis was constructed
- ** by prior calls to "Configlist_addbasis()". */
- Configlist_sortbasis();
- bp = Configlist_basis();
-
- /* Get a state with the same basis */
- stp = State_find(bp);
- if( stp ){
- /* A state with the same basis already exists! Copy all the follow-set
- ** propagation links from the state under construction into the
- ** preexisting state, then return a pointer to the preexisting state */
- struct config *x, *y;
- for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
- Plink_copy(&y->bplp,x->bplp);
- Plink_delete(x->fplp);
- x->fplp = x->bplp = 0;
- }
- cfp = Configlist_return();
- Configlist_eat(cfp);
- }else{
- /* This really is a new state. Construct all the details */
- Configlist_closure(lemp); /* Compute the configuration closure */
- Configlist_sort(); /* Sort the configuration closure */
- cfp = Configlist_return(); /* Get a pointer to the config list */
- stp = State_new(); /* A new state structure */
- MemoryCheck(stp);
- stp->bp = bp; /* Remember the configuration basis */
- stp->cfp = cfp; /* Remember the configuration closure */
- stp->statenum = lemp->nstate++; /* Every state gets a sequence number */
- stp->ap = 0; /* No actions, yet. */
- State_insert(stp,stp->bp); /* Add to the state table */
- buildshifts(lemp,stp); /* Recursively compute successor states */
- }
- return stp;
-}
-
-/*
-** Return true if two symbols are the same.
-*/
-int same_symbol(a,b)
-struct symbol *a;
-struct symbol *b;
-{
- int i;
- if( a==b ) return 1;
- if( a->type!=MULTITERMINAL ) return 0;
- if( b->type!=MULTITERMINAL ) return 0;
- if( a->nsubsym!=b->nsubsym ) return 0;
- for(i=0; i<a->nsubsym; i++){
- if( a->subsym[i]!=b->subsym[i] ) return 0;
- }
- return 1;
-}
-
-/* Construct all successor states to the given state. A "successor"
-** state is any state which can be reached by a shift action.
-*/
-PRIVATE void buildshifts(lemp,stp)
-struct lemon *lemp;
-struct state *stp; /* The state from which successors are computed */
-{
- struct config *cfp; /* For looping thru the config closure of "stp" */
- struct config *bcfp; /* For the inner loop on config closure of "stp" */
- struct config *new; /* */
- struct symbol *sp; /* Symbol following the dot in configuration "cfp" */
- struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */
- struct state *newstp; /* A pointer to a successor state */
-
- /* Each configuration becomes complete after it contibutes to a successor
- ** state. Initially, all configurations are incomplete */
- for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
-
- /* Loop through all configurations of the state "stp" */
- for(cfp=stp->cfp; cfp; cfp=cfp->next){
- if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */
- if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */
- Configlist_reset(); /* Reset the new config set */
- sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */
-
- /* For every configuration in the state "stp" which has the symbol "sp"
- ** following its dot, add the same configuration to the basis set under
- ** construction but with the dot shifted one symbol to the right. */
- for(bcfp=cfp; bcfp; bcfp=bcfp->next){
- if( bcfp->status==COMPLETE ) continue; /* Already used */
- if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
- bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */
- if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */
- bcfp->status = COMPLETE; /* Mark this config as used */
- new = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
- Plink_add(&new->bplp,bcfp);
- }
-
- /* Get a pointer to the state described by the basis configuration set
- ** constructed in the preceding loop */
- newstp = getstate(lemp);
-
- /* The state "newstp" is reached from the state "stp" by a shift action
- ** on the symbol "sp" */
- if( sp->type==MULTITERMINAL ){
- int i;
- for(i=0; i<sp->nsubsym; i++){
- Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp);
- }
- }else{
- Action_add(&stp->ap,SHIFT,sp,(char *)newstp);
- }
- }
-}
-
-/*
-** Construct the propagation links
-*/
-void FindLinks(lemp)
-struct lemon *lemp;
-{
- int i;
- struct config *cfp, *other;
- struct state *stp;
- struct plink *plp;
-
- /* Housekeeping detail:
- ** Add to every propagate link a pointer back to the state to
- ** which the link is attached. */
- for(i=0; i<lemp->nstate; i++){
- stp = lemp->sorted[i];
- for(cfp=stp->cfp; cfp; cfp=cfp->next){
- cfp->stp = stp;
- }
- }
-
- /* Convert all backlinks into forward links. Only the forward
- ** links are used in the follow-set computation. */
- for(i=0; i<lemp->nstate; i++){
- stp = lemp->sorted[i];
- for(cfp=stp->cfp; cfp; cfp=cfp->next){
- for(plp=cfp->bplp; plp; plp=plp->next){
- other = plp->cfp;
- Plink_add(&other->fplp,cfp);
- }
- }
- }
-}
-
-/* Compute all followsets.
-**
-** A followset is the set of all symbols which can come immediately
-** after a configuration.
-*/
-void FindFollowSets(lemp)
-struct lemon *lemp;
-{
- int i;
- struct config *cfp;
- struct plink *plp;
- int progress;
- int change;
-
- for(i=0; i<lemp->nstate; i++){
- for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
- cfp->status = INCOMPLETE;
- }
- }
-
- do{
- progress = 0;
- for(i=0; i<lemp->nstate; i++){
- for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
- if( cfp->status==COMPLETE ) continue;
- for(plp=cfp->fplp; plp; plp=plp->next){
- change = SetUnion(plp->cfp->fws,cfp->fws);
- if( change ){
- plp->cfp->status = INCOMPLETE;
- progress = 1;
- }
- }
- cfp->status = COMPLETE;
- }
- }
- }while( progress );
-}
-
-static int resolve_conflict();
-
-/* Compute the reduce actions, and resolve conflicts.
-*/
-void FindActions(lemp)
-struct lemon *lemp;
-{
- int i,j;
- struct config *cfp;
- struct state *stp;
- struct symbol *sp;
- struct rule *rp;
-
- /* Add all of the reduce actions
- ** A reduce action is added for each element of the followset of
- ** a configuration which has its dot at the extreme right.
- */
- for(i=0; i<lemp->nstate; i++){ /* Loop over all states */
- stp = lemp->sorted[i];
- for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */
- if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */
- for(j=0; j<lemp->nterminal; j++){
- if( SetFind(cfp->fws,j) ){
- /* Add a reduce action to the state "stp" which will reduce by the
- ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
- Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp);
- }
- }
- }
- }
- }
-
- /* Add the accepting token */
- if( lemp->start ){
- sp = Symbol_find(lemp->start);
- if( sp==0 ) sp = lemp->rule->lhs;
- }else{
- sp = lemp->rule->lhs;
- }
- /* Add to the first state (which is always the starting state of the
- ** finite state machine) an action to ACCEPT if the lookahead is the
- ** start nonterminal. */
- Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
-
- /* Resolve conflicts */
- for(i=0; i<lemp->nstate; i++){
- struct action *ap, *nap;
- struct state *stp;
- stp = lemp->sorted[i];
- assert( stp->ap );
- stp->ap = Action_sort(stp->ap);
- for(ap=stp->ap; ap && ap->next; ap=ap->next){
- for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
- /* The two actions "ap" and "nap" have the same lookahead.
- ** Figure out which one should be used */
- lemp->nconflict += resolve_conflict(ap,nap,lemp->errsym);
- }
- }
- }
-
- /* Report an error for each rule that can never be reduced. */
- for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = B_FALSE;
- for(i=0; i<lemp->nstate; i++){
- struct action *ap;
- for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
- if( ap->type==REDUCE ) ap->x.rp->canReduce = B_TRUE;
- }
- }
- for(rp=lemp->rule; rp; rp=rp->next){
- if( rp->canReduce ) continue;
- ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
- lemp->errorcnt++;
- }
-}
-
-/* Resolve a conflict between the two given actions. If the
-** conflict can't be resolve, return non-zero.
-**
-** NO LONGER TRUE:
-** To resolve a conflict, first look to see if either action
-** is on an error rule. In that case, take the action which
-** is not associated with the error rule. If neither or both
-** actions are associated with an error rule, then try to
-** use precedence to resolve the conflict.
-**
-** If either action is a SHIFT, then it must be apx. This
-** function won't work if apx->type==REDUCE and apy->type==SHIFT.
-*/
-static int resolve_conflict(apx,apy,errsym)
-struct action *apx;
-struct action *apy;
-struct symbol *errsym; /* The error symbol (if defined. NULL otherwise) */
-{
- struct symbol *spx, *spy;
- int errcnt = 0;
- assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */
- if( apx->type==SHIFT && apy->type==REDUCE ){
- spx = apx->sp;
- spy = apy->x.rp->precsym;
- if( spy==0 || spx->prec<0 || spy->prec<0 ){
- /* Not enough precedence information. */
- apy->type = CONFLICT;
- errcnt++;
- }else if( spx->prec>spy->prec ){ /* Lower precedence wins */
- apy->type = RD_RESOLVED;
- }else if( spx->prec<spy->prec ){
- apx->type = SH_RESOLVED;
- }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
- apy->type = RD_RESOLVED; /* associativity */
- }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */
- apx->type = SH_RESOLVED;
- }else{
- assert( spx->prec==spy->prec && spx->assoc==NONE );
- apy->type = CONFLICT;
- errcnt++;
- }
- }else if( apx->type==REDUCE && apy->type==REDUCE ){
- spx = apx->x.rp->precsym;
- spy = apy->x.rp->precsym;
- if( spx==0 || spy==0 || spx->prec<0 ||
- spy->prec<0 || spx->prec==spy->prec ){
- apy->type = CONFLICT;
- errcnt++;
- }else if( spx->prec>spy->prec ){
- apy->type = RD_RESOLVED;
- }else if( spx->prec<spy->prec ){
- apx->type = RD_RESOLVED;
- }
- }else{
- assert(
- apx->type==SH_RESOLVED ||
- apx->type==RD_RESOLVED ||
- apx->type==CONFLICT ||
- apy->type==SH_RESOLVED ||
- apy->type==RD_RESOLVED ||
- apy->type==CONFLICT
- );
- /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
- ** REDUCEs on the list. If we reach this point it must be because
- ** the parser conflict had already been resolved. */
- }
- return errcnt;
-}
-/********************* From the file "configlist.c" *************************/
-/*
-** Routines to processing a configuration list and building a state
-** in the LEMON parser generator.
-*/
-
-static struct config *freelist = 0; /* List of free configurations */
-static struct config *current = 0; /* Top of list of configurations */
-static struct config **currentend = 0; /* Last on list of configs */
-static struct config *basis = 0; /* Top of list of basis configs */
-static struct config **basisend = 0; /* End of list of basis configs */
-
-/* Return a pointer to a new configuration */
-PRIVATE struct config *newconfig(){
- struct config *new;
- if( freelist==0 ){
- int i;
- int amt = 3;
- freelist = (struct config *)malloc( sizeof(struct config)*amt );
- if( freelist==0 ){
- fprintf(stderr,"Unable to allocate memory for a new configuration.");
- exit(1);
- }
- for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
- freelist[amt-1].next = 0;
- }
- new = freelist;
- freelist = freelist->next;
- return new;
-}
-
-/* The configuration "old" is no longer used */
-PRIVATE void deleteconfig(old)
-struct config *old;
-{
- old->next = freelist;
- freelist = old;
-}
-
-/* Initialized the configuration list builder */
-void Configlist_init(){
- current = 0;
- currentend = &current;
- basis = 0;
- basisend = &basis;
- Configtable_init();
- return;
-}
-
-/* Initialized the configuration list builder */
-void Configlist_reset(){
- current = 0;
- currentend = &current;
- basis = 0;
- basisend = &basis;
- Configtable_clear(0);
- return;
-}
-
-/* Add another configuration to the configuration list */
-struct config *Configlist_add(rp,dot)
-struct rule *rp; /* The rule */
-int dot; /* Index into the RHS of the rule where the dot goes */
-{
- struct config *cfp, model;
-
- assert( currentend!=0 );
- model.rp = rp;
- model.dot = dot;
- cfp = Configtable_find(&model);
- if( cfp==0 ){
- cfp = newconfig();
- cfp->rp = rp;
- cfp->dot = dot;
- cfp->fws = SetNew();
- cfp->stp = 0;
- cfp->fplp = cfp->bplp = 0;
- cfp->next = 0;
- cfp->bp = 0;
- *currentend = cfp;
- currentend = &cfp->next;
- Configtable_insert(cfp);
- }
- return cfp;
-}
-
-/* Add a basis configuration to the configuration list */
-struct config *Configlist_addbasis(rp,dot)
-struct rule *rp;
-int dot;
-{
- struct config *cfp, model;
-
- assert( basisend!=0 );
- assert( currentend!=0 );
- model.rp = rp;
- model.dot = dot;
- cfp = Configtable_find(&model);
- if( cfp==0 ){
- cfp = newconfig();
- cfp->rp = rp;
- cfp->dot = dot;
- cfp->fws = SetNew();
- cfp->stp = 0;
- cfp->fplp = cfp->bplp = 0;
- cfp->next = 0;
- cfp->bp = 0;
- *currentend = cfp;
- currentend = &cfp->next;
- *basisend = cfp;
- basisend = &cfp->bp;
- Configtable_insert(cfp);
- }
- return cfp;
-}
-
-/* Compute the closure of the configuration list */
-void Configlist_closure(lemp)
-struct lemon *lemp;
-{
- struct config *cfp, *newcfp;
- struct rule *rp, *newrp;
- struct symbol *sp, *xsp;
- int i, dot;
-
- assert( currentend!=0 );
- for(cfp=current; cfp; cfp=cfp->next){
- rp = cfp->rp;
- dot = cfp->dot;
- if( dot>=rp->nrhs ) continue;
- sp = rp->rhs[dot];
- if( sp->type==NONTERMINAL ){
- if( sp->rule==0 && sp!=lemp->errsym ){
- ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
- sp->name);
- lemp->errorcnt++;
- }
- for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
- newcfp = Configlist_add(newrp,0);
- for(i=dot+1; i<rp->nrhs; i++){
- xsp = rp->rhs[i];
- if( xsp->type==TERMINAL ){
- SetAdd(newcfp->fws,xsp->index);
- break;
- }else if( xsp->type==MULTITERMINAL ){
- int k;
- for(k=0; k<xsp->nsubsym; k++){
- SetAdd(newcfp->fws, xsp->subsym[k]->index);
- }
- break;
- }else{
- SetUnion(newcfp->fws,xsp->firstset);
- if( xsp->lambda==B_FALSE ) break;
- }
- }
- if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
- }
- }
- }
- return;
-}
-
-/* Sort the configuration list */
-void Configlist_sort(){
- current = (struct config *)msort((char *)current,(char **)&(current->next),Configcmp);
- currentend = 0;
- return;
-}
-
-/* Sort the basis configuration list */
-void Configlist_sortbasis(){
- basis = (struct config *)msort((char *)current,(char **)&(current->bp),Configcmp);
- basisend = 0;
- return;
-}
-
-/* Return a pointer to the head of the configuration list and
-** reset the list */
-struct config *Configlist_return(){
- struct config *old;
- old = current;
- current = 0;
- currentend = 0;
- return old;
-}
-
-/* Return a pointer to the head of the configuration list and
-** reset the list */
-struct config *Configlist_basis(){
- struct config *old;
- old = basis;
- basis = 0;
- basisend = 0;
- return old;
-}
-
-/* Free all elements of the given configuration list */
-void Configlist_eat(cfp)
-struct config *cfp;
-{
- struct config *nextcfp;
- for(; cfp; cfp=nextcfp){
- nextcfp = cfp->next;
- assert( cfp->fplp==0 );
- assert( cfp->bplp==0 );
- if( cfp->fws ) SetFree(cfp->fws);
- deleteconfig(cfp);
- }
- return;
-}
-/***************** From the file "error.c" *********************************/
-/*
-** Code for printing error message.
-*/
-
-/* Find a good place to break "msg" so that its length is at least "min"
-** but no more than "max". Make the point as close to max as possible.
-*/
-static int findbreak(msg,min,max)
-char *msg;
-int min;
-int max;
-{
- int i,spot;
- char c;
- for(i=spot=min; i<=max; i++){
- c = msg[i];
- if( c=='\t' ) msg[i] = ' ';
- if( c=='\n' ){ msg[i] = ' '; spot = i; break; }
- if( c==0 ){ spot = i; break; }
- if( c=='-' && i<max-1 ) spot = i+1;
- if( c==' ' ) spot = i;
- }
- return spot;
-}
-
-/*
-** The error message is split across multiple lines if necessary. The
-** splits occur at a space, if there is a space available near the end
-** of the line.
-*/
-#define ERRMSGSIZE 10000 /* Hope this is big enough. No way to error check */
-#define LINEWIDTH 79 /* Max width of any output line */
-#define PREFIXLIMIT 30 /* Max width of the prefix on each line */
-void ErrorMsg(const char *filename, int lineno, const char *format, ...){
- char errmsg[ERRMSGSIZE];
- char prefix[PREFIXLIMIT+10];
- int errmsgsize;
- int prefixsize;
- int availablewidth;
- va_list ap;
- int end, restart, base;
-
- va_start(ap, format);
- /* Prepare a prefix to be prepended to every output line */
- if( lineno>0 ){
- sprintf(prefix,"%.*s:%d: ",PREFIXLIMIT-10,filename,lineno);
- }else{
- sprintf(prefix,"%.*s: ",PREFIXLIMIT-10,filename);
- }
- prefixsize = strlen(prefix);
- availablewidth = LINEWIDTH - prefixsize;
-
- /* Generate the error message */
- vsprintf(errmsg,format,ap);
- va_end(ap);
- errmsgsize = strlen(errmsg);
- /* Remove trailing '\n's from the error message. */
- while( errmsgsize>0 && errmsg[errmsgsize-1]=='\n' ){
- errmsg[--errmsgsize] = 0;
- }
-
- /* Print the error message */
- base = 0;
- while( errmsg[base]!=0 ){
- end = restart = findbreak(&errmsg[base],0,availablewidth);
- restart += base;
- while( errmsg[restart]==' ' ) restart++;
- fprintf(stdout,"%s%.*s\n",prefix,end,&errmsg[base]);
- base = restart;
- }
-}
-/**************** From the file "main.c" ************************************/
-/*
-** Main program file for the LEMON parser generator.
-*/
-
-/* Report an out-of-memory condition and abort. This function
-** is used mostly by the "MemoryCheck" macro in struct.h
-*/
-void memory_error(){
- fprintf(stderr,"Out of memory. Aborting...\n");
- exit(1);
-}
-
-static int nDefine = 0; /* Number of -D options on the command line */
-static char **azDefine = 0; /* Name of the -D macros */
-
-/* This routine is called with the argument to each -D command-line option.
-** Add the macro defined to the azDefine array.
-*/
-static void handle_D_option(char *z){
- char **paz;
- nDefine++;
- azDefine = realloc(azDefine, sizeof(azDefine[0])*nDefine);
- if( azDefine==0 ){
- fprintf(stderr,"out of memory\n");
- exit(1);
- }
- paz = &azDefine[nDefine-1];
- *paz = malloc( strlen(z)+1 );
- if( *paz==0 ){
- fprintf(stderr,"out of memory\n");
- exit(1);
- }
- strcpy(*paz, z);
- for(z=*paz; *z && *z!='='; z++){}
- *z = 0;
-}
-
-
-/* The main program. Parse the command line and do it... */
-int main(argc,argv)
-int argc;
-char **argv;
-{
- static int version = 0;
- static int rpflag = 0;
- static int basisflag = 0;
- static int compress = 0;
- static int quiet = 0;
- static int statistics = 0;
- static int mhflag = 0;
- static struct s_options options[] = {
- {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
- {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
- {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."},
- {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
- {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file"},
- {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
- {OPT_FLAG, "s", (char*)&statistics,
- "Print parser stats to standard output."},
- {OPT_FLAG, "x", (char*)&version, "Print the version number."},
- {OPT_FLAG,0,0,0}
- };
- int i;
- struct lemon lem;
-
- OptInit(argv,options,stderr);
- if( version ){
- printf("Lemon version 1.0\n");
- exit(0);
- }
- if( OptNArgs()!=1 ){
- fprintf(stderr,"Exactly one filename argument is required.\n");
- exit(1);
- }
- memset(&lem, 0, sizeof(lem));
- lem.errorcnt = 0;
-
- /* Initialize the machine */
- Strsafe_init();
- Symbol_init();
- State_init();
- lem.argv0 = argv[0];
- lem.filename = OptArg(0);
- lem.basisflag = basisflag;
- Symbol_new("$");
- lem.errsym = Symbol_new("error");
-
- /* Parse the input file */
- Parse(&lem);
- if( lem.errorcnt ) exit(lem.errorcnt);
- if( lem.nrule==0 ){
- fprintf(stderr,"Empty grammar.\n");
- exit(1);
- }
-
- /* Count and index the symbols of the grammar */
- lem.nsymbol = Symbol_count();
- Symbol_new("{default}");
- lem.symbols = Symbol_arrayof();
- for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
- qsort(lem.symbols,lem.nsymbol+1,sizeof(struct symbol*),
- (int(*)())Symbolcmpp);
- for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
- for(i=1; isupper(lem.symbols[i]->name[0]); i++);
- lem.nterminal = i;
-
- /* Generate a reprint of the grammar, if requested on the command line */
- if( rpflag ){
- Reprint(&lem);
- }else{
- /* Initialize the size for all follow and first sets */
- SetSize(lem.nterminal);
-
- /* Find the precedence for every production rule (that has one) */
- FindRulePrecedences(&lem);
-
- /* Compute the lambda-nonterminals and the first-sets for every
- ** nonterminal */
- FindFirstSets(&lem);
-
- /* Compute all LR(0) states. Also record follow-set propagation
- ** links so that the follow-set can be computed later */
- lem.nstate = 0;
- FindStates(&lem);
- lem.sorted = State_arrayof();
-
- /* Tie up loose ends on the propagation links */
- FindLinks(&lem);
-
- /* Compute the follow set of every reducible configuration */
- FindFollowSets(&lem);
-
- /* Compute the action tables */
- FindActions(&lem);
-
- /* Compress the action tables */
- if( compress==0 ) CompressTables(&lem);
-
- /* Reorder and renumber the states so that states with fewer choices
- ** occur at the end. */
- ResortStates(&lem);
-
- /* Generate a report of the parser generated. (the "y.output" file) */
- if( !quiet ) ReportOutput(&lem);
-
- /* Generate the source code for the parser */
- ReportTable(&lem, mhflag);
-
- /* Produce a header file for use by the scanner. (This step is
- ** omitted if the "-m" option is used because makeheaders will
- ** generate the file for us.) */
- if( !mhflag ) ReportHeader(&lem);
- }
- if( statistics ){
- printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n",
- lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule);
- printf(" %d states, %d parser table entries, %d conflicts\n",
- lem.nstate, lem.tablesize, lem.nconflict);
- }
- if( lem.nconflict ){
- fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
- }
- exit(lem.errorcnt + lem.nconflict);
- return (lem.errorcnt + lem.nconflict);
-}
-/******************** From the file "msort.c" *******************************/
-/*
-** A generic merge-sort program.
-**
-** USAGE:
-** Let "ptr" be a pointer to some structure which is at the head of
-** a null-terminated list. Then to sort the list call:
-**
-** ptr = msort(ptr,&(ptr->next),cmpfnc);
-**
-** In the above, "cmpfnc" is a pointer to a function which compares
-** two instances of the structure and returns an integer, as in
-** strcmp. The second argument is a pointer to the pointer to the
-** second element of the linked list. This address is used to compute
-** the offset to the "next" field within the structure. The offset to
-** the "next" field must be constant for all structures in the list.
-**
-** The function returns a new pointer which is the head of the list
-** after sorting.
-**
-** ALGORITHM:
-** Merge-sort.
-*/
-
-/*
-** Return a pointer to the next structure in the linked list.
-*/
-#define NEXT(A) (*(char**)(((unsigned long)A)+offset))
-
-/*
-** Inputs:
-** a: A sorted, null-terminated linked list. (May be null).
-** b: A sorted, null-terminated linked list. (May be null).
-** cmp: A pointer to the comparison function.
-** offset: Offset in the structure to the "next" field.
-**
-** Return Value:
-** A pointer to the head of a sorted list containing the elements
-** of both a and b.
-**
-** Side effects:
-** The "next" pointers for elements in the lists a and b are
-** changed.
-*/
-static char *merge(a,b,cmp,offset)
-char *a;
-char *b;
-int (*cmp)();
-int offset;
-{
- char *ptr, *head;
-
- if( a==0 ){
- head = b;
- }else if( b==0 ){
- head = a;
- }else{
- if( (*cmp)(a,b)<0 ){
- ptr = a;
- a = NEXT(a);
- }else{
- ptr = b;
- b = NEXT(b);
- }
- head = ptr;
- while( a && b ){
- if( (*cmp)(a,b)<0 ){
- NEXT(ptr) = a;
- ptr = a;
- a = NEXT(a);
- }else{
- NEXT(ptr) = b;
- ptr = b;
- b = NEXT(b);
- }
- }
- if( a ) NEXT(ptr) = a;
- else NEXT(ptr) = b;
- }
- return head;
-}
-
-/*
-** Inputs:
-** list: Pointer to a singly-linked list of structures.
-** next: Pointer to pointer to the second element of the list.
-** cmp: A comparison function.
-**
-** Return Value:
-** A pointer to the head of a sorted list containing the elements
-** orginally in list.
-**
-** Side effects:
-** The "next" pointers for elements in list are changed.
-*/
-#define LISTSIZE 30
-char *msort(list,next,cmp)
-char *list;
-char **next;
-int (*cmp)();
-{
- unsigned long offset;
- char *ep;
- char *set[LISTSIZE];
- int i;
- offset = (unsigned long)next - (unsigned long)list;
- for(i=0; i<LISTSIZE; i++) set[i] = 0;
- while( list ){
- ep = list;
- list = NEXT(list);
- NEXT(ep) = 0;
- for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
- ep = merge(ep,set[i],cmp,offset);
- set[i] = 0;
- }
- set[i] = ep;
- }
- ep = 0;
- for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(ep,set[i],cmp,offset);
- return ep;
-}
-/************************ From the file "option.c" **************************/
-static char **argv;
-static struct s_options *op;
-static FILE *errstream;
-
-#define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
-
-/*
-** Print the command line with a carrot pointing to the k-th character
-** of the n-th field.
-*/
-static void errline(n,k,err)
-int n;
-int k;
-FILE *err;
-{
- int spcnt, i;
- if( argv[0] ) fprintf(err,"%s",argv[0]);
- spcnt = strlen(argv[0]) + 1;
- for(i=1; i<n && argv[i]; i++){
- fprintf(err," %s",argv[i]);
- spcnt += strlen(argv[i])+1;
- }
- spcnt += k;
- for(; argv[i]; i++) fprintf(err," %s",argv[i]);
- if( spcnt<20 ){
- fprintf(err,"\n%*s^-- here\n",spcnt,"");
- }else{
- fprintf(err,"\n%*shere --^\n",spcnt-7,"");
- }
-}
-
-/*
-** Return the index of the N-th non-switch argument. Return -1
-** if N is out of range.
-*/
-static int argindex(n)
-int n;
-{
- int i;
- int dashdash = 0;
- if( argv!=0 && *argv!=0 ){
- for(i=1; argv[i]; i++){
- if( dashdash || !ISOPT(argv[i]) ){
- if( n==0 ) return i;
- n--;
- }
- if( strcmp(argv[i],"--")==0 ) dashdash = 1;
- }
- }
- return -1;
-}
-
-static char emsg[] = "Command line syntax error: ";
-
-/*
-** Process a flag command line argument.
-*/
-static int handleflags(i,err)
-int i;
-FILE *err;
-{
- int v;
- int errcnt = 0;
- int j;
- for(j=0; op[j].label; j++){
- if( strncmp(&argv[i][1],op[j].label,strlen(op[j].label))==0 ) break;
- }
- v = argv[i][0]=='-' ? 1 : 0;
- if( op[j].label==0 ){
- if( err ){
- fprintf(err,"%sundefined option.\n",emsg);
- errline(i,1,err);
- }
- errcnt++;
- }else if( op[j].type==OPT_FLAG ){
- *((int*)op[j].arg) = v;
- }else if( op[j].type==OPT_FFLAG ){
- (*(void(*)())(op[j].arg))(v);
- }else if( op[j].type==OPT_FSTR ){
- (*(void(*)())(op[j].arg))(&argv[i][2]);
- }else{
- if( err ){
- fprintf(err,"%smissing argument on switch.\n",emsg);
- errline(i,1,err);
- }
- errcnt++;
- }
- return errcnt;
-}
-
-/*
-** Process a command line switch which has an argument.
-*/
-static int handleswitch(i,err)
-int i;
-FILE *err;
-{
- int lv = 0;
- double dv = 0.0;
- char *sv = 0, *end;
- char *cp;
- int j;
- int errcnt = 0;
- cp = strchr(argv[i],'=');
- assert( cp!=0 );
- *cp = 0;
- for(j=0; op[j].label; j++){
- if( strcmp(argv[i],op[j].label)==0 ) break;
- }
- *cp = '=';
- if( op[j].label==0 ){
- if( err ){
- fprintf(err,"%sundefined option.\n",emsg);
- errline(i,0,err);
- }
- errcnt++;
- }else{
- cp++;
- switch( op[j].type ){
- case OPT_FLAG:
- case OPT_FFLAG:
- if( err ){
- fprintf(err,"%soption requires an argument.\n",emsg);
- errline(i,0,err);
- }
- errcnt++;
- break;
- case OPT_DBL:
- case OPT_FDBL:
- dv = strtod(cp,&end);
- if( *end ){
- if( err ){
- fprintf(err,"%sillegal character in floating-point argument.\n",emsg);
- errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
- }
- errcnt++;
- }
- break;
- case OPT_INT:
- case OPT_FINT:
- lv = strtol(cp,&end,0);
- if( *end ){
- if( err ){
- fprintf(err,"%sillegal character in integer argument.\n",emsg);
- errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
- }
- errcnt++;
- }
- break;
- case OPT_STR:
- case OPT_FSTR:
- sv = cp;
- break;
- }
- switch( op[j].type ){
- case OPT_FLAG:
- case OPT_FFLAG:
- break;
- case OPT_DBL:
- *(double*)(op[j].arg) = dv;
- break;
- case OPT_FDBL:
- (*(void(*)())(op[j].arg))(dv);
- break;
- case OPT_INT:
- *(int*)(op[j].arg) = lv;
- break;
- case OPT_FINT:
- (*(void(*)())(op[j].arg))((int)lv);
- break;
- case OPT_STR:
- *(char**)(op[j].arg) = sv;
- break;
- case OPT_FSTR:
- (*(void(*)())(op[j].arg))(sv);
- break;
- }
- }
- return errcnt;
-}
-
-int OptInit(a,o,err)
-char **a;
-struct s_options *o;
-FILE *err;
-{
- int errcnt = 0;
- argv = a;
- op = o;
- errstream = err;
- if( argv && *argv && op ){
- int i;
- for(i=1; argv[i]; i++){
- if( argv[i][0]=='+' || argv[i][0]=='-' ){
- errcnt += handleflags(i,err);
- }else if( strchr(argv[i],'=') ){
- errcnt += handleswitch(i,err);
- }
- }
- }
- if( errcnt>0 ){
- fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
- OptPrint();
- exit(1);
- }
- return 0;
-}
-
-int OptNArgs(){
- int cnt = 0;
- int dashdash = 0;
- int i;
- if( argv!=0 && argv[0]!=0 ){
- for(i=1; argv[i]; i++){
- if( dashdash || !ISOPT(argv[i]) ) cnt++;
- if( strcmp(argv[i],"--")==0 ) dashdash = 1;
- }
- }
- return cnt;
-}
-
-char *OptArg(n)
-int n;
-{
- int i;
- i = argindex(n);
- return i>=0 ? argv[i] : 0;
-}
-
-void OptErr(n)
-int n;
-{
- int i;
- i = argindex(n);
- if( i>=0 ) errline(i,0,errstream);
-}
-
-void OptPrint(){
- int i;
- int max, len;
- max = 0;
- for(i=0; op[i].label; i++){
- len = strlen(op[i].label) + 1;
- switch( op[i].type ){
- case OPT_FLAG:
- case OPT_FFLAG:
- break;
- case OPT_INT:
- case OPT_FINT:
- len += 9; /* length of "<integer>" */
- break;
- case OPT_DBL:
- case OPT_FDBL:
- len += 6; /* length of "<real>" */
- break;
- case OPT_STR:
- case OPT_FSTR:
- len += 8; /* length of "<string>" */
- break;
- }
- if( len>max ) max = len;
- }
- for(i=0; op[i].label; i++){
- switch( op[i].type ){
- case OPT_FLAG:
- case OPT_FFLAG:
- fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message);
- break;
- case OPT_INT:
- case OPT_FINT:
- fprintf(errstream," %s=<integer>%*s %s\n",op[i].label,
- (int)(max-strlen(op[i].label)-9),"",op[i].message);
- break;
- case OPT_DBL:
- case OPT_FDBL:
- fprintf(errstream," %s=<real>%*s %s\n",op[i].label,
- (int)(max-strlen(op[i].label)-6),"",op[i].message);
- break;
- case OPT_STR:
- case OPT_FSTR:
- fprintf(errstream," %s=<string>%*s %s\n",op[i].label,
- (int)(max-strlen(op[i].label)-8),"",op[i].message);
- break;
- }
- }
-}
-/*********************** From the file "parse.c" ****************************/
-/*
-** Input file parser for the LEMON parser generator.
-*/
-
-/* The state of the parser */
-struct pstate {
- char *filename; /* Name of the input file */
- int tokenlineno; /* Linenumber at which current token starts */
- int errorcnt; /* Number of errors so far */
- char *tokenstart; /* Text of current token */
- struct lemon *gp; /* Global state vector */
- enum e_state {
- INITIALIZE,
- WAITING_FOR_DECL_OR_RULE,
- WAITING_FOR_DECL_KEYWORD,
- WAITING_FOR_DECL_ARG,
- WAITING_FOR_PRECEDENCE_SYMBOL,
- WAITING_FOR_ARROW,
- IN_RHS,
- LHS_ALIAS_1,
- LHS_ALIAS_2,
- LHS_ALIAS_3,
- RHS_ALIAS_1,
- RHS_ALIAS_2,
- PRECEDENCE_MARK_1,
- PRECEDENCE_MARK_2,
- RESYNC_AFTER_RULE_ERROR,
- RESYNC_AFTER_DECL_ERROR,
- WAITING_FOR_DESTRUCTOR_SYMBOL,
- WAITING_FOR_DATATYPE_SYMBOL,
- WAITING_FOR_FALLBACK_ID,
- WAITING_FOR_WILDCARD_ID
- } state; /* The state of the parser */
- struct symbol *fallback; /* The fallback token */
- struct symbol *lhs; /* Left-hand side of current rule */
- char *lhsalias; /* Alias for the LHS */
- int nrhs; /* Number of right-hand side symbols seen */
- struct symbol *rhs[MAXRHS]; /* RHS symbols */
- char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */
- struct rule *prevrule; /* Previous rule parsed */
- char *declkeyword; /* Keyword of a declaration */
- char **declargslot; /* Where the declaration argument should be put */
- int *decllnslot; /* Where the declaration linenumber is put */
- enum e_assoc declassoc; /* Assign this association to decl arguments */
- int preccounter; /* Assign this precedence to decl arguments */
- struct rule *firstrule; /* Pointer to first rule in the grammar */
- struct rule *lastrule; /* Pointer to the most recently parsed rule */
-};
-
-/* Parse a single token */
-static void parseonetoken(psp)
-struct pstate *psp;
-{
- char *x;
- x = Strsafe(psp->tokenstart); /* Save the token permanently */
-#if 0
- printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
- x,psp->state);
-#endif
- switch( psp->state ){
- case INITIALIZE:
- psp->prevrule = 0;
- psp->preccounter = 0;
- psp->firstrule = psp->lastrule = 0;
- psp->gp->nrule = 0;
- /* Fall thru to next case */
- case WAITING_FOR_DECL_OR_RULE:
- if( x[0]=='%' ){
- psp->state = WAITING_FOR_DECL_KEYWORD;
- }else if( islower(x[0]) ){
- psp->lhs = Symbol_new(x);
- psp->nrhs = 0;
- psp->lhsalias = 0;
- psp->state = WAITING_FOR_ARROW;
- }else if( x[0]=='{' ){
- if( psp->prevrule==0 ){
- ErrorMsg(psp->filename,psp->tokenlineno,
-"There is not prior rule opon which to attach the code \
-fragment which begins on this line.");
- psp->errorcnt++;
- }else if( psp->prevrule->code!=0 ){
- ErrorMsg(psp->filename,psp->tokenlineno,
-"Code fragment beginning on this line is not the first \
-to follow the previous rule.");
- psp->errorcnt++;
- }else{
- psp->prevrule->line = psp->tokenlineno;
- psp->prevrule->code = &x[1];
- }
- }else if( x[0]=='[' ){
- psp->state = PRECEDENCE_MARK_1;
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Token \"%s\" should be either \"%%\" or a nonterminal name.",
- x);
- psp->errorcnt++;
- }
- break;
- case PRECEDENCE_MARK_1:
- if( !isupper(x[0]) ){
- ErrorMsg(psp->filename,psp->tokenlineno,
- "The precedence symbol must be a terminal.");
- psp->errorcnt++;
- }else if( psp->prevrule==0 ){
- ErrorMsg(psp->filename,psp->tokenlineno,
- "There is no prior rule to assign precedence \"[%s]\".",x);
- psp->errorcnt++;
- }else if( psp->prevrule->precsym!=0 ){
- ErrorMsg(psp->filename,psp->tokenlineno,
-"Precedence mark on this line is not the first \
-to follow the previous rule.");
- psp->errorcnt++;
- }else{
- psp->prevrule->precsym = Symbol_new(x);
- }
- psp->state = PRECEDENCE_MARK_2;
- break;
- case PRECEDENCE_MARK_2:
- if( x[0]!=']' ){
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Missing \"]\" on precedence mark.");
- psp->errorcnt++;
- }
- psp->state = WAITING_FOR_DECL_OR_RULE;
- break;
- case WAITING_FOR_ARROW:
- if( x[0]==':' && x[1]==':' && x[2]=='=' ){
- psp->state = IN_RHS;
- }else if( x[0]=='(' ){
- psp->state = LHS_ALIAS_1;
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Expected to see a \":\" following the LHS symbol \"%s\".",
- psp->lhs->name);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_RULE_ERROR;
- }
- break;
- case LHS_ALIAS_1:
- if( isalpha(x[0]) ){
- psp->lhsalias = x;
- psp->state = LHS_ALIAS_2;
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "\"%s\" is not a valid alias for the LHS \"%s\"\n",
- x,psp->lhs->name);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_RULE_ERROR;
- }
- break;
- case LHS_ALIAS_2:
- if( x[0]==')' ){
- psp->state = LHS_ALIAS_3;
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_RULE_ERROR;
- }
- break;
- case LHS_ALIAS_3:
- if( x[0]==':' && x[1]==':' && x[2]=='=' ){
- psp->state = IN_RHS;
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Missing \"->\" following: \"%s(%s)\".",
- psp->lhs->name,psp->lhsalias);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_RULE_ERROR;
- }
- break;
- case IN_RHS:
- if( x[0]=='.' ){
- struct rule *rp;
- rp = (struct rule *)malloc( sizeof(struct rule) +
- sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs );
- if( rp==0 ){
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Can't allocate enough memory for this rule.");
- psp->errorcnt++;
- psp->prevrule = 0;
- }else{
- int i;
- rp->ruleline = psp->tokenlineno;
- rp->rhs = (struct symbol**)&rp[1];
- rp->rhsalias = (char**)&(rp->rhs[psp->nrhs]);
- for(i=0; i<psp->nrhs; i++){
- rp->rhs[i] = psp->rhs[i];
- rp->rhsalias[i] = psp->alias[i];
- }
- rp->lhs = psp->lhs;
- rp->lhsalias = psp->lhsalias;
- rp->nrhs = psp->nrhs;
- rp->code = 0;
- rp->precsym = 0;
- rp->index = psp->gp->nrule++;
- rp->nextlhs = rp->lhs->rule;
- rp->lhs->rule = rp;
- rp->next = 0;
- if( psp->firstrule==0 ){
- psp->firstrule = psp->lastrule = rp;
- }else{
- psp->lastrule->next = rp;
- psp->lastrule = rp;
- }
- psp->prevrule = rp;
- }
- psp->state = WAITING_FOR_DECL_OR_RULE;
- }else if( isalpha(x[0]) ){
- if( psp->nrhs>=MAXRHS ){
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Too many symbols on RHS or rule beginning at \"%s\".",
- x);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_RULE_ERROR;
- }else{
- psp->rhs[psp->nrhs] = Symbol_new(x);
- psp->alias[psp->nrhs] = 0;
- psp->nrhs++;
- }
- }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){
- struct symbol *msp = psp->rhs[psp->nrhs-1];
- if( msp->type!=MULTITERMINAL ){
- struct symbol *origsp = msp;
- msp = malloc(sizeof(*msp));
- memset(msp, 0, sizeof(*msp));
- msp->type = MULTITERMINAL;
- msp->nsubsym = 1;
- msp->subsym = malloc(sizeof(struct symbol*));
- msp->subsym[0] = origsp;
- msp->name = origsp->name;
- psp->rhs[psp->nrhs-1] = msp;
- }
- msp->nsubsym++;
- msp->subsym = realloc(msp->subsym, sizeof(struct symbol*)*msp->nsubsym);
- msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]);
- if( islower(x[1]) || islower(msp->subsym[0]->name[0]) ){
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Cannot form a compound containing a non-terminal");
- psp->errorcnt++;
- }
- }else if( x[0]=='(' && psp->nrhs>0 ){
- psp->state = RHS_ALIAS_1;
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Illegal character on RHS of rule: \"%s\".",x);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_RULE_ERROR;
- }
- break;
- case RHS_ALIAS_1:
- if( isalpha(x[0]) ){
- psp->alias[psp->nrhs-1] = x;
- psp->state = RHS_ALIAS_2;
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
- x,psp->rhs[psp->nrhs-1]->name);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_RULE_ERROR;
- }
- break;
- case RHS_ALIAS_2:
- if( x[0]==')' ){
- psp->state = IN_RHS;
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_RULE_ERROR;
- }
- break;
- case WAITING_FOR_DECL_KEYWORD:
- if( isalpha(x[0]) ){
- psp->declkeyword = x;
- psp->declargslot = 0;
- psp->decllnslot = 0;
- psp->state = WAITING_FOR_DECL_ARG;
- if( strcmp(x,"name")==0 ){
- psp->declargslot = &(psp->gp->name);
- }else if( strcmp(x,"include")==0 ){
- psp->declargslot = &(psp->gp->include);
- psp->decllnslot = &psp->gp->includeln;
- }else if( strcmp(x,"code")==0 ){
- psp->declargslot = &(psp->gp->extracode);
- psp->decllnslot = &psp->gp->extracodeln;
- }else if( strcmp(x,"token_destructor")==0 ){
- psp->declargslot = &psp->gp->tokendest;
- psp->decllnslot = &psp->gp->tokendestln;
- }else if( strcmp(x,"default_destructor")==0 ){
- psp->declargslot = &psp->gp->vardest;
- psp->decllnslot = &psp->gp->vardestln;
- }else if( strcmp(x,"token_prefix")==0 ){
- psp->declargslot = &psp->gp->tokenprefix;
- }else if( strcmp(x,"syntax_error")==0 ){
- psp->declargslot = &(psp->gp->error);
- psp->decllnslot = &psp->gp->errorln;
- }else if( strcmp(x,"parse_accept")==0 ){
- psp->declargslot = &(psp->gp->accept);
- psp->decllnslot = &psp->gp->acceptln;
- }else if( strcmp(x,"parse_failure")==0 ){
- psp->declargslot = &(psp->gp->failure);
- psp->decllnslot = &psp->gp->failureln;
- }else if( strcmp(x,"stack_overflow")==0 ){
- psp->declargslot = &(psp->gp->overflow);
- psp->decllnslot = &psp->gp->overflowln;
- }else if( strcmp(x,"extra_argument")==0 ){
- psp->declargslot = &(psp->gp->arg);
- }else if( strcmp(x,"token_type")==0 ){
- psp->declargslot = &(psp->gp->tokentype);
- }else if( strcmp(x,"default_type")==0 ){
- psp->declargslot = &(psp->gp->vartype);
- }else if( strcmp(x,"stack_size")==0 ){
- psp->declargslot = &(psp->gp->stacksize);
- }else if( strcmp(x,"start_symbol")==0 ){
- psp->declargslot = &(psp->gp->start);
- }else if( strcmp(x,"left")==0 ){
- psp->preccounter++;
- psp->declassoc = LEFT;
- psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
- }else if( strcmp(x,"right")==0 ){
- psp->preccounter++;
- psp->declassoc = RIGHT;
- psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
- }else if( strcmp(x,"nonassoc")==0 ){
- psp->preccounter++;
- psp->declassoc = NONE;
- psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
- }else if( strcmp(x,"destructor")==0 ){
- psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
- }else if( strcmp(x,"type")==0 ){
- psp->state = WAITING_FOR_DATATYPE_SYMBOL;
- }else if( strcmp(x,"fallback")==0 ){
- psp->fallback = 0;
- psp->state = WAITING_FOR_FALLBACK_ID;
- }else if( strcmp(x,"wildcard")==0 ){
- psp->state = WAITING_FOR_WILDCARD_ID;
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Unknown declaration keyword: \"%%%s\".",x);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_DECL_ERROR;
- }
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Illegal declaration keyword: \"%s\".",x);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_DECL_ERROR;
- }
- break;
- case WAITING_FOR_DESTRUCTOR_SYMBOL:
- if( !isalpha(x[0]) ){
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Symbol name missing after %destructor keyword");
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_DECL_ERROR;
- }else{
- struct symbol *sp = Symbol_new(x);
- psp->declargslot = &sp->destructor;
- psp->decllnslot = &sp->destructorln;
- psp->state = WAITING_FOR_DECL_ARG;
- }
- break;
- case WAITING_FOR_DATATYPE_SYMBOL:
- if( !isalpha(x[0]) ){
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Symbol name missing after %destructor keyword");
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_DECL_ERROR;
- }else{
- struct symbol *sp = Symbol_new(x);
- psp->declargslot = &sp->datatype;
- psp->decllnslot = 0;
- psp->state = WAITING_FOR_DECL_ARG;
- }
- break;
- case WAITING_FOR_PRECEDENCE_SYMBOL:
- if( x[0]=='.' ){
- psp->state = WAITING_FOR_DECL_OR_RULE;
- }else if( isupper(x[0]) ){
- struct symbol *sp;
- sp = Symbol_new(x);
- if( sp->prec>=0 ){
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Symbol \"%s\" has already be given a precedence.",x);
- psp->errorcnt++;
- }else{
- sp->prec = psp->preccounter;
- sp->assoc = psp->declassoc;
- }
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Can't assign a precedence to \"%s\".",x);
- psp->errorcnt++;
- }
- break;
- case WAITING_FOR_DECL_ARG:
- if( (x[0]=='{' || x[0]=='\"' || isalnum(x[0])) ){
- if( *(psp->declargslot)!=0 ){
- ErrorMsg(psp->filename,psp->tokenlineno,
- "The argument \"%s\" to declaration \"%%%s\" is not the first.",
- x[0]=='\"' ? &x[1] : x,psp->declkeyword);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_DECL_ERROR;
- }else{
- *(psp->declargslot) = (x[0]=='\"' || x[0]=='{') ? &x[1] : x;
- if( psp->decllnslot ) *psp->decllnslot = psp->tokenlineno;
- psp->state = WAITING_FOR_DECL_OR_RULE;
- }
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Illegal argument to %%%s: %s",psp->declkeyword,x);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_DECL_ERROR;
- }
- break;
- case WAITING_FOR_FALLBACK_ID:
- if( x[0]=='.' ){
- psp->state = WAITING_FOR_DECL_OR_RULE;
- }else if( !isupper(x[0]) ){
- ErrorMsg(psp->filename, psp->tokenlineno,
- "%%fallback argument \"%s\" should be a token", x);
- psp->errorcnt++;
- }else{
- struct symbol *sp = Symbol_new(x);
- if( psp->fallback==0 ){
- psp->fallback = sp;
- }else if( sp->fallback ){
- ErrorMsg(psp->filename, psp->tokenlineno,
- "More than one fallback assigned to token %s", x);
- psp->errorcnt++;
- }else{
- sp->fallback = psp->fallback;
- psp->gp->has_fallback = 1;
- }
- }
- break;
- case WAITING_FOR_WILDCARD_ID:
- if( x[0]=='.' ){
- psp->state = WAITING_FOR_DECL_OR_RULE;
- }else if( !isupper(x[0]) ){
- ErrorMsg(psp->filename, psp->tokenlineno,
- "%%wildcard argument \"%s\" should be a token", x);
- psp->errorcnt++;
- }else{
- struct symbol *sp = Symbol_new(x);
- if( psp->gp->wildcard==0 ){
- psp->gp->wildcard = sp;
- }else{
- ErrorMsg(psp->filename, psp->tokenlineno,
- "Extra wildcard to token: %s", x);
- psp->errorcnt++;
- }
- }
- break;
- case RESYNC_AFTER_RULE_ERROR:
-/* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
-** break; */
- case RESYNC_AFTER_DECL_ERROR:
- if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
- if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
- break;
- }
-}
-
-/* Run the proprocessor over the input file text. The global variables
-** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
-** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and
-** comments them out. Text in between is also commented out as appropriate.
-*/
-static void preprocess_input(char *z){
- int i, j, k, n;
- int exclude = 0;
- int start;
- int lineno = 1;
- int start_lineno;
- for(i=0; z[i]; i++){
- if( z[i]=='\n' ) lineno++;
- if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue;
- if( strncmp(&z[i],"%endif",6)==0 && isspace(z[i+6]) ){
- if( exclude ){
- exclude--;
- if( exclude==0 ){
- for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
- }
- }
- for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
- }else if( (strncmp(&z[i],"%ifdef",6)==0 && isspace(z[i+6]))
- || (strncmp(&z[i],"%ifndef",7)==0 && isspace(z[i+7])) ){
- if( exclude ){
- exclude++;
- }else{
- for(j=i+7; isspace(z[j]); j++){}
- for(n=0; z[j+n] && !isspace(z[j+n]); n++){}
- exclude = 1;
- for(k=0; k<nDefine; k++){
- if( strncmp(azDefine[k],&z[j],n)==0 && strlen(azDefine[k])==n ){
- exclude = 0;
- break;
- }
- }
- if( z[i+3]=='n' ) exclude = !exclude;
- if( exclude ){
- start = i;
- start_lineno = lineno;
- }
- }
- for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
- }
- }
- if( exclude ){
- fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno);
- exit(1);
- }
-}
-
-/* In spite of its name, this function is really a scanner. It read
-** in the entire input file (all at once) then tokenizes it. Each
-** token is passed to the function "parseonetoken" which builds all
-** the appropriate data structures in the global state vector "gp".
-*/
-void Parse(gp)
-struct lemon *gp;
-{
- struct pstate ps;
- FILE *fp;
- char *filebuf;
- int filesize;
- int lineno;
- int c;
- char *cp, *nextcp;
- int startline = 0;
-
- ps.gp = gp;
- ps.filename = gp->filename;
- ps.errorcnt = 0;
- ps.state = INITIALIZE;
-
- /* Begin by reading the input file */
- fp = fopen(ps.filename,"rb");
- if( fp==0 ){
- ErrorMsg(ps.filename,0,"Can't open this file for reading.");
- gp->errorcnt++;
- return;
- }
- fseek(fp,0,2);
- filesize = ftell(fp);
- rewind(fp);
- filebuf = (char *)malloc( filesize+1 );
- if( filebuf==0 ){
- ErrorMsg(ps.filename,0,"Can't allocate %d of memory to hold this file.",
- filesize+1);
- gp->errorcnt++;
- return;
- }
- if( fread(filebuf,1,filesize,fp)!=filesize ){
- ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
- filesize);
- free(filebuf);
- gp->errorcnt++;
- return;
- }
- fclose(fp);
- filebuf[filesize] = 0;
-
- /* Make an initial pass through the file to handle %ifdef and %ifndef */
- preprocess_input(filebuf);
-
- /* Now scan the text of the input file */
- lineno = 1;
- for(cp=filebuf; (c= *cp)!=0; ){
- if( c=='\n' ) lineno++; /* Keep track of the line number */
- if( isspace(c) ){ cp++; continue; } /* Skip all white space */
- if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */
- cp+=2;
- while( (c= *cp)!=0 && c!='\n' ) cp++;
- continue;
- }
- if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */
- cp+=2;
- while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
- if( c=='\n' ) lineno++;
- cp++;
- }
- if( c ) cp++;
- continue;
- }
- ps.tokenstart = cp; /* Mark the beginning of the token */
- ps.tokenlineno = lineno; /* Linenumber on which token begins */
- if( c=='\"' ){ /* String literals */
- cp++;
- while( (c= *cp)!=0 && c!='\"' ){
- if( c=='\n' ) lineno++;
- cp++;
- }
- if( c==0 ){
- ErrorMsg(ps.filename,startline,
-"String starting on this line is not terminated before the end of the file.");
- ps.errorcnt++;
- nextcp = cp;
- }else{
- nextcp = cp+1;
- }
- }else if( c=='{' ){ /* A block of C code */
- int level;
- cp++;
- for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
- if( c=='\n' ) lineno++;
- else if( c=='{' ) level++;
- else if( c=='}' ) level--;
- else if( c=='/' && cp[1]=='*' ){ /* Skip comments */
- int prevc;
- cp = &cp[2];
- prevc = 0;
- while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
- if( c=='\n' ) lineno++;
- prevc = c;
- cp++;
- }
- }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */
- cp = &cp[2];
- while( (c= *cp)!=0 && c!='\n' ) cp++;
- if( c ) lineno++;
- }else if( c=='\'' || c=='\"' ){ /* String a character literals */
- int startchar, prevc;
- startchar = c;
- prevc = 0;
- for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
- if( c=='\n' ) lineno++;
- if( prevc=='\\' ) prevc = 0;
- else prevc = c;
- }
- }
- }
- if( c==0 ){
- ErrorMsg(ps.filename,ps.tokenlineno,
-"C code starting on this line is not terminated before the end of the file.");
- ps.errorcnt++;
- nextcp = cp;
- }else{
- nextcp = cp+1;
- }
- }else if( isalnum(c) ){ /* Identifiers */
- while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
- nextcp = cp;
- }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
- cp += 3;
- nextcp = cp;
- }else if( (c=='/' || c=='|') && isalpha(cp[1]) ){
- cp += 2;
- while( (c = *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
- nextcp = cp;
- }else{ /* All other (one character) operators */
- cp++;
- nextcp = cp;
- }
- c = *cp;
- *cp = 0; /* Null terminate the token */
- parseonetoken(&ps); /* Parse the token */
- *cp = c; /* Restore the buffer */
- cp = nextcp;
- }
- free(filebuf); /* Release the buffer after parsing */
- gp->rule = ps.firstrule;
- gp->errorcnt = ps.errorcnt;
-}
-/*************************** From the file "plink.c" *********************/
-/*
-** Routines processing configuration follow-set propagation links
-** in the LEMON parser generator.
-*/
-static struct plink *plink_freelist = 0;
-
-/* Allocate a new plink */
-struct plink *Plink_new(){
- struct plink *new;
-
- if( plink_freelist==0 ){
- int i;
- int amt = 100;
- plink_freelist = (struct plink *)malloc( sizeof(struct plink)*amt );
- if( plink_freelist==0 ){
- fprintf(stderr,
- "Unable to allocate memory for a new follow-set propagation link.\n");
- exit(1);
- }
- for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
- plink_freelist[amt-1].next = 0;
- }
- new = plink_freelist;
- plink_freelist = plink_freelist->next;
- return new;
-}
-
-/* Add a plink to a plink list */
-void Plink_add(plpp,cfp)
-struct plink **plpp;
-struct config *cfp;
-{
- struct plink *new;
- new = Plink_new();
- new->next = *plpp;
- *plpp = new;
- new->cfp = cfp;
-}
-
-/* Transfer every plink on the list "from" to the list "to" */
-void Plink_copy(to,from)
-struct plink **to;
-struct plink *from;
-{
- struct plink *nextpl;
- while( from ){
- nextpl = from->next;
- from->next = *to;
- *to = from;
- from = nextpl;
- }
-}
-
-/* Delete every plink on the list */
-void Plink_delete(plp)
-struct plink *plp;
-{
- struct plink *nextpl;
-
- while( plp ){
- nextpl = plp->next;
- plp->next = plink_freelist;
- plink_freelist = plp;
- plp = nextpl;
- }
-}
-/*********************** From the file "report.c" **************************/
-/*
-** Procedures for generating reports and tables in the LEMON parser generator.
-*/
-
-/* Generate a filename with the given suffix. Space to hold the
-** name comes from malloc() and must be freed by the calling
-** function.
-*/
-PRIVATE char *file_makename(lemp,suffix)
-struct lemon *lemp;
-char *suffix;
-{
- char *name;
- char *cp;
-
- name = malloc( strlen(lemp->filename) + strlen(suffix) + 5 );
- if( name==0 ){
- fprintf(stderr,"Can't allocate space for a filename.\n");
- exit(1);
- }
- strcpy(name,lemp->filename);
- cp = strrchr(name,'.');
- if( cp ) *cp = 0;
- strcat(name,suffix);
- return name;
-}
-
-/* Open a file with a name based on the name of the input file,
-** but with a different (specified) suffix, and return a pointer
-** to the stream */
-PRIVATE FILE *file_open(lemp,suffix,mode)
-struct lemon *lemp;
-char *suffix;
-char *mode;
-{
- FILE *fp;
-
- if( lemp->outname ) free(lemp->outname);
- lemp->outname = file_makename(lemp, suffix);
- fp = fopen(lemp->outname,mode);
- if( fp==0 && *mode=='w' ){
- fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
- lemp->errorcnt++;
- return 0;
- }
- return fp;
-}
-
-/* Duplicate the input file without comments and without actions
-** on rules */
-void Reprint(lemp)
-struct lemon *lemp;
-{
- struct rule *rp;
- struct symbol *sp;
- int i, j, maxlen, len, ncolumns, skip;
- printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
- maxlen = 10;
- for(i=0; i<lemp->nsymbol; i++){
- sp = lemp->symbols[i];
- len = strlen(sp->name);
- if( len>maxlen ) maxlen = len;
- }
- ncolumns = 76/(maxlen+5);
- if( ncolumns<1 ) ncolumns = 1;
- skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
- for(i=0; i<skip; i++){
- printf("//");
- for(j=i; j<lemp->nsymbol; j+=skip){
- sp = lemp->symbols[j];
- assert( sp->index==j );
- printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
- }
- printf("\n");
- }
- for(rp=lemp->rule; rp; rp=rp->next){
- printf("%s",rp->lhs->name);
- /* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */
- printf(" ::=");
- for(i=0; i<rp->nrhs; i++){
- sp = rp->rhs[i];
- printf(" %s", sp->name);
- if( sp->type==MULTITERMINAL ){
- for(j=1; j<sp->nsubsym; j++){
- printf("|%s", sp->subsym[j]->name);
- }
- }
- /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */
- }
- printf(".");
- if( rp->precsym ) printf(" [%s]",rp->precsym->name);
- /* if( rp->code ) printf("\n %s",rp->code); */
- printf("\n");
- }
-}
-
-void ConfigPrint(fp,cfp)
-FILE *fp;
-struct config *cfp;
-{
- struct rule *rp;
- struct symbol *sp;
- int i, j;
- rp = cfp->rp;
- fprintf(fp,"%s ::=",rp->lhs->name);
- for(i=0; i<=rp->nrhs; i++){
- if( i==cfp->dot ) fprintf(fp," *");
- if( i==rp->nrhs ) break;
- sp = rp->rhs[i];
- fprintf(fp," %s", sp->name);
- if( sp->type==MULTITERMINAL ){
- for(j=1; j<sp->nsubsym; j++){
- fprintf(fp,"|%s",sp->subsym[j]->name);
- }
- }
- }
-}
-
-/* #define TEST */
-#if 0
-/* Print a set */
-PRIVATE void SetPrint(out,set,lemp)
-FILE *out;
-char *set;
-struct lemon *lemp;
-{
- int i;
- char *spacer;
- spacer = "";
- fprintf(out,"%12s[","");
- for(i=0; i<lemp->nterminal; i++){
- if( SetFind(set,i) ){
- fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
- spacer = " ";
- }
- }
- fprintf(out,"]\n");
-}
-
-/* Print a plink chain */
-PRIVATE void PlinkPrint(out,plp,tag)
-FILE *out;
-struct plink *plp;
-char *tag;
-{
- while( plp ){
- fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum);
- ConfigPrint(out,plp->cfp);
- fprintf(out,"\n");
- plp = plp->next;
- }
-}
-#endif
-
-/* Print an action to the given file descriptor. Return FALSE if
-** nothing was actually printed.
-*/
-int PrintAction(struct action *ap, FILE *fp, int indent){
- int result = 1;
- switch( ap->type ){
- case SHIFT:
- fprintf(fp,"%*s shift %d",indent,ap->sp->name,ap->x.stp->statenum);
- break;
- case REDUCE:
- fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index);
- break;
- case ACCEPT:
- fprintf(fp,"%*s accept",indent,ap->sp->name);
- break;
- case ERROR:
- fprintf(fp,"%*s error",indent,ap->sp->name);
- break;
- case CONFLICT:
- fprintf(fp,"%*s reduce %-3d ** Parsing conflict **",
- indent,ap->sp->name,ap->x.rp->index);
- break;
- case SH_RESOLVED:
- case RD_RESOLVED:
- case NOT_USED:
- result = 0;
- break;
- }
- return result;
-}
-
-/* Generate the "y.output" log file */
-void ReportOutput(lemp)
-struct lemon *lemp;
-{
- int i;
- struct state *stp;
- struct config *cfp;
- struct action *ap;
- FILE *fp;
-
- fp = file_open(lemp,".out","wb");
- if( fp==0 ) return;
- fprintf(fp," \b");
- for(i=0; i<lemp->nstate; i++){
- stp = lemp->sorted[i];
- fprintf(fp,"State %d:\n",stp->statenum);
- if( lemp->basisflag ) cfp=stp->bp;
- else cfp=stp->cfp;
- while( cfp ){
- char buf[20];
- if( cfp->dot==cfp->rp->nrhs ){
- sprintf(buf,"(%d)",cfp->rp->index);
- fprintf(fp," %5s ",buf);
- }else{
- fprintf(fp," ");
- }
- ConfigPrint(fp,cfp);
- fprintf(fp,"\n");
-#if 0
- SetPrint(fp,cfp->fws,lemp);
- PlinkPrint(fp,cfp->fplp,"To ");
- PlinkPrint(fp,cfp->bplp,"From");
-#endif
- if( lemp->basisflag ) cfp=cfp->bp;
- else cfp=cfp->next;
- }
- fprintf(fp,"\n");
- for(ap=stp->ap; ap; ap=ap->next){
- if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
- }
- fprintf(fp,"\n");
- }
- fclose(fp);
- return;
-}
-
-/* Search for the file "name" which is in the same directory as
-** the exacutable */
-PRIVATE char *pathsearch(argv0,name,modemask)
-char *argv0;
-char *name;
-int modemask;
-{
- char *pathlist;
- char *path,*cp;
- char c;
- extern int access();
-
-#ifdef __WIN32__
- cp = strrchr(argv0,'\\');
-#else
- cp = strrchr(argv0,'/');
-#endif
- if( cp ){
- c = *cp;
- *cp = 0;
- path = (char *)malloc( strlen(argv0) + strlen(name) + 2 );
- if( path ) sprintf(path,"%s/%s",argv0,name);
- *cp = c;
- }else{
- extern char *getenv();
- pathlist = getenv("PATH");
- if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
- path = (char *)malloc( strlen(pathlist)+strlen(name)+2 );
- if( path!=0 ){
- while( *pathlist ){
- cp = strchr(pathlist,':');
- if( cp==0 ) cp = &pathlist[strlen(pathlist)];
- c = *cp;
- *cp = 0;
- sprintf(path,"%s/%s",pathlist,name);
- *cp = c;
- if( c==0 ) pathlist = "";
- else pathlist = &cp[1];
- if( access(path,modemask)==0 ) break;
- }
- }
- }
- return path;
-}
-
-/* Given an action, compute the integer value for that action
-** which is to be put in the action table of the generated machine.
-** Return negative if no action should be generated.
-*/
-PRIVATE int compute_action(lemp,ap)
-struct lemon *lemp;
-struct action *ap;
-{
- int act;
- switch( ap->type ){
- case SHIFT: act = ap->x.stp->statenum; break;
- case REDUCE: act = ap->x.rp->index + lemp->nstate; break;
- case ERROR: act = lemp->nstate + lemp->nrule; break;
- case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break;
- default: act = -1; break;
- }
- return act;
-}
-
-#define LINESIZE 1000
-/* The next cluster of routines are for reading the template file
-** and writing the results to the generated parser */
-/* The first function transfers data from "in" to "out" until
-** a line is seen which begins with "%%". The line number is
-** tracked.
-**
-** if name!=0, then any word that begin with "Parse" is changed to
-** begin with *name instead.
-*/
-PRIVATE void tplt_xfer(name,in,out,lineno)
-char *name;
-FILE *in;
-FILE *out;
-int *lineno;
-{
- int i, iStart;
- char line[LINESIZE];
- while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
- (*lineno)++;
- iStart = 0;
- if( name ){
- for(i=0; line[i]; i++){
- if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
- && (i==0 || !isalpha(line[i-1]))
- ){
- if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
- fprintf(out,"%s",name);
- i += 4;
- iStart = i+1;
- }
- }
- }
- fprintf(out,"%s",&line[iStart]);
- }
-}
-
-/* The next function finds the template file and opens it, returning
-** a pointer to the opened file. */
-PRIVATE FILE *tplt_open(lemp)
-struct lemon *lemp;
-{
- static char templatename[] = "lempar.c";
- char buf[1000];
- FILE *in;
- char *tpltname;
- char *cp;
-
- cp = strrchr(lemp->filename,'.');
- if( cp ){
- sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
- }else{
- sprintf(buf,"%s.lt",lemp->filename);
- }
- if( access(buf,004)==0 ){
- tpltname = buf;
- }else if( access(templatename,004)==0 ){
- tpltname = templatename;
- }else{
- tpltname = pathsearch(lemp->argv0,templatename,0);
- }
- if( tpltname==0 ){
- fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
- templatename);
- lemp->errorcnt++;
- return 0;
- }
- in = fopen(tpltname,"rb");
- if( in==0 ){
- fprintf(stderr,"Can't open the template file \"%s\".\n",templatename);
- lemp->errorcnt++;
- return 0;
- }
- return in;
-}
-
-/* Print a #line directive line to the output file. */
-PRIVATE void tplt_linedir(out,lineno,filename)
-FILE *out;
-int lineno;
-char *filename;
-{
- fprintf(out,"#line %d \"",lineno);
- while( *filename ){
- if( *filename == '\\' ) putc('\\',out);
- putc(*filename,out);
- filename++;
- }
- fprintf(out,"\"\n");
-}
-
-/* Print a string to the file and keep the linenumber up to date */
-PRIVATE void tplt_print(out,lemp,str,strln,lineno)
-FILE *out;
-struct lemon *lemp;
-char *str;
-int strln;
-int *lineno;
-{
- if( str==0 ) return;
- tplt_linedir(out,strln,lemp->filename);
- (*lineno)++;
- while( *str ){
- if( *str=='\n' ) (*lineno)++;
- putc(*str,out);
- str++;
- }
- if( str[-1]!='\n' ){
- putc('\n',out);
- (*lineno)++;
- }
- tplt_linedir(out,*lineno+2,lemp->outname);
- (*lineno)+=2;
- return;
-}
-
-/*
-** The following routine emits code for the destructor for the
-** symbol sp
-*/
-void emit_destructor_code(out,sp,lemp,lineno)
-FILE *out;
-struct symbol *sp;
-struct lemon *lemp;
-int *lineno;
-{
- char *cp = 0;
-
- int linecnt = 0;
- if( sp->type==TERMINAL ){
- cp = lemp->tokendest;
- if( cp==0 ) return;
- tplt_linedir(out,lemp->tokendestln,lemp->filename);
- fprintf(out,"{");
- }else if( sp->destructor ){
- cp = sp->destructor;
- tplt_linedir(out,sp->destructorln,lemp->filename);
- fprintf(out,"{");
- }else if( lemp->vardest ){
- cp = lemp->vardest;
- if( cp==0 ) return;
- tplt_linedir(out,lemp->vardestln,lemp->filename);
- fprintf(out,"{");
- }else{
- assert( 0 ); /* Cannot happen */
- }
- for(; *cp; cp++){
- if( *cp=='$' && cp[1]=='$' ){
- fprintf(out,"(yypminor->yy%d)",sp->dtnum);
- cp++;
- continue;
- }
- if( *cp=='\n' ) linecnt++;
- fputc(*cp,out);
- }
- (*lineno) += 3 + linecnt;
- fprintf(out,"}\n");
- tplt_linedir(out,*lineno,lemp->outname);
- return;
-}
-
-/*
-** Return TRUE (non-zero) if the given symbol has a destructor.
-*/
-int has_destructor(sp, lemp)
-struct symbol *sp;
-struct lemon *lemp;
-{
- int ret;
- if( sp->type==TERMINAL ){
- ret = lemp->tokendest!=0;
- }else{
- ret = lemp->vardest!=0 || sp->destructor!=0;
- }
- return ret;
-}
-
-/*
-** Append text to a dynamically allocated string. If zText is 0 then
-** reset the string to be empty again. Always return the complete text
-** of the string (which is overwritten with each call).
-**
-** n bytes of zText are stored. If n==0 then all of zText up to the first
-** \000 terminator is stored. zText can contain up to two instances of
-** %d. The values of p1 and p2 are written into the first and second
-** %d.
-**
-** If n==-1, then the previous character is overwritten.
-*/
-PRIVATE char *append_str(char *zText, int n, int p1, int p2){
- static char *z = 0;
- static int alloced = 0;
- static int used = 0;
- int c;
- char zInt[40];
-
- if( zText==0 ){
- used = 0;
- return z;
- }
- if( n<=0 ){
- if( n<0 ){
- used += n;
- assert( used>=0 );
- }
- n = strlen(zText);
- }
- if( n+sizeof(zInt)*2+used >= alloced ){
- alloced = n + sizeof(zInt)*2 + used + 200;
- z = realloc(z, alloced);
- }
- if( z==0 ) return "";
- while( n-- > 0 ){
- c = *(zText++);
- if( c=='%' && zText[0]=='d' ){
- sprintf(zInt, "%d", p1);
- p1 = p2;
- strcpy(&z[used], zInt);
- used += strlen(&z[used]);
- zText++;
- n--;
- }else{
- z[used++] = c;
- }
- }
- z[used] = 0;
- return z;
-}
-
-/*
-** zCode is a string that is the action associated with a rule. Expand
-** the symbols in this string so that the refer to elements of the parser
-** stack.
-*/
-PRIVATE void translate_code(struct lemon *lemp, struct rule *rp){
- char *cp, *xp;
- int i;
- char lhsused = 0; /* True if the LHS element has been used */
- char used[MAXRHS]; /* True for each RHS element which is used */
-
- for(i=0; i<rp->nrhs; i++) used[i] = 0;
- lhsused = 0;
-
- append_str(0,0,0,0);
- for(cp=rp->code; *cp; cp++){
- if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){
- char saved;
- for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++);
- saved = *xp;
- *xp = 0;
- if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
- append_str("yygotominor.yy%d",0,rp->lhs->dtnum,0);
- cp = xp;
- lhsused = 1;
- }else{
- for(i=0; i<rp->nrhs; i++){
- if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
- if( cp!=rp->code && cp[-1]=='@' ){
- /* If the argument is of the form @X then substituted
- ** the token number of X, not the value of X */
- append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0);
- }else{
- struct symbol *sp = rp->rhs[i];
- int dtnum;
- if( sp->type==MULTITERMINAL ){
- dtnum = sp->subsym[0]->dtnum;
- }else{
- dtnum = sp->dtnum;
- }
- append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum);
- }
- cp = xp;
- used[i] = 1;
- break;
- }
- }
- }
- *xp = saved;
- }
- append_str(cp, 1, 0, 0);
- } /* End loop */
-
- /* Check to make sure the LHS has been used */
- if( rp->lhsalias && !lhsused ){
- ErrorMsg(lemp->filename,rp->ruleline,
- "Label \"%s\" for \"%s(%s)\" is never used.",
- rp->lhsalias,rp->lhs->name,rp->lhsalias);
- lemp->errorcnt++;
- }
-
- /* Generate destructor code for RHS symbols which are not used in the
- ** reduce code */
- for(i=0; i<rp->nrhs; i++){
- if( rp->rhsalias[i] && !used[i] ){
- ErrorMsg(lemp->filename,rp->ruleline,
- "Label %s for \"%s(%s)\" is never used.",
- rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
- lemp->errorcnt++;
- }else if( rp->rhsalias[i]==0 ){
- if( has_destructor(rp->rhs[i],lemp) ){
- append_str(" yy_destructor(%d,&yymsp[%d].minor);\n", 0,
- rp->rhs[i]->index,i-rp->nrhs+1);
- }else{
- /* No destructor defined for this term */
- }
- }
- }
- cp = append_str(0,0,0,0);
- rp->code = Strsafe(cp);
-}
-
-/*
-** Generate code which executes when the rule "rp" is reduced. Write
-** the code to "out". Make sure lineno stays up-to-date.
-*/
-PRIVATE void emit_code(out,rp,lemp,lineno)
-FILE *out;
-struct rule *rp;
-struct lemon *lemp;
-int *lineno;
-{
- char *cp;
- int linecnt = 0;
-
- /* Generate code to do the reduce action */
- if( rp->code ){
- tplt_linedir(out,rp->line,lemp->filename);
- fprintf(out,"{%s",rp->code);
- for(cp=rp->code; *cp; cp++){
- if( *cp=='\n' ) linecnt++;
- } /* End loop */
- (*lineno) += 3 + linecnt;
- fprintf(out,"}\n");
- tplt_linedir(out,*lineno,lemp->outname);
- } /* End if( rp->code ) */
-
- return;
-}
-
-/*
-** Print the definition of the union used for the parser's data stack.
-** This union contains fields for every possible data type for tokens
-** and nonterminals. In the process of computing and printing this
-** union, also set the ".dtnum" field of every terminal and nonterminal
-** symbol.
-*/
-void print_stack_union(out,lemp,plineno,mhflag)
-FILE *out; /* The output stream */
-struct lemon *lemp; /* The main info structure for this parser */
-int *plineno; /* Pointer to the line number */
-int mhflag; /* True if generating makeheaders output */
-{
- int lineno = *plineno; /* The line number of the output */
- char **types; /* A hash table of datatypes */
- int arraysize; /* Size of the "types" array */
- int maxdtlength; /* Maximum length of any ".datatype" field. */
- char *stddt; /* Standardized name for a datatype */
- int i,j; /* Loop counters */
- int hash; /* For hashing the name of a type */
- char *name; /* Name of the parser */
-
- /* Allocate and initialize types[] and allocate stddt[] */
- arraysize = lemp->nsymbol * 2;
- types = (char**)malloc( arraysize * sizeof(char*) );
- for(i=0; i<arraysize; i++) types[i] = 0;
- maxdtlength = 0;
- if( lemp->vartype ){
- maxdtlength = strlen(lemp->vartype);
- }
- for(i=0; i<lemp->nsymbol; i++){
- int len;
- struct symbol *sp = lemp->symbols[i];
- if( sp->datatype==0 ) continue;
- len = strlen(sp->datatype);
- if( len>maxdtlength ) maxdtlength = len;
- }
- stddt = (char*)malloc( maxdtlength*2 + 1 );
- if( types==0 || stddt==0 ){
- fprintf(stderr,"Out of memory.\n");
- exit(1);
- }
-
- /* Build a hash table of datatypes. The ".dtnum" field of each symbol
- ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is
- ** used for terminal symbols. If there is no %default_type defined then
- ** 0 is also used as the .dtnum value for nonterminals which do not specify
- ** a datatype using the %type directive.
- */
- for(i=0; i<lemp->nsymbol; i++){
- struct symbol *sp = lemp->symbols[i];
- char *cp;
- if( sp==lemp->errsym ){
- sp->dtnum = arraysize+1;
- continue;
- }
- if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
- sp->dtnum = 0;
- continue;
- }
- cp = sp->datatype;
- if( cp==0 ) cp = lemp->vartype;
- j = 0;
- while( isspace(*cp) ) cp++;
- while( *cp ) stddt[j++] = *cp++;
- while( j>0 && isspace(stddt[j-1]) ) j--;
- stddt[j] = 0;
- hash = 0;
- for(j=0; stddt[j]; j++){
- hash = hash*53 + stddt[j];
- }
- hash = (hash & 0x7fffffff)%arraysize;
- while( types[hash] ){
- if( strcmp(types[hash],stddt)==0 ){
- sp->dtnum = hash + 1;
- break;
- }
- hash++;
- if( hash>=arraysize ) hash = 0;
- }
- if( types[hash]==0 ){
- sp->dtnum = hash + 1;
- types[hash] = (char*)malloc( strlen(stddt)+1 );
- if( types[hash]==0 ){
- fprintf(stderr,"Out of memory.\n");
- exit(1);
- }
- strcpy(types[hash],stddt);
- }
- }
-
- /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
- name = lemp->name ? lemp->name : "Parse";
- lineno = *plineno;
- if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
- fprintf(out,"#define %sTOKENTYPE %s\n",name,
- lemp->tokentype?lemp->tokentype:"void*"); lineno++;
- if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
- fprintf(out,"typedef union {\n"); lineno++;
- fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++;
- for(i=0; i<arraysize; i++){
- if( types[i]==0 ) continue;
- fprintf(out," %s yy%d;\n",types[i],i+1); lineno++;
- free(types[i]);
- }
- fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++;
- free(stddt);
- free(types);
- fprintf(out,"} YYMINORTYPE;\n"); lineno++;
- *plineno = lineno;
-}
-
-/*
-** Return the name of a C datatype able to represent values between
-** lwr and upr, inclusive.
-*/
-static const char *minimum_size_type(int lwr, int upr){
- if( lwr>=0 ){
- if( upr<=255 ){
- return "unsigned char";
- }else if( upr<65535 ){
- return "unsigned short int";
- }else{
- return "unsigned int";
- }
- }else if( lwr>=-127 && upr<=127 ){
- return "signed char";
- }else if( lwr>=-32767 && upr<32767 ){
- return "short";
- }else{
- return "int";
- }
-}
-
-/*
-** Each state contains a set of token transaction and a set of
-** nonterminal transactions. Each of these sets makes an instance
-** of the following structure. An array of these structures is used
-** to order the creation of entries in the yy_action[] table.
-*/
-struct axset {
- struct state *stp; /* A pointer to a state */
- int isTkn; /* True to use tokens. False for non-terminals */
- int nAction; /* Number of actions */
-};
-
-/*
-** Compare to axset structures for sorting purposes
-*/
-static int axset_compare(const void *a, const void *b){
- struct axset *p1 = (struct axset*)a;
- struct axset *p2 = (struct axset*)b;
- return p2->nAction - p1->nAction;
-}
-
-/* Generate C source code for the parser */
-void ReportTable(lemp, mhflag)
-struct lemon *lemp;
-int mhflag; /* Output in makeheaders format if true */
-{
- FILE *out, *in;
- char line[LINESIZE];
- int lineno;
- struct state *stp;
- struct action *ap;
- struct rule *rp;
- struct acttab *pActtab;
- int i, j, n;
- char *name;
- int mnTknOfst, mxTknOfst;
- int mnNtOfst, mxNtOfst;
- struct axset *ax;
-
- in = tplt_open(lemp);
- if( in==0 ) return;
- out = file_open(lemp,".c","wb");
- if( out==0 ){
- fclose(in);
- return;
- }
- lineno = 1;
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate the include code, if any */
- tplt_print(out,lemp,lemp->include,lemp->includeln,&lineno);
- if( mhflag ){
- char *name = file_makename(lemp, ".h");
- fprintf(out,"#include \"%s\"\n", name); lineno++;
- free(name);
- }
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate #defines for all tokens */
- if( mhflag ){
- char *prefix;
- fprintf(out,"#if INTERFACE\n"); lineno++;
- if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
- else prefix = "";
- for(i=1; i<lemp->nterminal; i++){
- fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
- lineno++;
- }
- fprintf(out,"#endif\n"); lineno++;
- }
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate the defines */
- fprintf(out,"#define YYCODETYPE %s\n",
- minimum_size_type(0, lemp->nsymbol+5)); lineno++;
- fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++;
- fprintf(out,"#define YYACTIONTYPE %s\n",
- minimum_size_type(0, lemp->nstate+lemp->nrule+5)); lineno++;
- if( lemp->wildcard ){
- fprintf(out,"#define YYWILDCARD %d\n",
- lemp->wildcard->index); lineno++;
- }
- print_stack_union(out,lemp,&lineno,mhflag);
- if( lemp->stacksize ){
- if( atoi(lemp->stacksize)<=0 ){
- ErrorMsg(lemp->filename,0,
-"Illegal stack size: [%s]. The stack size should be an integer constant.",
- lemp->stacksize);
- lemp->errorcnt++;
- lemp->stacksize = "100";
- }
- fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++;
- }else{
- fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++;
- }
- if( mhflag ){
- fprintf(out,"#if INTERFACE\n"); lineno++;
- }
- name = lemp->name ? lemp->name : "Parse";
- if( lemp->arg && lemp->arg[0] ){
- int i;
- i = strlen(lemp->arg);
- while( i>=1 && isspace(lemp->arg[i-1]) ) i--;
- while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
- fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++;
- fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++;
- fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n",
- name,lemp->arg,&lemp->arg[i]); lineno++;
- fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n",
- name,&lemp->arg[i],&lemp->arg[i]); lineno++;
- }else{
- fprintf(out,"#define %sARG_SDECL\n",name); lineno++;
- fprintf(out,"#define %sARG_PDECL\n",name); lineno++;
- fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
- fprintf(out,"#define %sARG_STORE\n",name); lineno++;
- }
- if( mhflag ){
- fprintf(out,"#endif\n"); lineno++;
- }
- fprintf(out,"#define YYNSTATE %d\n",lemp->nstate); lineno++;
- fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++;
- fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++;
- fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++;
- if( lemp->has_fallback ){
- fprintf(out,"#define YYFALLBACK 1\n"); lineno++;
- }
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate the action table and its associates:
- **
- ** yy_action[] A single table containing all actions.
- ** yy_lookahead[] A table containing the lookahead for each entry in
- ** yy_action. Used to detect hash collisions.
- ** yy_shift_ofst[] For each state, the offset into yy_action for
- ** shifting terminals.
- ** yy_reduce_ofst[] For each state, the offset into yy_action for
- ** shifting non-terminals after a reduce.
- ** yy_default[] Default action for each state.
- */
-
- /* Compute the actions on all states and count them up */
- ax = malloc( sizeof(ax[0])*lemp->nstate*2 );
- if( ax==0 ){
- fprintf(stderr,"malloc failed\n");
- exit(1);
- }
- for(i=0; i<lemp->nstate; i++){
- stp = lemp->sorted[i];
- ax[i*2].stp = stp;
- ax[i*2].isTkn = 1;
- ax[i*2].nAction = stp->nTknAct;
- ax[i*2+1].stp = stp;
- ax[i*2+1].isTkn = 0;
- ax[i*2+1].nAction = stp->nNtAct;
- }
- mxTknOfst = mnTknOfst = 0;
- mxNtOfst = mnNtOfst = 0;
-
- /* Compute the action table. In order to try to keep the size of the
- ** action table to a minimum, the heuristic of placing the largest action
- ** sets first is used.
- */
- qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare);
- pActtab = acttab_alloc();
- for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){
- stp = ax[i].stp;
- if( ax[i].isTkn ){
- for(ap=stp->ap; ap; ap=ap->next){
- int action;
- if( ap->sp->index>=lemp->nterminal ) continue;
- action = compute_action(lemp, ap);
- if( action<0 ) continue;
- acttab_action(pActtab, ap->sp->index, action);
- }
- stp->iTknOfst = acttab_insert(pActtab);
- if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
- if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
- }else{
- for(ap=stp->ap; ap; ap=ap->next){
- int action;
- if( ap->sp->index<lemp->nterminal ) continue;
- if( ap->sp->index==lemp->nsymbol ) continue;
- action = compute_action(lemp, ap);
- if( action<0 ) continue;
- acttab_action(pActtab, ap->sp->index, action);
- }
- stp->iNtOfst = acttab_insert(pActtab);
- if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
- if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
- }
- }
- free(ax);
-
- /* Output the yy_action table */
- fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++;
- n = acttab_size(pActtab);
- for(i=j=0; i<n; i++){
- int action = acttab_yyaction(pActtab, i);
- if( action<0 ) action = lemp->nsymbol + lemp->nrule + 2;
- if( j==0 ) fprintf(out," /* %5d */ ", i);
- fprintf(out, " %4d,", action);
- if( j==9 || i==n-1 ){
- fprintf(out, "\n"); lineno++;
- j = 0;
- }else{
- j++;
- }
- }
- fprintf(out, "};\n"); lineno++;
-
- /* Output the yy_lookahead table */
- fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++;
- for(i=j=0; i<n; i++){
- int la = acttab_yylookahead(pActtab, i);
- if( la<0 ) la = lemp->nsymbol;
- if( j==0 ) fprintf(out," /* %5d */ ", i);
- fprintf(out, " %4d,", la);
- if( j==9 || i==n-1 ){
- fprintf(out, "\n"); lineno++;
- j = 0;
- }else{
- j++;
- }
- }
- fprintf(out, "};\n"); lineno++;
-
- /* Output the yy_shift_ofst[] table */
- fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++;
- n = lemp->nstate;
- while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
- fprintf(out, "#define YY_SHIFT_MAX %d\n", n-1); lineno++;
- fprintf(out, "static const %s yy_shift_ofst[] = {\n",
- minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++;
- for(i=j=0; i<n; i++){
- int ofst;
- stp = lemp->sorted[i];
- ofst = stp->iTknOfst;
- if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1;
- if( j==0 ) fprintf(out," /* %5d */ ", i);
- fprintf(out, " %4d,", ofst);
- if( j==9 || i==n-1 ){
- fprintf(out, "\n"); lineno++;
- j = 0;
- }else{
- j++;
- }
- }
- fprintf(out, "};\n"); lineno++;
-
- /* Output the yy_reduce_ofst[] table */
- fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
- n = lemp->nstate;
- while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
- fprintf(out, "#define YY_REDUCE_MAX %d\n", n-1); lineno++;
- fprintf(out, "static const %s yy_reduce_ofst[] = {\n",
- minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++;
- for(i=j=0; i<n; i++){
- int ofst;
- stp = lemp->sorted[i];
- ofst = stp->iNtOfst;
- if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
- if( j==0 ) fprintf(out," /* %5d */ ", i);
- fprintf(out, " %4d,", ofst);
- if( j==9 || i==n-1 ){
- fprintf(out, "\n"); lineno++;
- j = 0;
- }else{
- j++;
- }
- }
- fprintf(out, "};\n"); lineno++;
-
- /* Output the default action table */
- fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++;
- n = lemp->nstate;
- for(i=j=0; i<n; i++){
- stp = lemp->sorted[i];
- if( j==0 ) fprintf(out," /* %5d */ ", i);
- fprintf(out, " %4d,", stp->iDflt);
- if( j==9 || i==n-1 ){
- fprintf(out, "\n"); lineno++;
- j = 0;
- }else{
- j++;
- }
- }
- fprintf(out, "};\n"); lineno++;
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate the table of fallback tokens.
- */
- if( lemp->has_fallback ){
- for(i=0; i<lemp->nterminal; i++){
- struct symbol *p = lemp->symbols[i];
- if( p->fallback==0 ){
- fprintf(out, " 0, /* %10s => nothing */\n", p->name);
- }else{
- fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index,
- p->name, p->fallback->name);
- }
- lineno++;
- }
- }
- tplt_xfer(lemp->name, in, out, &lineno);
-
- /* Generate a table containing the symbolic name of every symbol
- */
- for(i=0; i<lemp->nsymbol; i++){
- sprintf(line,"\"%s\",",lemp->symbols[i]->name);
- fprintf(out," %-15s",line);
- if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; }
- }
- if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; }
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate a table containing a text string that describes every
- ** rule in the rule set of the grammer. This information is used
- ** when tracing REDUCE actions.
- */
- for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
- assert( rp->index==i );
- fprintf(out," /* %3d */ \"%s ::=", i, rp->lhs->name);
- for(j=0; j<rp->nrhs; j++){
- struct symbol *sp = rp->rhs[j];
- fprintf(out," %s", sp->name);
- if( sp->type==MULTITERMINAL ){
- int k;
- for(k=1; k<sp->nsubsym; k++){
- fprintf(out,"|%s",sp->subsym[k]->name);
- }
- }
- }
- fprintf(out,"\",\n"); lineno++;
- }
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate code which executes every time a symbol is popped from
- ** the stack while processing errors or while destroying the parser.
- ** (In other words, generate the %destructor actions)
- */
- if( lemp->tokendest ){
- for(i=0; i<lemp->nsymbol; i++){
- struct symbol *sp = lemp->symbols[i];
- if( sp==0 || sp->type!=TERMINAL ) continue;
- fprintf(out," case %d:\n",sp->index); lineno++;
- }
- for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
- if( i<lemp->nsymbol ){
- emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
- fprintf(out," break;\n"); lineno++;
- }
- }
- if( lemp->vardest ){
- struct symbol *dflt_sp = 0;
- for(i=0; i<lemp->nsymbol; i++){
- struct symbol *sp = lemp->symbols[i];
- if( sp==0 || sp->type==TERMINAL ||
- sp->index<=0 || sp->destructor!=0 ) continue;
- fprintf(out," case %d:\n",sp->index); lineno++;
- dflt_sp = sp;
- }
- if( dflt_sp!=0 ){
- emit_destructor_code(out,dflt_sp,lemp,&lineno);
- fprintf(out," break;\n"); lineno++;
- }
- }
- for(i=0; i<lemp->nsymbol; i++){
- struct symbol *sp = lemp->symbols[i];
- if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
- fprintf(out," case %d:\n",sp->index); lineno++;
-
- /* Combine duplicate destructors into a single case */
- for(j=i+1; j<lemp->nsymbol; j++){
- struct symbol *sp2 = lemp->symbols[j];
- if( sp2 && sp2->type!=TERMINAL && sp2->destructor
- && sp2->dtnum==sp->dtnum
- && strcmp(sp->destructor,sp2->destructor)==0 ){
- fprintf(out," case %d:\n",sp2->index); lineno++;
- sp2->destructor = 0;
- }
- }
-
- emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
- fprintf(out," break;\n"); lineno++;
- }
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate code which executes whenever the parser stack overflows */
- tplt_print(out,lemp,lemp->overflow,lemp->overflowln,&lineno);
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate the table of rule information
- **
- ** Note: This code depends on the fact that rules are number
- ** sequentually beginning with 0.
- */
- for(rp=lemp->rule; rp; rp=rp->next){
- fprintf(out," { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++;
- }
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate code which execution during each REDUCE action */
- for(rp=lemp->rule; rp; rp=rp->next){
- if( rp->code ) translate_code(lemp, rp);
- }
- for(rp=lemp->rule; rp; rp=rp->next){
- struct rule *rp2;
- if( rp->code==0 ) continue;
- fprintf(out," case %d:\n",rp->index); lineno++;
- for(rp2=rp->next; rp2; rp2=rp2->next){
- if( rp2->code==rp->code ){
- fprintf(out," case %d:\n",rp2->index); lineno++;
- rp2->code = 0;
- }
- }
- emit_code(out,rp,lemp,&lineno);
- fprintf(out," break;\n"); lineno++;
- }
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate code which executes if a parse fails */
- tplt_print(out,lemp,lemp->failure,lemp->failureln,&lineno);
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate code which executes when a syntax error occurs */
- tplt_print(out,lemp,lemp->error,lemp->errorln,&lineno);
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate code which executes when the parser accepts its input */
- tplt_print(out,lemp,lemp->accept,lemp->acceptln,&lineno);
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Append any addition code the user desires */
- tplt_print(out,lemp,lemp->extracode,lemp->extracodeln,&lineno);
-
- fclose(in);
- fclose(out);
- return;
-}
-
-/* Generate a header file for the parser */
-void ReportHeader(lemp)
-struct lemon *lemp;
-{
- FILE *out, *in;
- char *prefix;
- char line[LINESIZE];
- char pattern[LINESIZE];
- int i;
-
- if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
- else prefix = "";
- in = file_open(lemp,".h","rb");
- if( in ){
- for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
- sprintf(pattern,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
- if( strcmp(line,pattern) ) break;
- }
- fclose(in);
- if( i==lemp->nterminal ){
- /* No change in the file. Don't rewrite it. */
- return;
- }
- }
- out = file_open(lemp,".h","wb");
- if( out ){
- for(i=1; i<lemp->nterminal; i++){
- fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
- }
- fclose(out);
- }
- return;
-}
-
-/* Reduce the size of the action tables, if possible, by making use
-** of defaults.
-**
-** In this version, we take the most frequent REDUCE action and make
-** it the default. Except, there is no default if the wildcard token
-** is a possible look-ahead.
-*/
-void CompressTables(lemp)
-struct lemon *lemp;
-{
- struct state *stp;
- struct action *ap, *ap2;
- struct rule *rp, *rp2, *rbest;
- int nbest, n;
- int i;
- int usesWildcard;
-
- for(i=0; i<lemp->nstate; i++){
- stp = lemp->sorted[i];
- nbest = 0;
- rbest = 0;
- usesWildcard = 0;
-
- for(ap=stp->ap; ap; ap=ap->next){
- if( ap->type==SHIFT && ap->sp==lemp->wildcard ){
- usesWildcard = 1;
- }
- if( ap->type!=REDUCE ) continue;
- rp = ap->x.rp;
- if( rp==rbest ) continue;
- n = 1;
- for(ap2=ap->next; ap2; ap2=ap2->next){
- if( ap2->type!=REDUCE ) continue;
- rp2 = ap2->x.rp;
- if( rp2==rbest ) continue;
- if( rp2==rp ) n++;
- }
- if( n>nbest ){
- nbest = n;
- rbest = rp;
- }
- }
-
- /* Do not make a default if the number of rules to default
- ** is not at least 1 or if the wildcard token is a possible
- ** lookahead.
- */
- if( nbest<1 || usesWildcard ) continue;
-
-
- /* Combine matching REDUCE actions into a single default */
- for(ap=stp->ap; ap; ap=ap->next){
- if( ap->type==REDUCE && ap->x.rp==rbest ) break;
- }
- assert( ap );
- ap->sp = Symbol_new("{default}");
- for(ap=ap->next; ap; ap=ap->next){
- if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
- }
- stp->ap = Action_sort(stp->ap);
- }
-}
-
-
-/*
-** Compare two states for sorting purposes. The smaller state is the
-** one with the most non-terminal actions. If they have the same number
-** of non-terminal actions, then the smaller is the one with the most
-** token actions.
-*/
-static int stateResortCompare(const void *a, const void *b){
- const struct state *pA = *(const struct state**)a;
- const struct state *pB = *(const struct state**)b;
- int n;
-
- n = pB->nNtAct - pA->nNtAct;
- if( n==0 ){
- n = pB->nTknAct - pA->nTknAct;
- }
- return n;
-}
-
-
-/*
-** Renumber and resort states so that states with fewer choices
-** occur at the end. Except, keep state 0 as the first state.
-*/
-void ResortStates(lemp)
-struct lemon *lemp;
-{
- int i;
- struct state *stp;
- struct action *ap;
-
- for(i=0; i<lemp->nstate; i++){
- stp = lemp->sorted[i];
- stp->nTknAct = stp->nNtAct = 0;
- stp->iDflt = lemp->nstate + lemp->nrule;
- stp->iTknOfst = NO_OFFSET;
- stp->iNtOfst = NO_OFFSET;
- for(ap=stp->ap; ap; ap=ap->next){
- if( compute_action(lemp,ap)>=0 ){
- if( ap->sp->index<lemp->nterminal ){
- stp->nTknAct++;
- }else if( ap->sp->index<lemp->nsymbol ){
- stp->nNtAct++;
- }else{
- stp->iDflt = compute_action(lemp, ap);
- }
- }
- }
- }
- qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
- stateResortCompare);
- for(i=0; i<lemp->nstate; i++){
- lemp->sorted[i]->statenum = i;
- }
-}
-
-
-/***************** From the file "set.c" ************************************/
-/*
-** Set manipulation routines for the LEMON parser generator.
-*/
-
-static int size = 0;
-
-/* Set the set size */
-void SetSize(n)
-int n;
-{
- size = n+1;
-}
-
-/* Allocate a new set */
-char *SetNew(){
- char *s;
- int i;
- s = (char*)malloc( size );
- if( s==0 ){
- extern void memory_error();
- memory_error();
- }
- for(i=0; i<size; i++) s[i] = 0;
- return s;
-}
-
-/* Deallocate a set */
-void SetFree(s)
-char *s;
-{
- free(s);
-}
-
-/* Add a new element to the set. Return TRUE if the element was added
-** and FALSE if it was already there. */
-int SetAdd(s,e)
-char *s;
-int e;
-{
- int rv;
- rv = s[e];
- s[e] = 1;
- return !rv;
-}
-
-/* Add every element of s2 to s1. Return TRUE if s1 changes. */
-int SetUnion(s1,s2)
-char *s1;
-char *s2;
-{
- int i, progress;
- progress = 0;
- for(i=0; i<size; i++){
- if( s2[i]==0 ) continue;
- if( s1[i]==0 ){
- progress = 1;
- s1[i] = 1;
- }
- }
- return progress;
-}
-/********************** From the file "table.c" ****************************/
-/*
-** All code in this file has been automatically generated
-** from a specification in the file
-** "table.q"
-** by the associative array code building program "aagen".
-** Do not edit this file! Instead, edit the specification
-** file, then rerun aagen.
-*/
-/*
-** Code for processing tables in the LEMON parser generator.
-*/
-
-PRIVATE int strhash(x)
-char *x;
-{
- int h = 0;
- while( *x) h = h*13 + *(x++);
- return h;
-}
-
-/* Works like strdup, sort of. Save a string in malloced memory, but
-** keep strings in a table so that the same string is not in more
-** than one place.
-*/
-char *Strsafe(y)
-char *y;
-{
- char *z;
-
- if( y==0 ) return 0;
- z = Strsafe_find(y);
- if( z==0 && (z=malloc( strlen(y)+1 ))!=0 ){
- strcpy(z,y);
- Strsafe_insert(z);
- }
- MemoryCheck(z);
- return z;
-}
-
-/* There is one instance of the following structure for each
-** associative array of type "x1".
-*/
-struct s_x1 {
- int size; /* The number of available slots. */
- /* Must be a power of 2 greater than or */
- /* equal to 1 */
- int count; /* Number of currently slots filled */
- struct s_x1node *tbl; /* The data stored here */
- struct s_x1node **ht; /* Hash table for lookups */
-};
-
-/* There is one instance of this structure for every data element
-** in an associative array of type "x1".
-*/
-typedef struct s_x1node {
- char *data; /* The data */
- struct s_x1node *next; /* Next entry with the same hash */
- struct s_x1node **from; /* Previous link */
-} x1node;
-
-/* There is only one instance of the array, which is the following */
-static struct s_x1 *x1a;
-
-/* Allocate a new associative array */
-void Strsafe_init(){
- if( x1a ) return;
- x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
- if( x1a ){
- x1a->size = 1024;
- x1a->count = 0;
- x1a->tbl = (x1node*)malloc(
- (sizeof(x1node) + sizeof(x1node*))*1024 );
- if( x1a->tbl==0 ){
- free(x1a);
- x1a = 0;
- }else{
- int i;
- x1a->ht = (x1node**)&(x1a->tbl[1024]);
- for(i=0; i<1024; i++) x1a->ht[i] = 0;
- }
- }
-}
-/* Insert a new record into the array. Return TRUE if successful.
-** Prior data with the same key is NOT overwritten */
-int Strsafe_insert(data)
-char *data;
-{
- x1node *np;
- int h;
- int ph;
-
- if( x1a==0 ) return 0;
- ph = strhash(data);
- h = ph & (x1a->size-1);
- np = x1a->ht[h];
- while( np ){
- if( strcmp(np->data,data)==0 ){
- /* An existing entry with the same key is found. */
- /* Fail because overwrite is not allows. */
- return 0;
- }
- np = np->next;
- }
- if( x1a->count>=x1a->size ){
- /* Need to make the hash table bigger */
- int i,size;
- struct s_x1 array;
- array.size = size = x1a->size*2;
- array.count = x1a->count;
- array.tbl = (x1node*)malloc(
- (sizeof(x1node) + sizeof(x1node*))*size );
- if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
- array.ht = (x1node**)&(array.tbl[size]);
- for(i=0; i<size; i++) array.ht[i] = 0;
- for(i=0; i<x1a->count; i++){
- x1node *oldnp, *newnp;
- oldnp = &(x1a->tbl[i]);
- h = strhash(oldnp->data) & (size-1);
- newnp = &(array.tbl[i]);
- if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
- newnp->next = array.ht[h];
- newnp->data = oldnp->data;
- newnp->from = &(array.ht[h]);
- array.ht[h] = newnp;
- }
- free(x1a->tbl);
- *x1a = array;
- }
- /* Insert the new data */
- h = ph & (x1a->size-1);
- np = &(x1a->tbl[x1a->count++]);
- np->data = data;
- if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
- np->next = x1a->ht[h];
- x1a->ht[h] = np;
- np->from = &(x1a->ht[h]);
- return 1;
-}
-
-/* Return a pointer to data assigned to the given key. Return NULL
-** if no such key. */
-char *Strsafe_find(key)
-char *key;
-{
- int h;
- x1node *np;
-
- if( x1a==0 ) return 0;
- h = strhash(key) & (x1a->size-1);
- np = x1a->ht[h];
- while( np ){
- if( strcmp(np->data,key)==0 ) break;
- np = np->next;
- }
- return np ? np->data : 0;
-}
-
-/* Return a pointer to the (terminal or nonterminal) symbol "x".
-** Create a new symbol if this is the first time "x" has been seen.
-*/
-struct symbol *Symbol_new(x)
-char *x;
-{
- struct symbol *sp;
-
- sp = Symbol_find(x);
- if( sp==0 ){
- sp = (struct symbol *)malloc( sizeof(struct symbol) );
- MemoryCheck(sp);
- sp->name = Strsafe(x);
- sp->type = isupper(*x) ? TERMINAL : NONTERMINAL;
- sp->rule = 0;
- sp->fallback = 0;
- sp->prec = -1;
- sp->assoc = UNK;
- sp->firstset = 0;
- sp->lambda = B_FALSE;
- sp->destructor = 0;
- sp->datatype = 0;
- Symbol_insert(sp,sp->name);
- }
- return sp;
-}
-
-/* Compare two symbols for working purposes
-**
-** Symbols that begin with upper case letters (terminals or tokens)
-** must sort before symbols that begin with lower case letters
-** (non-terminals). Other than that, the order does not matter.
-**
-** We find experimentally that leaving the symbols in their original
-** order (the order they appeared in the grammar file) gives the
-** smallest parser tables in SQLite.
-*/
-int Symbolcmpp(struct symbol **a, struct symbol **b){
- int i1 = (**a).index + 10000000*((**a).name[0]>'Z');
- int i2 = (**b).index + 10000000*((**b).name[0]>'Z');
- return i1-i2;
-}
-
-/* There is one instance of the following structure for each
-** associative array of type "x2".
-*/
-struct s_x2 {
- int size; /* The number of available slots. */
- /* Must be a power of 2 greater than or */
- /* equal to 1 */
- int count; /* Number of currently slots filled */
- struct s_x2node *tbl; /* The data stored here */
- struct s_x2node **ht; /* Hash table for lookups */
-};
-
-/* There is one instance of this structure for every data element
-** in an associative array of type "x2".
-*/
-typedef struct s_x2node {
- struct symbol *data; /* The data */
- char *key; /* The key */
- struct s_x2node *next; /* Next entry with the same hash */
- struct s_x2node **from; /* Previous link */
-} x2node;
-
-/* There is only one instance of the array, which is the following */
-static struct s_x2 *x2a;
-
-/* Allocate a new associative array */
-void Symbol_init(){
- if( x2a ) return;
- x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
- if( x2a ){
- x2a->size = 128;
- x2a->count = 0;
- x2a->tbl = (x2node*)malloc(
- (sizeof(x2node) + sizeof(x2node*))*128 );
- if( x2a->tbl==0 ){
- free(x2a);
- x2a = 0;
- }else{
- int i;
- x2a->ht = (x2node**)&(x2a->tbl[128]);
- for(i=0; i<128; i++) x2a->ht[i] = 0;
- }
- }
-}
-/* Insert a new record into the array. Return TRUE if successful.
-** Prior data with the same key is NOT overwritten */
-int Symbol_insert(data,key)
-struct symbol *data;
-char *key;
-{
- x2node *np;
- int h;
- int ph;
-
- if( x2a==0 ) return 0;
- ph = strhash(key);
- h = ph & (x2a->size-1);
- np = x2a->ht[h];
- while( np ){
- if( strcmp(np->key,key)==0 ){
- /* An existing entry with the same key is found. */
- /* Fail because overwrite is not allows. */
- return 0;
- }
- np = np->next;
- }
- if( x2a->count>=x2a->size ){
- /* Need to make the hash table bigger */
- int i,size;
- struct s_x2 array;
- array.size = size = x2a->size*2;
- array.count = x2a->count;
- array.tbl = (x2node*)malloc(
- (sizeof(x2node) + sizeof(x2node*))*size );
- if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
- array.ht = (x2node**)&(array.tbl[size]);
- for(i=0; i<size; i++) array.ht[i] = 0;
- for(i=0; i<x2a->count; i++){
- x2node *oldnp, *newnp;
- oldnp = &(x2a->tbl[i]);
- h = strhash(oldnp->key) & (size-1);
- newnp = &(array.tbl[i]);
- if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
- newnp->next = array.ht[h];
- newnp->key = oldnp->key;
- newnp->data = oldnp->data;
- newnp->from = &(array.ht[h]);
- array.ht[h] = newnp;
- }
- free(x2a->tbl);
- *x2a = array;
- }
- /* Insert the new data */
- h = ph & (x2a->size-1);
- np = &(x2a->tbl[x2a->count++]);
- np->key = key;
- np->data = data;
- if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
- np->next = x2a->ht[h];
- x2a->ht[h] = np;
- np->from = &(x2a->ht[h]);
- return 1;
-}
-
-/* Return a pointer to data assigned to the given key. Return NULL
-** if no such key. */
-struct symbol *Symbol_find(key)
-char *key;
-{
- int h;
- x2node *np;
-
- if( x2a==0 ) return 0;
- h = strhash(key) & (x2a->size-1);
- np = x2a->ht[h];
- while( np ){
- if( strcmp(np->key,key)==0 ) break;
- np = np->next;
- }
- return np ? np->data : 0;
-}
-
-/* Return the n-th data. Return NULL if n is out of range. */
-struct symbol *Symbol_Nth(n)
-int n;
-{
- struct symbol *data;
- if( x2a && n>0 && n<=x2a->count ){
- data = x2a->tbl[n-1].data;
- }else{
- data = 0;
- }
- return data;
-}
-
-/* Return the size of the array */
-int Symbol_count()
-{
- return x2a ? x2a->count : 0;
-}
-
-/* Return an array of pointers to all data in the table.
-** The array is obtained from malloc. Return NULL if memory allocation
-** problems, or if the array is empty. */
-struct symbol **Symbol_arrayof()
-{
- struct symbol **array;
- int i,size;
- if( x2a==0 ) return 0;
- size = x2a->count;
- array = (struct symbol **)malloc( sizeof(struct symbol *)*size );
- if( array ){
- for(i=0; i<size; i++) array[i] = x2a->tbl[i].data;
- }
- return array;
-}
-
-/* Compare two configurations */
-int Configcmp(a,b)
-struct config *a;
-struct config *b;
-{
- int x;
- x = a->rp->index - b->rp->index;
- if( x==0 ) x = a->dot - b->dot;
- return x;
-}
-
-/* Compare two states */
-PRIVATE int statecmp(a,b)
-struct config *a;
-struct config *b;
-{
- int rc;
- for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){
- rc = a->rp->index - b->rp->index;
- if( rc==0 ) rc = a->dot - b->dot;
- }
- if( rc==0 ){
- if( a ) rc = 1;
- if( b ) rc = -1;
- }
- return rc;
-}
-
-/* Hash a state */
-PRIVATE int statehash(a)
-struct config *a;
-{
- int h=0;
- while( a ){
- h = h*571 + a->rp->index*37 + a->dot;
- a = a->bp;
- }
- return h;
-}
-
-/* Allocate a new state structure */
-struct state *State_new()
-{
- struct state *new;
- new = (struct state *)malloc( sizeof(struct state) );
- MemoryCheck(new);
- return new;
-}
-
-/* There is one instance of the following structure for each
-** associative array of type "x3".
-*/
-struct s_x3 {
- int size; /* The number of available slots. */
- /* Must be a power of 2 greater than or */
- /* equal to 1 */
- int count; /* Number of currently slots filled */
- struct s_x3node *tbl; /* The data stored here */
- struct s_x3node **ht; /* Hash table for lookups */
-};
-
-/* There is one instance of this structure for every data element
-** in an associative array of type "x3".
-*/
-typedef struct s_x3node {
- struct state *data; /* The data */
- struct config *key; /* The key */
- struct s_x3node *next; /* Next entry with the same hash */
- struct s_x3node **from; /* Previous link */
-} x3node;
-
-/* There is only one instance of the array, which is the following */
-static struct s_x3 *x3a;
-
-/* Allocate a new associative array */
-void State_init(){
- if( x3a ) return;
- x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
- if( x3a ){
- x3a->size = 128;
- x3a->count = 0;
- x3a->tbl = (x3node*)malloc(
- (sizeof(x3node) + sizeof(x3node*))*128 );
- if( x3a->tbl==0 ){
- free(x3a);
- x3a = 0;
- }else{
- int i;
- x3a->ht = (x3node**)&(x3a->tbl[128]);
- for(i=0; i<128; i++) x3a->ht[i] = 0;
- }
- }
-}
-/* Insert a new record into the array. Return TRUE if successful.
-** Prior data with the same key is NOT overwritten */
-int State_insert(data,key)
-struct state *data;
-struct config *key;
-{
- x3node *np;
- int h;
- int ph;
-
- if( x3a==0 ) return 0;
- ph = statehash(key);
- h = ph & (x3a->size-1);
- np = x3a->ht[h];
- while( np ){
- if( statecmp(np->key,key)==0 ){
- /* An existing entry with the same key is found. */
- /* Fail because overwrite is not allows. */
- return 0;
- }
- np = np->next;
- }
- if( x3a->count>=x3a->size ){
- /* Need to make the hash table bigger */
- int i,size;
- struct s_x3 array;
- array.size = size = x3a->size*2;
- array.count = x3a->count;
- array.tbl = (x3node*)malloc(
- (sizeof(x3node) + sizeof(x3node*))*size );
- if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
- array.ht = (x3node**)&(array.tbl[size]);
- for(i=0; i<size; i++) array.ht[i] = 0;
- for(i=0; i<x3a->count; i++){
- x3node *oldnp, *newnp;
- oldnp = &(x3a->tbl[i]);
- h = statehash(oldnp->key) & (size-1);
- newnp = &(array.tbl[i]);
- if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
- newnp->next = array.ht[h];
- newnp->key = oldnp->key;
- newnp->data = oldnp->data;
- newnp->from = &(array.ht[h]);
- array.ht[h] = newnp;
- }
- free(x3a->tbl);
- *x3a = array;
- }
- /* Insert the new data */
- h = ph & (x3a->size-1);
- np = &(x3a->tbl[x3a->count++]);
- np->key = key;
- np->data = data;
- if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
- np->next = x3a->ht[h];
- x3a->ht[h] = np;
- np->from = &(x3a->ht[h]);
- return 1;
-}
-
-/* Return a pointer to data assigned to the given key. Return NULL
-** if no such key. */
-struct state *State_find(key)
-struct config *key;
-{
- int h;
- x3node *np;
-
- if( x3a==0 ) return 0;
- h = statehash(key) & (x3a->size-1);
- np = x3a->ht[h];
- while( np ){
- if( statecmp(np->key,key)==0 ) break;
- np = np->next;
- }
- return np ? np->data : 0;
-}
-
-/* Return an array of pointers to all data in the table.
-** The array is obtained from malloc. Return NULL if memory allocation
-** problems, or if the array is empty. */
-struct state **State_arrayof()
-{
- struct state **array;
- int i,size;
- if( x3a==0 ) return 0;
- size = x3a->count;
- array = (struct state **)malloc( sizeof(struct state *)*size );
- if( array ){
- for(i=0; i<size; i++) array[i] = x3a->tbl[i].data;
- }
- return array;
-}
-
-/* Hash a configuration */
-PRIVATE int confighash(a)
-struct config *a;
-{
- int h=0;
- h = h*571 + a->rp->index*37 + a->dot;
- return h;
-}
-
-/* There is one instance of the following structure for each
-** associative array of type "x4".
-*/
-struct s_x4 {
- int size; /* The number of available slots. */
- /* Must be a power of 2 greater than or */
- /* equal to 1 */
- int count; /* Number of currently slots filled */
- struct s_x4node *tbl; /* The data stored here */
- struct s_x4node **ht; /* Hash table for lookups */
-};
-
-/* There is one instance of this structure for every data element
-** in an associative array of type "x4".
-*/
-typedef struct s_x4node {
- struct config *data; /* The data */
- struct s_x4node *next; /* Next entry with the same hash */
- struct s_x4node **from; /* Previous link */
-} x4node;
-
-/* There is only one instance of the array, which is the following */
-static struct s_x4 *x4a;
-
-/* Allocate a new associative array */
-void Configtable_init(){
- if( x4a ) return;
- x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
- if( x4a ){
- x4a->size = 64;
- x4a->count = 0;
- x4a->tbl = (x4node*)malloc(
- (sizeof(x4node) + sizeof(x4node*))*64 );
- if( x4a->tbl==0 ){
- free(x4a);
- x4a = 0;
- }else{
- int i;
- x4a->ht = (x4node**)&(x4a->tbl[64]);
- for(i=0; i<64; i++) x4a->ht[i] = 0;
- }
- }
-}
-/* Insert a new record into the array. Return TRUE if successful.
-** Prior data with the same key is NOT overwritten */
-int Configtable_insert(data)
-struct config *data;
-{
- x4node *np;
- int h;
- int ph;
-
- if( x4a==0 ) return 0;
- ph = confighash(data);
- h = ph & (x4a->size-1);
- np = x4a->ht[h];
- while( np ){
- if( Configcmp(np->data,data)==0 ){
- /* An existing entry with the same key is found. */
- /* Fail because overwrite is not allows. */
- return 0;
- }
- np = np->next;
- }
- if( x4a->count>=x4a->size ){
- /* Need to make the hash table bigger */
- int i,size;
- struct s_x4 array;
- array.size = size = x4a->size*2;
- array.count = x4a->count;
- array.tbl = (x4node*)malloc(
- (sizeof(x4node) + sizeof(x4node*))*size );
- if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
- array.ht = (x4node**)&(array.tbl[size]);
- for(i=0; i<size; i++) array.ht[i] = 0;
- for(i=0; i<x4a->count; i++){
- x4node *oldnp, *newnp;
- oldnp = &(x4a->tbl[i]);
- h = confighash(oldnp->data) & (size-1);
- newnp = &(array.tbl[i]);
- if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
- newnp->next = array.ht[h];
- newnp->data = oldnp->data;
- newnp->from = &(array.ht[h]);
- array.ht[h] = newnp;
- }
- free(x4a->tbl);
- *x4a = array;
- }
- /* Insert the new data */
- h = ph & (x4a->size-1);
- np = &(x4a->tbl[x4a->count++]);
- np->data = data;
- if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
- np->next = x4a->ht[h];
- x4a->ht[h] = np;
- np->from = &(x4a->ht[h]);
- return 1;
-}
-
-/* Return a pointer to data assigned to the given key. Return NULL
-** if no such key. */
-struct config *Configtable_find(key)
-struct config *key;
-{
- int h;
- x4node *np;
-
- if( x4a==0 ) return 0;
- h = confighash(key) & (x4a->size-1);
- np = x4a->ht[h];
- while( np ){
- if( Configcmp(np->data,key)==0 ) break;
- np = np->next;
- }
- return np ? np->data : 0;
-}
-
-/* Remove all data from the table. Pass each data to the function "f"
-** as it is removed. ("f" may be null to avoid this step.) */
-void Configtable_clear(f)
-int(*f)(/* struct config * */);
-{
- int i;
- if( x4a==0 || x4a->count==0 ) return;
- if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
- for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
- x4a->count = 0;
- return;
-}
diff --git a/ext/pdo_sqlite/sqlite/tool/lempar.c b/ext/pdo_sqlite/sqlite/tool/lempar.c
deleted file mode 100644
index a18c43a24d..0000000000
--- a/ext/pdo_sqlite/sqlite/tool/lempar.c
+++ /dev/null
@@ -1,730 +0,0 @@
-/* Driver template for the LEMON parser generator.
-** The author disclaims copyright to this source code.
-*/
-/* First off, code is include which follows the "include" declaration
-** in the input file. */
-#include <stdio.h>
-%%
-/* Next is all token values, in a form suitable for use by makeheaders.
-** This section will be null unless lemon is run with the -m switch.
-*/
-/*
-** These constants (all generated automatically by the parser generator)
-** specify the various kinds of tokens (terminals) that the parser
-** understands.
-**
-** Each symbol here is a terminal symbol in the grammar.
-*/
-%%
-/* Make sure the INTERFACE macro is defined.
-*/
-#ifndef INTERFACE
-# define INTERFACE 1
-#endif
-/* The next thing included is series of defines which control
-** various aspects of the generated parser.
-** YYCODETYPE is the data type used for storing terminal
-** and nonterminal numbers. "unsigned char" is
-** used if there are fewer than 250 terminals
-** and nonterminals. "int" is used otherwise.
-** YYNOCODE is a number of type YYCODETYPE which corresponds
-** to no legal terminal or nonterminal number. This
-** number is used to fill in empty slots of the hash
-** table.
-** YYFALLBACK If defined, this indicates that one or more tokens
-** have fall-back values which should be used if the
-** original value of the token will not parse.
-** YYACTIONTYPE is the data type used for storing terminal
-** and nonterminal numbers. "unsigned char" is
-** used if there are fewer than 250 rules and
-** states combined. "int" is used otherwise.
-** ParseTOKENTYPE is the data type used for minor tokens given
-** directly to the parser from the tokenizer.
-** YYMINORTYPE is the data type used for all minor tokens.
-** This is typically a union of many types, one of
-** which is ParseTOKENTYPE. The entry in the union
-** for base tokens is called "yy0".
-** YYSTACKDEPTH is the maximum depth of the parser's stack.
-** ParseARG_SDECL A static variable declaration for the %extra_argument
-** ParseARG_PDECL A parameter declaration for the %extra_argument
-** ParseARG_STORE Code to store %extra_argument into yypParser
-** ParseARG_FETCH Code to extract %extra_argument from yypParser
-** YYNSTATE the combined number of states.
-** YYNRULE the number of rules in the grammar
-** YYERRORSYMBOL is the code number of the error symbol. If not
-** defined, then do no error processing.
-*/
-%%
-#define YY_NO_ACTION (YYNSTATE+YYNRULE+2)
-#define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1)
-#define YY_ERROR_ACTION (YYNSTATE+YYNRULE)
-
-/* Next are that tables used to determine what action to take based on the
-** current state and lookahead token. These tables are used to implement
-** functions that take a state number and lookahead value and return an
-** action integer.
-**
-** Suppose the action integer is N. Then the action is determined as
-** follows
-**
-** 0 <= N < YYNSTATE Shift N. That is, push the lookahead
-** token onto the stack and goto state N.
-**
-** YYNSTATE <= N < YYNSTATE+YYNRULE Reduce by rule N-YYNSTATE.
-**
-** N == YYNSTATE+YYNRULE A syntax error has occurred.
-**
-** N == YYNSTATE+YYNRULE+1 The parser accepts its input.
-**
-** N == YYNSTATE+YYNRULE+2 No such action. Denotes unused
-** slots in the yy_action[] table.
-**
-** The action table is constructed as a single large table named yy_action[].
-** Given state S and lookahead X, the action is computed as
-**
-** yy_action[ yy_shift_ofst[S] + X ]
-**
-** If the index value yy_shift_ofst[S]+X is out of range or if the value
-** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X or if yy_shift_ofst[S]
-** is equal to YY_SHIFT_USE_DFLT, it means that the action is not in the table
-** and that yy_default[S] should be used instead.
-**
-** The formula above is for computing the action when the lookahead is
-** a terminal symbol. If the lookahead is a non-terminal (as occurs after
-** a reduce action) then the yy_reduce_ofst[] array is used in place of
-** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of
-** YY_SHIFT_USE_DFLT.
-**
-** The following are the tables generated in this section:
-**
-** yy_action[] A single table containing all actions.
-** yy_lookahead[] A table containing the lookahead for each entry in
-** yy_action. Used to detect hash collisions.
-** yy_shift_ofst[] For each state, the offset into yy_action for
-** shifting terminals.
-** yy_reduce_ofst[] For each state, the offset into yy_action for
-** shifting non-terminals after a reduce.
-** yy_default[] Default action for each state.
-*/
-%%
-#define YY_SZ_ACTTAB (int)(sizeof(yy_action)/sizeof(yy_action[0]))
-
-/* The next table maps tokens into fallback tokens. If a construct
-** like the following:
-**
-** %fallback ID X Y Z.
-**
-** appears in the grammer, then ID becomes a fallback token for X, Y,
-** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
-** but it does not parse, the type of the token is changed to ID and
-** the parse is retried before an error is thrown.
-*/
-#ifdef YYFALLBACK
-static const YYCODETYPE yyFallback[] = {
-%%
-};
-#endif /* YYFALLBACK */
-
-/* The following structure represents a single element of the
-** parser's stack. Information stored includes:
-**
-** + The state number for the parser at this level of the stack.
-**
-** + The value of the token stored at this level of the stack.
-** (In other words, the "major" token.)
-**
-** + The semantic value stored at this level of the stack. This is
-** the information used by the action routines in the grammar.
-** It is sometimes called the "minor" token.
-*/
-struct yyStackEntry {
- int stateno; /* The state-number */
- int major; /* The major token value. This is the code
- ** number for the token at this stack level */
- YYMINORTYPE minor; /* The user-supplied minor token value. This
- ** is the value of the token */
-};
-typedef struct yyStackEntry yyStackEntry;
-
-/* The state of the parser is completely contained in an instance of
-** the following structure */
-struct yyParser {
- int yyidx; /* Index of top element in stack */
- int yyerrcnt; /* Shifts left before out of the error */
- ParseARG_SDECL /* A place to hold %extra_argument */
- yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */
-};
-typedef struct yyParser yyParser;
-
-#ifndef NDEBUG
-#include <stdio.h>
-static FILE *yyTraceFILE = 0;
-static char *yyTracePrompt = 0;
-#endif /* NDEBUG */
-
-#ifndef NDEBUG
-/*
-** Turn parser tracing on by giving a stream to which to write the trace
-** and a prompt to preface each trace message. Tracing is turned off
-** by making either argument NULL
-**
-** Inputs:
-** <ul>
-** <li> A FILE* to which trace output should be written.
-** If NULL, then tracing is turned off.
-** <li> A prefix string written at the beginning of every
-** line of trace output. If NULL, then tracing is
-** turned off.
-** </ul>
-**
-** Outputs:
-** None.
-*/
-void ParseTrace(FILE *TraceFILE, char *zTracePrompt){
- yyTraceFILE = TraceFILE;
- yyTracePrompt = zTracePrompt;
- if( yyTraceFILE==0 ) yyTracePrompt = 0;
- else if( yyTracePrompt==0 ) yyTraceFILE = 0;
-}
-#endif /* NDEBUG */
-
-#ifndef NDEBUG
-/* For tracing shifts, the names of all terminals and nonterminals
-** are required. The following table supplies these names */
-static const char *const yyTokenName[] = {
-%%
-};
-#endif /* NDEBUG */
-
-#ifndef NDEBUG
-/* For tracing reduce actions, the names of all rules are required.
-*/
-static const char *const yyRuleName[] = {
-%%
-};
-#endif /* NDEBUG */
-
-/*
-** This function returns the symbolic name associated with a token
-** value.
-*/
-const char *ParseTokenName(int tokenType){
-#ifndef NDEBUG
- if( tokenType>0 && tokenType<(sizeof(yyTokenName)/sizeof(yyTokenName[0])) ){
- return yyTokenName[tokenType];
- }else{
- return "Unknown";
- }
-#else
- return "";
-#endif
-}
-
-/*
-** This function allocates a new parser.
-** The only argument is a pointer to a function which works like
-** malloc.
-**
-** Inputs:
-** A pointer to the function used to allocate memory.
-**
-** Outputs:
-** A pointer to a parser. This pointer is used in subsequent calls
-** to Parse and ParseFree.
-*/
-void *ParseAlloc(void *(*mallocProc)(size_t)){
- yyParser *pParser;
- pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) );
- if( pParser ){
- pParser->yyidx = -1;
- }
- return pParser;
-}
-
-/* The following function deletes the value associated with a
-** symbol. The symbol can be either a terminal or nonterminal.
-** "yymajor" is the symbol code, and "yypminor" is a pointer to
-** the value.
-*/
-static void yy_destructor(YYCODETYPE yymajor, YYMINORTYPE *yypminor){
- switch( yymajor ){
- /* Here is inserted the actions which take place when a
- ** terminal or non-terminal is destroyed. This can happen
- ** when the symbol is popped from the stack during a
- ** reduce or during error processing or when a parser is
- ** being destroyed before it is finished parsing.
- **
- ** Note: during a reduce, the only symbols destroyed are those
- ** which appear on the RHS of the rule, but which are not used
- ** inside the C code.
- */
-%%
- default: break; /* If no destructor action specified: do nothing */
- }
-}
-
-/*
-** Pop the parser's stack once.
-**
-** If there is a destructor routine associated with the token which
-** is popped from the stack, then call it.
-**
-** Return the major token number for the symbol popped.
-*/
-static int yy_pop_parser_stack(yyParser *pParser){
- YYCODETYPE yymajor;
- yyStackEntry *yytos = &pParser->yystack[pParser->yyidx];
-
- if( pParser->yyidx<0 ) return 0;
-#ifndef NDEBUG
- if( yyTraceFILE && pParser->yyidx>=0 ){
- fprintf(yyTraceFILE,"%sPopping %s\n",
- yyTracePrompt,
- yyTokenName[yytos->major]);
- }
-#endif
- yymajor = yytos->major;
- yy_destructor( yymajor, &yytos->minor);
- pParser->yyidx--;
- return yymajor;
-}
-
-/*
-** Deallocate and destroy a parser. Destructors are all called for
-** all stack elements before shutting the parser down.
-**
-** Inputs:
-** <ul>
-** <li> A pointer to the parser. This should be a pointer
-** obtained from ParseAlloc.
-** <li> A pointer to a function used to reclaim memory obtained
-** from malloc.
-** </ul>
-*/
-void ParseFree(
- void *p, /* The parser to be deleted */
- void (*freeProc)(void*) /* Function used to reclaim memory */
-){
- yyParser *pParser = (yyParser*)p;
- if( pParser==0 ) return;
- while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser);
- (*freeProc)((void*)pParser);
-}
-
-/*
-** Find the appropriate action for a parser given the terminal
-** look-ahead token iLookAhead.
-**
-** If the look-ahead token is YYNOCODE, then check to see if the action is
-** independent of the look-ahead. If it is, return the action, otherwise
-** return YY_NO_ACTION.
-*/
-static int yy_find_shift_action(
- yyParser *pParser, /* The parser */
- YYCODETYPE iLookAhead /* The look-ahead token */
-){
- int i;
- int stateno = pParser->yystack[pParser->yyidx].stateno;
-
- if( stateno>YY_SHIFT_MAX || (i = yy_shift_ofst[stateno])==YY_SHIFT_USE_DFLT ){
- return yy_default[stateno];
- }
- if( iLookAhead==YYNOCODE ){
- return YY_NO_ACTION;
- }
- i += iLookAhead;
- if( i<0 || i>=YY_SZ_ACTTAB || yy_lookahead[i]!=iLookAhead ){
- if( iLookAhead>0 ){
-#ifdef YYFALLBACK
- int iFallback; /* Fallback token */
- if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
- && (iFallback = yyFallback[iLookAhead])!=0 ){
-#ifndef NDEBUG
- if( yyTraceFILE ){
- fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n",
- yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]);
- }
-#endif
- return yy_find_shift_action(pParser, iFallback);
- }
-#endif
-#ifdef YYWILDCARD
- {
- int j = i - iLookAhead + YYWILDCARD;
- if( j>=0 && j<YY_SZ_ACTTAB && yy_lookahead[j]==YYWILDCARD ){
-#ifndef NDEBUG
- if( yyTraceFILE ){
- fprintf(yyTraceFILE, "%sWILDCARD %s => %s\n",
- yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[YYWILDCARD]);
- }
-#endif /* NDEBUG */
- return yy_action[j];
- }
- }
-#endif /* YYWILDCARD */
- }
- return yy_default[stateno];
- }else{
- return yy_action[i];
- }
-}
-
-/*
-** Find the appropriate action for a parser given the non-terminal
-** look-ahead token iLookAhead.
-**
-** If the look-ahead token is YYNOCODE, then check to see if the action is
-** independent of the look-ahead. If it is, return the action, otherwise
-** return YY_NO_ACTION.
-*/
-static int yy_find_reduce_action(
- int stateno, /* Current state number */
- YYCODETYPE iLookAhead /* The look-ahead token */
-){
- int i;
- /* int stateno = pParser->yystack[pParser->yyidx].stateno; */
-
- if( stateno>YY_REDUCE_MAX ||
- (i = yy_reduce_ofst[stateno])==YY_REDUCE_USE_DFLT ){
- return yy_default[stateno];
- }
- if( iLookAhead==YYNOCODE ){
- return YY_NO_ACTION;
- }
- i += iLookAhead;
- if( i<0 || i>=YY_SZ_ACTTAB || yy_lookahead[i]!=iLookAhead ){
- return yy_default[stateno];
- }else{
- return yy_action[i];
- }
-}
-
-/*
-** Perform a shift action.
-*/
-static void yy_shift(
- yyParser *yypParser, /* The parser to be shifted */
- int yyNewState, /* The new state to shift in */
- int yyMajor, /* The major token to shift in */
- YYMINORTYPE *yypMinor /* Pointer ot the minor token to shift in */
-){
- yyStackEntry *yytos;
- yypParser->yyidx++;
- if( yypParser->yyidx>=YYSTACKDEPTH ){
- ParseARG_FETCH;
- yypParser->yyidx--;
-#ifndef NDEBUG
- if( yyTraceFILE ){
- fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt);
- }
-#endif
- while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
- /* Here code is inserted which will execute if the parser
- ** stack every overflows */
-%%
- ParseARG_STORE; /* Suppress warning about unused %extra_argument var */
- return;
- }
- yytos = &yypParser->yystack[yypParser->yyidx];
- yytos->stateno = yyNewState;
- yytos->major = yyMajor;
- yytos->minor = *yypMinor;
-#ifndef NDEBUG
- if( yyTraceFILE && yypParser->yyidx>0 ){
- int i;
- fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState);
- fprintf(yyTraceFILE,"%sStack:",yyTracePrompt);
- for(i=1; i<=yypParser->yyidx; i++)
- fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]);
- fprintf(yyTraceFILE,"\n");
- }
-#endif
-}
-
-/* The following table contains information about every rule that
-** is used during the reduce.
-*/
-static const struct {
- YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */
- unsigned char nrhs; /* Number of right-hand side symbols in the rule */
-} yyRuleInfo[] = {
-%%
-};
-
-static void yy_accept(yyParser*); /* Forward Declaration */
-
-/*
-** Perform a reduce action and the shift that must immediately
-** follow the reduce.
-*/
-static void yy_reduce(
- yyParser *yypParser, /* The parser */
- int yyruleno /* Number of the rule by which to reduce */
-){
- int yygoto; /* The next state */
- int yyact; /* The next action */
- YYMINORTYPE yygotominor; /* The LHS of the rule reduced */
- yyStackEntry *yymsp; /* The top of the parser's stack */
- int yysize; /* Amount to pop the stack */
- ParseARG_FETCH;
- yymsp = &yypParser->yystack[yypParser->yyidx];
-#ifndef NDEBUG
- if( yyTraceFILE && yyruleno>=0
- && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){
- fprintf(yyTraceFILE, "%sReduce [%s].\n", yyTracePrompt,
- yyRuleName[yyruleno]);
- }
-#endif /* NDEBUG */
-
-#ifndef NDEBUG
- /* Silence complaints from purify about yygotominor being uninitialized
- ** in some cases when it is copied into the stack after the following
- ** switch. yygotominor is uninitialized when a rule reduces that does
- ** not set the value of its left-hand side nonterminal. Leaving the
- ** value of the nonterminal uninitialized is utterly harmless as long
- ** as the value is never used. So really the only thing this code
- ** accomplishes is to quieten purify.
- */
- memset(&yygotominor, 0, sizeof(yygotominor));
-#endif
-
- switch( yyruleno ){
- /* Beginning here are the reduction cases. A typical example
- ** follows:
- ** case 0:
- ** #line <lineno> <grammarfile>
- ** { ... } // User supplied code
- ** #line <lineno> <thisfile>
- ** break;
- */
-%%
- };
- yygoto = yyRuleInfo[yyruleno].lhs;
- yysize = yyRuleInfo[yyruleno].nrhs;
- yypParser->yyidx -= yysize;
- yyact = yy_find_reduce_action(yymsp[-yysize].stateno,yygoto);
- if( yyact < YYNSTATE ){
-#ifdef NDEBUG
- /* If we are not debugging and the reduce action popped at least
- ** one element off the stack, then we can push the new element back
- ** onto the stack here, and skip the stack overflow test in yy_shift().
- ** That gives a significant speed improvement. */
- if( yysize ){
- yypParser->yyidx++;
- yymsp -= yysize-1;
- yymsp->stateno = yyact;
- yymsp->major = yygoto;
- yymsp->minor = yygotominor;
- }else
-#endif
- {
- yy_shift(yypParser,yyact,yygoto,&yygotominor);
- }
- }else if( yyact == YYNSTATE + YYNRULE + 1 ){
- yy_accept(yypParser);
- }
-}
-
-/*
-** The following code executes when the parse fails
-*/
-static void yy_parse_failed(
- yyParser *yypParser /* The parser */
-){
- ParseARG_FETCH;
-#ifndef NDEBUG
- if( yyTraceFILE ){
- fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt);
- }
-#endif
- while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
- /* Here code is inserted which will be executed whenever the
- ** parser fails */
-%%
- ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */
-}
-
-/*
-** The following code executes when a syntax error first occurs.
-*/
-static void yy_syntax_error(
- yyParser *yypParser, /* The parser */
- int yymajor, /* The major type of the error token */
- YYMINORTYPE yyminor /* The minor type of the error token */
-){
- ParseARG_FETCH;
-#define TOKEN (yyminor.yy0)
-%%
- ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */
-}
-
-/*
-** The following is executed when the parser accepts
-*/
-static void yy_accept(
- yyParser *yypParser /* The parser */
-){
- ParseARG_FETCH;
-#ifndef NDEBUG
- if( yyTraceFILE ){
- fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt);
- }
-#endif
- while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
- /* Here code is inserted which will be executed whenever the
- ** parser accepts */
-%%
- ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */
-}
-
-/* The main parser program.
-** The first argument is a pointer to a structure obtained from
-** "ParseAlloc" which describes the current state of the parser.
-** The second argument is the major token number. The third is
-** the minor token. The fourth optional argument is whatever the
-** user wants (and specified in the grammar) and is available for
-** use by the action routines.
-**
-** Inputs:
-** <ul>
-** <li> A pointer to the parser (an opaque structure.)
-** <li> The major token number.
-** <li> The minor token number.
-** <li> An option argument of a grammar-specified type.
-** </ul>
-**
-** Outputs:
-** None.
-*/
-void Parse(
- void *yyp, /* The parser */
- int yymajor, /* The major token code number */
- ParseTOKENTYPE yyminor /* The value for the token */
- ParseARG_PDECL /* Optional %extra_argument parameter */
-){
- YYMINORTYPE yyminorunion;
- int yyact; /* The parser action. */
- int yyendofinput; /* True if we are at the end of input */
- int yyerrorhit = 0; /* True if yymajor has invoked an error */
- yyParser *yypParser; /* The parser */
-
- /* (re)initialize the parser, if necessary */
- yypParser = (yyParser*)yyp;
- if( yypParser->yyidx<0 ){
- /* if( yymajor==0 ) return; // not sure why this was here... */
- yypParser->yyidx = 0;
- yypParser->yyerrcnt = -1;
- yypParser->yystack[0].stateno = 0;
- yypParser->yystack[0].major = 0;
- }
- yyminorunion.yy0 = yyminor;
- yyendofinput = (yymajor==0);
- ParseARG_STORE;
-
-#ifndef NDEBUG
- if( yyTraceFILE ){
- fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]);
- }
-#endif
-
- do{
- yyact = yy_find_shift_action(yypParser,yymajor);
- if( yyact<YYNSTATE ){
- yy_shift(yypParser,yyact,yymajor,&yyminorunion);
- yypParser->yyerrcnt--;
- if( yyendofinput && yypParser->yyidx>=0 ){
- yymajor = 0;
- }else{
- yymajor = YYNOCODE;
- }
- }else if( yyact < YYNSTATE + YYNRULE ){
- yy_reduce(yypParser,yyact-YYNSTATE);
- }else if( yyact == YY_ERROR_ACTION ){
- int yymx;
-#ifndef NDEBUG
- if( yyTraceFILE ){
- fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt);
- }
-#endif
-#ifdef YYERRORSYMBOL
- /* A syntax error has occurred.
- ** The response to an error depends upon whether or not the
- ** grammar defines an error token "ERROR".
- **
- ** This is what we do if the grammar does define ERROR:
- **
- ** * Call the %syntax_error function.
- **
- ** * Begin popping the stack until we enter a state where
- ** it is legal to shift the error symbol, then shift
- ** the error symbol.
- **
- ** * Set the error count to three.
- **
- ** * Begin accepting and shifting new tokens. No new error
- ** processing will occur until three tokens have been
- ** shifted successfully.
- **
- */
- if( yypParser->yyerrcnt<0 ){
- yy_syntax_error(yypParser,yymajor,yyminorunion);
- }
- yymx = yypParser->yystack[yypParser->yyidx].major;
- if( yymx==YYERRORSYMBOL || yyerrorhit ){
-#ifndef NDEBUG
- if( yyTraceFILE ){
- fprintf(yyTraceFILE,"%sDiscard input token %s\n",
- yyTracePrompt,yyTokenName[yymajor]);
- }
-#endif
- yy_destructor(yymajor,&yyminorunion);
- yymajor = YYNOCODE;
- }else{
- while(
- yypParser->yyidx >= 0 &&
- yymx != YYERRORSYMBOL &&
- (yyact = yy_find_reduce_action(
- yypParser->yystack[yypParser->yyidx].stateno,
- YYERRORSYMBOL)) >= YYNSTATE
- ){
- yy_pop_parser_stack(yypParser);
- }
- if( yypParser->yyidx < 0 || yymajor==0 ){
- yy_destructor(yymajor,&yyminorunion);
- yy_parse_failed(yypParser);
- yymajor = YYNOCODE;
- }else if( yymx!=YYERRORSYMBOL ){
- YYMINORTYPE u2;
- u2.YYERRSYMDT = 0;
- yy_shift(yypParser,yyact,YYERRORSYMBOL,&u2);
- }
- }
- yypParser->yyerrcnt = 3;
- yyerrorhit = 1;
-#else /* YYERRORSYMBOL is not defined */
- /* This is what we do if the grammar does not define ERROR:
- **
- ** * Report an error message, and throw away the input token.
- **
- ** * If the input token is $, then fail the parse.
- **
- ** As before, subsequent error messages are suppressed until
- ** three input tokens have been successfully shifted.
- */
- if( yypParser->yyerrcnt<=0 ){
- yy_syntax_error(yypParser,yymajor,yyminorunion);
- }
- yypParser->yyerrcnt = 3;
- yy_destructor(yymajor,&yyminorunion);
- if( yyendofinput ){
- yy_parse_failed(yypParser);
- }
- yymajor = YYNOCODE;
-#endif
- }else{
- yy_accept(yypParser);
- yymajor = YYNOCODE;
- }
- }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 );
- return;
-}
diff --git a/ext/pdo_sqlite/sqlite/tool/memleak.awk b/ext/pdo_sqlite/sqlite/tool/memleak.awk
deleted file mode 100644
index 928d3b69dc..0000000000
--- a/ext/pdo_sqlite/sqlite/tool/memleak.awk
+++ /dev/null
@@ -1,29 +0,0 @@
-#
-# This script looks for memory leaks by analyzing the output of "sqlite"
-# when compiled with the SQLITE_DEBUG=2 option.
-#
-/[0-9]+ malloc / {
- mem[$6] = $0
-}
-/[0-9]+ realloc / {
- mem[$8] = "";
- mem[$10] = $0
-}
-/[0-9]+ free / {
- if (mem[$6]=="") {
- print "*** free without a malloc at",$6
- }
- mem[$6] = "";
- str[$6] = ""
-}
-/^string at / {
- addr = $4
- sub("string at " addr " is ","")
- str[addr] = $0
-}
-END {
- for(addr in mem){
- if( mem[addr]=="" ) continue
- print mem[addr], str[addr]
- }
-}
diff --git a/ext/pdo_sqlite/sqlite/tool/memleak2.awk b/ext/pdo_sqlite/sqlite/tool/memleak2.awk
deleted file mode 100644
index 5d81b70d8d..0000000000
--- a/ext/pdo_sqlite/sqlite/tool/memleak2.awk
+++ /dev/null
@@ -1,29 +0,0 @@
-# This AWK script reads the output of testfixture when compiled for memory
-# debugging. It generates SQL commands that can be fed into an sqlite
-# instance to determine what memory is never freed. A typical usage would
-# be as follows:
-#
-# make -f memleak.mk fulltest 2>mem.out
-# awk -f ../sqlite/tool/memleak2.awk mem.out | ./sqlite :memory:
-#
-# The job performed by this script is the same as that done by memleak.awk.
-# The difference is that this script uses much less memory when the size
-# of the mem.out file is huge.
-#
-BEGIN {
- print "CREATE TABLE mem(loc INTEGER PRIMARY KEY, src);"
-}
-/[0-9]+ malloc / {
- print "INSERT INTO mem VALUES(" strtonum($6) ",'" $0 "');"
-}
-/[0-9]+ realloc / {
- print "INSERT INTO mem VALUES(" strtonum($10) \
- ",(SELECT src FROM mem WHERE loc=" strtonum($8) "));"
- print "DELETE FROM mem WHERE loc=" strtonum($8) ";"
-}
-/[0-9]+ free / {
- print "DELETE FROM mem WHERE loc=" strtonum($6) ";"
-}
-END {
- print "SELECT src FROM mem;"
-}
diff --git a/ext/pdo_sqlite/sqlite/tool/memleak3.tcl b/ext/pdo_sqlite/sqlite/tool/memleak3.tcl
deleted file mode 100644
index 3c6e9b9c56..0000000000
--- a/ext/pdo_sqlite/sqlite/tool/memleak3.tcl
+++ /dev/null
@@ -1,233 +0,0 @@
-#/bin/sh
-# \
-exec `which tclsh` $0 "$@"
-#
-# The author disclaims copyright to this source code. In place of
-# a legal notice, here is a blessing:
-#
-# May you do good and not evil.
-# May you find forgiveness for yourself and forgive others.
-# May you share freely, never taking more than you give.
-######################################################################
-
-set doco "
-This script is a tool to help track down memory leaks in the sqlite
-library. The library must be compiled with the preprocessor symbol
-SQLITE_MEMDEBUG set to at least 2. It must be set to 3 to enable stack
-traces.
-
-To use, run the leaky application and save the standard error output.
-Then, execute this program with the first argument the name of the
-application binary (or interpreter) and the second argument the name of the
-text file that contains the collected stderr output.
-
-If all goes well a summary of unfreed allocations is printed out. If the
-GNU C library is in use and SQLITE_DEBUG is 3 or greater a stack trace is
-printed out for each unmatched allocation.
-
-If the \"-r <n>\" option is passed, then the program stops and prints out
-the state of the heap immediately after the <n>th call to malloc() or
-realloc().
-
-Example:
-
-$ ./testfixture ../sqlite/test/select1.test 2> memtrace.out
-$ tclsh $argv0 ?-r <malloc-number>? ./testfixture memtrace.out
-"
-
-
-proc usage {} {
- set prg [file tail $::argv0]
- puts "Usage: $prg ?-r <malloc-number>? <binary file> <mem trace file>"
- puts ""
- puts [string trim $::doco]
- exit -1
-}
-
-proc shift {listvar} {
- upvar $listvar l
- set ret [lindex $l 0]
- set l [lrange $l 1 end]
- return $ret
-}
-
-# Argument handling. The following vars are set:
-#
-# $exe - the name of the executable (i.e. "testfixture" or "./sqlite3")
-# $memfile - the name of the file containing the trace output.
-# $report_at - The malloc number to stop and report at. Or -1 to read
-# all of $memfile.
-#
-set report_at -1
-while {[llength $argv]>2} {
- set arg [shift argv]
- switch -- $arg {
- "-r" {
- set report_at [shift argv]
- }
- default {
- usage
- }
- }
-}
-if {[llength $argv]!=2} usage
-set exe [lindex $argv 0]
-set memfile [lindex $argv 1]
-
-# If stack traces are enabled, the 'addr2line' program is called to
-# translate a binary stack address into a human-readable form.
-set addr2line addr2line
-
-# When the SQLITE_MEMDEBUG is set as described above, SQLite prints
-# out a line for each malloc(), realloc() or free() call that the
-# library makes. If SQLITE_MEMDEBUG is 3, then a stack trace is printed
-# out before each malloc() and realloc() line.
-#
-# This program parses each line the SQLite library outputs and updates
-# the following global Tcl variables to reflect the "current" state of
-# the heap used by SQLite.
-#
-set nBytes 0 ;# Total number of bytes currently allocated.
-set nMalloc 0 ;# Total number of malloc()/realloc() calls.
-set nPeak 0 ;# Peak of nBytes.
-set iPeak 0 ;# nMalloc when nPeak was set.
-#
-# More detailed state information is stored in the $memmap array.
-# Each key in the memmap array is the address of a chunk of memory
-# currently allocated from the heap. The value is a list of the
-# following form
-#
-# {<number-of-bytes> <malloc id> <stack trace>}
-#
-array unset memmap
-
-proc process_input {input_file array_name} {
- upvar $array_name mem
- set input [open $input_file]
-
- set MALLOC {([[:digit:]]+) malloc ([[:digit:]]+) bytes at 0x([[:xdigit:]]+)}
- # set STACK {^[[:digit:]]+: STACK: (.*)$}
- set STACK {^STACK: (.*)$}
- set FREE {[[:digit:]]+ free ([[:digit:]]+) bytes at 0x([[:xdigit:]]+)}
- set REALLOC {([[:digit:]]+) realloc ([[:digit:]]+) to ([[:digit:]]+)}
- append REALLOC { bytes at 0x([[:xdigit:]]+) to 0x([[:xdigit:]]+)}
-
- set stack ""
- while { ![eof $input] } {
- set line [gets $input]
- if {[regexp $STACK $line dummy stack]} {
- # Do nothing. The variable $stack now stores the hexadecimal stack dump
- # for the next malloc() or realloc().
-
- } elseif { [regexp $MALLOC $line dummy mallocid bytes addr] } {
- # If this is a 'malloc' line, set an entry in the mem array. Each entry
- # is a list of length three, the number of bytes allocated , the malloc
- # number and the stack dump when it was allocated.
- set mem($addr) [list $bytes "malloc $mallocid" $stack]
- set stack ""
-
- # Increase the current heap usage
- incr ::nBytes $bytes
-
- # Increase the number of malloc() calls
- incr ::nMalloc
-
- if {$::nBytes > $::nPeak} {
- set ::nPeak $::nBytes
- set ::iPeak $::nMalloc
- }
-
- } elseif { [regexp $FREE $line dummy bytes addr] } {
- # If this is a 'free' line, remove the entry from the mem array. If the
- # entry does not exist, or is the wrong number of bytes, announce a
- # problem. This is more likely a bug in the regular expressions for
- # this script than an SQLite defect.
- if { [lindex $mem($addr) 0] != $bytes } {
- error "byte count mismatch"
- }
- unset mem($addr)
-
- # Decrease the current heap usage
- incr ::nBytes [expr -1 * $bytes]
-
- } elseif { [regexp $REALLOC $line dummy mallocid ob b oa a] } {
- # "free" the old allocation in the internal model:
- incr ::nBytes [expr -1 * $ob]
- unset mem($oa);
-
- # "malloc" the new allocation
- set mem($a) [list $b "realloc $mallocid" $stack]
- incr ::nBytes $b
- set stack ""
-
- # Increase the number of malloc() calls
- incr ::nMalloc
-
- if {$::nBytes > $::nPeak} {
- set ::nPeak $::nBytes
- set ::iPeak $::nMalloc
- }
-
- } else {
- # puts "REJECT: $line"
- }
-
- if {$::nMalloc==$::report_at} report
- }
-
- close $input
-}
-
-proc printstack {stack} {
- set fcount 10
- if {[llength $stack]<10} {
- set fcount [llength $stack]
- }
- foreach frame [lrange $stack 1 $fcount] {
- foreach {f l} [split [exec $::addr2line -f --exe=$::exe $frame] \n] {}
- puts [format "%-30s %s" $f $l]
- }
- if {[llength $stack]>0 } {puts ""}
-}
-
-proc report {} {
-
- foreach key [array names ::memmap] {
- set stack [lindex $::memmap($key) 2]
- set bytes [lindex $::memmap($key) 0]
- lappend summarymap($stack) $bytes
- }
-
- set sorted [list]
- foreach stack [array names summarymap] {
- set allocs $summarymap($stack)
- set sum 0
- foreach a $allocs {
- incr sum $a
- }
- lappend sorted [list $sum $stack]
- }
-
- set sorted [lsort -integer -index 0 $sorted]
- foreach s $sorted {
- set sum [lindex $s 0]
- set stack [lindex $s 1]
- set allocs $summarymap($stack)
- puts "$sum bytes in [llength $allocs] chunks ($allocs)"
- printstack $stack
- }
-
- # Print out summary statistics
- puts "Total allocations : $::nMalloc"
- puts "Total outstanding allocations: [array size ::memmap]"
- puts "Current heap usage : $::nBytes bytes"
- puts "Peak heap usage : $::nPeak bytes (malloc #$::iPeak)"
-
- exit
-}
-
-process_input $memfile memmap
-report
-
-
-
diff --git a/ext/pdo_sqlite/sqlite/tool/mkkeywordhash.c b/ext/pdo_sqlite/sqlite/tool/mkkeywordhash.c
deleted file mode 100644
index 3301a40e97..0000000000
--- a/ext/pdo_sqlite/sqlite/tool/mkkeywordhash.c
+++ /dev/null
@@ -1,507 +0,0 @@
-/*
-** Compile and run this standalone program in order to generate code that
-** implements a function that will translate alphabetic identifiers into
-** parser token codes.
-*/
-#include <stdio.h>
-#include <string.h>
-#include <stdlib.h>
-
-/*
-** All the keywords of the SQL language are stored as in a hash
-** table composed of instances of the following structure.
-*/
-typedef struct Keyword Keyword;
-struct Keyword {
- char *zName; /* The keyword name */
- char *zTokenType; /* Token value for this keyword */
- int mask; /* Code this keyword if non-zero */
- int id; /* Unique ID for this record */
- int hash; /* Hash on the keyword */
- int offset; /* Offset to start of name string */
- int len; /* Length of this keyword, not counting final \000 */
- int prefix; /* Number of characters in prefix */
- int iNext; /* Index in aKeywordTable[] of next with same hash */
- int substrId; /* Id to another keyword this keyword is embedded in */
- int substrOffset; /* Offset into substrId for start of this keyword */
-};
-
-/*
-** Define masks used to determine which keywords are allowed
-*/
-#ifdef SQLITE_OMIT_ALTERTABLE
-# define ALTER 0
-#else
-# define ALTER 0x00000001
-#endif
-#define ALWAYS 0x00000002
-#ifdef SQLITE_OMIT_ANALYZE
-# define ANALYZE 0
-#else
-# define ANALYZE 0x00000004
-#endif
-#ifdef SQLITE_OMIT_ATTACH
-# define ATTACH 0
-#else
-# define ATTACH 0x00000008
-#endif
-#ifdef SQLITE_OMIT_AUTOINCREMENT
-# define AUTOINCR 0
-#else
-# define AUTOINCR 0x00000010
-#endif
-#ifdef SQLITE_OMIT_CAST
-# define CAST 0
-#else
-# define CAST 0x00000020
-#endif
-#ifdef SQLITE_OMIT_COMPOUND_SELECT
-# define COMPOUND 0
-#else
-# define COMPOUND 0x00000040
-#endif
-#ifdef SQLITE_OMIT_CONFLICT_CLAUSE
-# define CONFLICT 0
-#else
-# define CONFLICT 0x00000080
-#endif
-#ifdef SQLITE_OMIT_EXPLAIN
-# define EXPLAIN 0
-#else
-# define EXPLAIN 0x00000100
-#endif
-#ifdef SQLITE_OMIT_FOREIGN_KEY
-# define FKEY 0
-#else
-# define FKEY 0x00000200
-#endif
-#ifdef SQLITE_OMIT_PRAGMA
-# define PRAGMA 0
-#else
-# define PRAGMA 0x00000400
-#endif
-#ifdef SQLITE_OMIT_REINDEX
-# define REINDEX 0
-#else
-# define REINDEX 0x00000800
-#endif
-#ifdef SQLITE_OMIT_SUBQUERY
-# define SUBQUERY 0
-#else
-# define SUBQUERY 0x00001000
-#endif
-#ifdef SQLITE_OMIT_TRIGGER
-# define TRIGGER 0
-#else
-# define TRIGGER 0x00002000
-#endif
-#ifdef SQLITE_OMIT_VACUUM
-# define VACUUM 0
-#else
-# define VACUUM 0x00004000
-#endif
-#ifdef SQLITE_OMIT_VIEW
-# define VIEW 0
-#else
-# define VIEW 0x00008000
-#endif
-#ifdef SQLITE_OMIT_VIRTUALTABLE
-# define VTAB 0
-#else
-# define VTAB 0x00010000
-#endif
-
-/*
-** These are the keywords
-*/
-static Keyword aKeywordTable[] = {
- { "ABORT", "TK_ABORT", CONFLICT|TRIGGER },
- { "ADD", "TK_ADD", ALTER },
- { "AFTER", "TK_AFTER", TRIGGER },
- { "ALL", "TK_ALL", ALWAYS },
- { "ALTER", "TK_ALTER", ALTER },
- { "ANALYZE", "TK_ANALYZE", ANALYZE },
- { "AND", "TK_AND", ALWAYS },
- { "AS", "TK_AS", ALWAYS },
- { "ASC", "TK_ASC", ALWAYS },
- { "ATTACH", "TK_ATTACH", ATTACH },
- { "AUTOINCREMENT", "TK_AUTOINCR", AUTOINCR },
- { "BEFORE", "TK_BEFORE", TRIGGER },
- { "BEGIN", "TK_BEGIN", ALWAYS },
- { "BETWEEN", "TK_BETWEEN", ALWAYS },
- { "BY", "TK_BY", ALWAYS },
- { "CASCADE", "TK_CASCADE", FKEY },
- { "CASE", "TK_CASE", ALWAYS },
- { "CAST", "TK_CAST", CAST },
- { "CHECK", "TK_CHECK", ALWAYS },
- { "COLLATE", "TK_COLLATE", ALWAYS },
- { "COLUMN", "TK_COLUMNKW", ALTER },
- { "COMMIT", "TK_COMMIT", ALWAYS },
- { "CONFLICT", "TK_CONFLICT", CONFLICT },
- { "CONSTRAINT", "TK_CONSTRAINT", ALWAYS },
- { "CREATE", "TK_CREATE", ALWAYS },
- { "CROSS", "TK_JOIN_KW", ALWAYS },
- { "CURRENT_DATE", "TK_CTIME_KW", ALWAYS },
- { "CURRENT_TIME", "TK_CTIME_KW", ALWAYS },
- { "CURRENT_TIMESTAMP","TK_CTIME_KW", ALWAYS },
- { "DATABASE", "TK_DATABASE", ATTACH },
- { "DEFAULT", "TK_DEFAULT", ALWAYS },
- { "DEFERRED", "TK_DEFERRED", ALWAYS },
- { "DEFERRABLE", "TK_DEFERRABLE", FKEY },
- { "DELETE", "TK_DELETE", ALWAYS },
- { "DESC", "TK_DESC", ALWAYS },
- { "DETACH", "TK_DETACH", ATTACH },
- { "DISTINCT", "TK_DISTINCT", ALWAYS },
- { "DROP", "TK_DROP", ALWAYS },
- { "END", "TK_END", ALWAYS },
- { "EACH", "TK_EACH", TRIGGER },
- { "ELSE", "TK_ELSE", ALWAYS },
- { "ESCAPE", "TK_ESCAPE", ALWAYS },
- { "EXCEPT", "TK_EXCEPT", COMPOUND },
- { "EXCLUSIVE", "TK_EXCLUSIVE", ALWAYS },
- { "EXISTS", "TK_EXISTS", ALWAYS },
- { "EXPLAIN", "TK_EXPLAIN", EXPLAIN },
- { "FAIL", "TK_FAIL", CONFLICT|TRIGGER },
- { "FOR", "TK_FOR", TRIGGER },
- { "FOREIGN", "TK_FOREIGN", FKEY },
- { "FROM", "TK_FROM", ALWAYS },
- { "FULL", "TK_JOIN_KW", ALWAYS },
- { "GLOB", "TK_LIKE_KW", ALWAYS },
- { "GROUP", "TK_GROUP", ALWAYS },
- { "HAVING", "TK_HAVING", ALWAYS },
- { "IF", "TK_IF", ALWAYS },
- { "IGNORE", "TK_IGNORE", CONFLICT|TRIGGER },
- { "IMMEDIATE", "TK_IMMEDIATE", ALWAYS },
- { "IN", "TK_IN", ALWAYS },
- { "INDEX", "TK_INDEX", ALWAYS },
- { "INITIALLY", "TK_INITIALLY", FKEY },
- { "INNER", "TK_JOIN_KW", ALWAYS },
- { "INSERT", "TK_INSERT", ALWAYS },
- { "INSTEAD", "TK_INSTEAD", TRIGGER },
- { "INTERSECT", "TK_INTERSECT", COMPOUND },
- { "INTO", "TK_INTO", ALWAYS },
- { "IS", "TK_IS", ALWAYS },
- { "ISNULL", "TK_ISNULL", ALWAYS },
- { "JOIN", "TK_JOIN", ALWAYS },
- { "KEY", "TK_KEY", ALWAYS },
- { "LEFT", "TK_JOIN_KW", ALWAYS },
- { "LIKE", "TK_LIKE_KW", ALWAYS },
- { "LIMIT", "TK_LIMIT", ALWAYS },
- { "MATCH", "TK_MATCH", ALWAYS },
- { "NATURAL", "TK_JOIN_KW", ALWAYS },
- { "NOT", "TK_NOT", ALWAYS },
- { "NOTNULL", "TK_NOTNULL", ALWAYS },
- { "NULL", "TK_NULL", ALWAYS },
- { "OF", "TK_OF", ALWAYS },
- { "OFFSET", "TK_OFFSET", ALWAYS },
- { "ON", "TK_ON", ALWAYS },
- { "OR", "TK_OR", ALWAYS },
- { "ORDER", "TK_ORDER", ALWAYS },
- { "OUTER", "TK_JOIN_KW", ALWAYS },
- { "PRAGMA", "TK_PRAGMA", PRAGMA },
- { "PRIMARY", "TK_PRIMARY", ALWAYS },
- { "RAISE", "TK_RAISE", TRIGGER },
- { "REFERENCES", "TK_REFERENCES", FKEY },
- { "REGEXP", "TK_LIKE_KW", ALWAYS },
- { "REINDEX", "TK_REINDEX", REINDEX },
- { "RENAME", "TK_RENAME", ALTER },
- { "REPLACE", "TK_REPLACE", CONFLICT },
- { "RESTRICT", "TK_RESTRICT", FKEY },
- { "RIGHT", "TK_JOIN_KW", ALWAYS },
- { "ROLLBACK", "TK_ROLLBACK", ALWAYS },
- { "ROW", "TK_ROW", TRIGGER },
- { "SELECT", "TK_SELECT", ALWAYS },
- { "SET", "TK_SET", ALWAYS },
- { "STATEMENT", "TK_STATEMENT", TRIGGER },
- { "TABLE", "TK_TABLE", ALWAYS },
- { "TEMP", "TK_TEMP", ALWAYS },
- { "TEMPORARY", "TK_TEMP", ALWAYS },
- { "THEN", "TK_THEN", ALWAYS },
- { "TO", "TK_TO", ALTER },
- { "TRANSACTION", "TK_TRANSACTION", ALWAYS },
- { "TRIGGER", "TK_TRIGGER", TRIGGER },
- { "UNION", "TK_UNION", COMPOUND },
- { "UNIQUE", "TK_UNIQUE", ALWAYS },
- { "UPDATE", "TK_UPDATE", ALWAYS },
- { "USING", "TK_USING", ALWAYS },
- { "VACUUM", "TK_VACUUM", VACUUM },
- { "VALUES", "TK_VALUES", ALWAYS },
- { "VIEW", "TK_VIEW", VIEW },
- { "VIRTUAL", "TK_VIRTUAL", VTAB },
- { "WHEN", "TK_WHEN", ALWAYS },
- { "WHERE", "TK_WHERE", ALWAYS },
-};
-
-/* Number of keywords */
-static int NKEYWORD = (sizeof(aKeywordTable)/sizeof(aKeywordTable[0]));
-
-/* An array to map all upper-case characters into their corresponding
-** lower-case character.
-*/
-const unsigned char sqlite3UpperToLower[] = {
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
- 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
- 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
- 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
- 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
- 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
- 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
- 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
- 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
- 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
- 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
- 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
- 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
- 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
- 252,253,254,255
-};
-#define UpperToLower sqlite3UpperToLower
-
-/*
-** Comparision function for two Keyword records
-*/
-static int keywordCompare1(const void *a, const void *b){
- const Keyword *pA = (Keyword*)a;
- const Keyword *pB = (Keyword*)b;
- int n = pA->len - pB->len;
- if( n==0 ){
- n = strcmp(pA->zName, pB->zName);
- }
- return n;
-}
-static int keywordCompare2(const void *a, const void *b){
- const Keyword *pA = (Keyword*)a;
- const Keyword *pB = (Keyword*)b;
- int n = strcmp(pA->zName, pB->zName);
- return n;
-}
-static int keywordCompare3(const void *a, const void *b){
- const Keyword *pA = (Keyword*)a;
- const Keyword *pB = (Keyword*)b;
- int n = pA->offset - pB->offset;
- return n;
-}
-
-/*
-** Return a KeywordTable entry with the given id
-*/
-static Keyword *findById(int id){
- int i;
- for(i=0; i<NKEYWORD; i++){
- if( aKeywordTable[i].id==id ) break;
- }
- return &aKeywordTable[i];
-}
-
-/*
-** This routine does the work. The generated code is printed on standard
-** output.
-*/
-int main(int argc, char **argv){
- int i, j, k, h;
- int bestSize, bestCount;
- int count;
- int nChar;
- int aHash[1000]; /* 1000 is much bigger than NKEYWORD */
-
- /* Remove entries from the list of keywords that have mask==0 */
- for(i=j=0; i<NKEYWORD; i++){
- if( aKeywordTable[i].mask==0 ) continue;
- if( j<i ){
- aKeywordTable[j] = aKeywordTable[i];
- }
- j++;
- }
- NKEYWORD = j;
-
- /* Fill in the lengths of strings and hashes for all entries. */
- for(i=0; i<NKEYWORD; i++){
- Keyword *p = &aKeywordTable[i];
- p->len = strlen(p->zName);
- p->hash = (UpperToLower[p->zName[0]]*4) ^
- (UpperToLower[p->zName[p->len-1]]*3) ^ p->len;
- p->id = i+1;
- }
-
- /* Sort the table from shortest to longest keyword */
- qsort(aKeywordTable, NKEYWORD, sizeof(aKeywordTable[0]), keywordCompare1);
-
- /* Look for short keywords embedded in longer keywords */
- for(i=NKEYWORD-2; i>=0; i--){
- Keyword *p = &aKeywordTable[i];
- for(j=NKEYWORD-1; j>i && p->substrId==0; j--){
- Keyword *pOther = &aKeywordTable[j];
- if( pOther->substrId ) continue;
- if( pOther->len<=p->len ) continue;
- for(k=0; k<=pOther->len-p->len; k++){
- if( memcmp(p->zName, &pOther->zName[k], p->len)==0 ){
- p->substrId = pOther->id;
- p->substrOffset = k;
- break;
- }
- }
- }
- }
-
- /* Sort the table into alphabetical order */
- qsort(aKeywordTable, NKEYWORD, sizeof(aKeywordTable[0]), keywordCompare2);
-
- /* Fill in the offset for all entries */
- nChar = 0;
- for(i=0; i<NKEYWORD; i++){
- Keyword *p = &aKeywordTable[i];
- if( p->offset>0 || p->substrId ) continue;
- p->offset = nChar;
- nChar += p->len;
- for(k=p->len-1; k>=1; k--){
- for(j=i+1; j<NKEYWORD; j++){
- Keyword *pOther = &aKeywordTable[j];
- if( pOther->offset>0 || pOther->substrId ) continue;
- if( pOther->len<=k ) continue;
- if( memcmp(&p->zName[p->len-k], pOther->zName, k)==0 ){
- p = pOther;
- p->offset = nChar - k;
- nChar = p->offset + p->len;
- p->zName += k;
- p->len -= k;
- p->prefix = k;
- j = i;
- k = p->len;
- }
- }
- }
- }
- for(i=0; i<NKEYWORD; i++){
- Keyword *p = &aKeywordTable[i];
- if( p->substrId ){
- p->offset = findById(p->substrId)->offset + p->substrOffset;
- }
- }
-
- /* Sort the table by offset */
- qsort(aKeywordTable, NKEYWORD, sizeof(aKeywordTable[0]), keywordCompare3);
-
- /* Figure out how big to make the hash table in order to minimize the
- ** number of collisions */
- bestSize = NKEYWORD;
- bestCount = NKEYWORD*NKEYWORD;
- for(i=NKEYWORD/2; i<=2*NKEYWORD; i++){
- for(j=0; j<i; j++) aHash[j] = 0;
- for(j=0; j<NKEYWORD; j++){
- h = aKeywordTable[j].hash % i;
- aHash[h] *= 2;
- aHash[h]++;
- }
- for(j=count=0; j<i; j++) count += aHash[j];
- if( count<bestCount ){
- bestCount = count;
- bestSize = i;
- }
- }
-
- /* Compute the hash */
- for(i=0; i<bestSize; i++) aHash[i] = 0;
- for(i=0; i<NKEYWORD; i++){
- h = aKeywordTable[i].hash % bestSize;
- aKeywordTable[i].iNext = aHash[h];
- aHash[h] = i+1;
- }
-
- /* Begin generating code */
- printf("/* Hash score: %d */\n", bestCount);
- printf("static int keywordCode(const char *z, int n){\n");
-
- printf(" static const char zText[%d] =\n", nChar+1);
- for(i=j=0; i<NKEYWORD; i++){
- Keyword *p = &aKeywordTable[i];
- if( p->substrId ) continue;
- if( j==0 ) printf(" \"");
- printf("%s", p->zName);
- j += p->len;
- if( j>60 ){
- printf("\"\n");
- j = 0;
- }
- }
- printf("%s;\n", j>0 ? "\"" : " ");
-
- printf(" static const unsigned char aHash[%d] = {\n", bestSize);
- for(i=j=0; i<bestSize; i++){
- if( j==0 ) printf(" ");
- printf(" %3d,", aHash[i]);
- j++;
- if( j>12 ){
- printf("\n");
- j = 0;
- }
- }
- printf("%s };\n", j==0 ? "" : "\n");
-
- printf(" static const unsigned char aNext[%d] = {\n", NKEYWORD);
- for(i=j=0; i<NKEYWORD; i++){
- if( j==0 ) printf(" ");
- printf(" %3d,", aKeywordTable[i].iNext);
- j++;
- if( j>12 ){
- printf("\n");
- j = 0;
- }
- }
- printf("%s };\n", j==0 ? "" : "\n");
-
- printf(" static const unsigned char aLen[%d] = {\n", NKEYWORD);
- for(i=j=0; i<NKEYWORD; i++){
- if( j==0 ) printf(" ");
- printf(" %3d,", aKeywordTable[i].len+aKeywordTable[i].prefix);
- j++;
- if( j>12 ){
- printf("\n");
- j = 0;
- }
- }
- printf("%s };\n", j==0 ? "" : "\n");
-
- printf(" static const unsigned short int aOffset[%d] = {\n", NKEYWORD);
- for(i=j=0; i<NKEYWORD; i++){
- if( j==0 ) printf(" ");
- printf(" %3d,", aKeywordTable[i].offset);
- j++;
- if( j>12 ){
- printf("\n");
- j = 0;
- }
- }
- printf("%s };\n", j==0 ? "" : "\n");
-
- printf(" static const unsigned char aCode[%d] = {\n", NKEYWORD);
- for(i=j=0; i<NKEYWORD; i++){
- char *zToken = aKeywordTable[i].zTokenType;
- if( j==0 ) printf(" ");
- printf("%s,%*s", zToken, (int)(14-strlen(zToken)), "");
- j++;
- if( j>=5 ){
- printf("\n");
- j = 0;
- }
- }
- printf("%s };\n", j==0 ? "" : "\n");
-
- printf(" int h, i;\n");
- printf(" if( n<2 ) return TK_ID;\n");
- printf(" h = ((charMap(z[0])*4) ^\n"
- " (charMap(z[n-1])*3) ^\n"
- " n) %% %d;\n", bestSize);
- printf(" for(i=((int)aHash[h])-1; i>=0; i=((int)aNext[i])-1){\n");
- printf(" if( aLen[i]==n &&"
- " sqlite3StrNICmp(&zText[aOffset[i]],z,n)==0 ){\n");
- printf(" return aCode[i];\n");
- printf(" }\n");
- printf(" }\n");
- printf(" return TK_ID;\n");
- printf("}\n");
- printf("int sqlite3KeywordCode(const unsigned char *z, int n){\n");
- printf(" return keywordCode((char*)z, n);\n");
- printf("}\n");
-
- return 0;
-}
diff --git a/ext/pdo_sqlite/sqlite/tool/mkopts.tcl b/ext/pdo_sqlite/sqlite/tool/mkopts.tcl
deleted file mode 100755
index e3ddcb9eeb..0000000000
--- a/ext/pdo_sqlite/sqlite/tool/mkopts.tcl
+++ /dev/null
@@ -1,51 +0,0 @@
-#!/usr/bin/tclsh
-#
-# This script is used to generate the array of strings and the enum
-# that appear at the beginning of the C code implementation of a
-# a TCL command and that define the available subcommands for that
-# TCL command.
-
-set prefix {}
-while {![eof stdin]} {
- set line [gets stdin]
- if {$line==""} continue
- regsub -all "\[ \t\n,\]+" [string trim $line] { } line
- foreach token [split $line { }] {
- if {![regexp {(([a-zA-Z]+)_)?([_a-zA-Z]+)} $token all px p2 name]} continue
- lappend namelist [string tolower $name]
- if {$px!=""} {set prefix $p2}
- }
-}
-
-puts " static const char *${prefix}_strs\[\] = \173"
-set col 0
-proc put_item x {
- global col
- if {$col==0} {puts -nonewline " "}
- if {$col<2} {
- puts -nonewline [format " %-21s" $x]
- incr col
- } else {
- puts $x
- set col 0
- }
-}
-proc finalize {} {
- global col
- if {$col>0} {puts {}}
- set col 0
-}
-
-foreach name [lsort $namelist] {
- put_item \"$name\",
-}
-put_item 0
-finalize
-puts " \175;"
-puts " enum ${prefix}_enum \173"
-foreach name [lsort $namelist] {
- regsub -all {@} $name {} name
- put_item ${prefix}_[string toupper $name],
-}
-finalize
-puts " \175;"
diff --git a/ext/pdo_sqlite/sqlite/tool/opcodeDoc.awk b/ext/pdo_sqlite/sqlite/tool/opcodeDoc.awk
deleted file mode 100644
index 492010624f..0000000000
--- a/ext/pdo_sqlite/sqlite/tool/opcodeDoc.awk
+++ /dev/null
@@ -1,23 +0,0 @@
-#
-# Extract opcode documentation for sqliteVdbe.c and generate HTML
-#
-BEGIN {
- print "<html><body bgcolor=white>"
- print "<h1>SQLite Virtual Database Engine Opcodes</h1>"
- print "<table>"
-}
-/ Opcode: /,/\*\// {
- if( $2=="Opcode:" ){
- printf "<tr><td>%s&nbsp;%s&nbsp;%s&nbsp;%s</td>\n<td>\n", $3, $4, $5, $6
- }else if( $1=="*/" ){
- printf "</td></tr>\n"
- }else if( NF>1 ){
- sub(/^ *\*\* /,"")
- gsub(/</,"&lt;")
- gsub(/&/,"&amp;")
- print
- }
-}
-END {
- print "</table></body></html>"
-}
diff --git a/ext/pdo_sqlite/sqlite/tool/report1.txt b/ext/pdo_sqlite/sqlite/tool/report1.txt
deleted file mode 100644
index 7820b8ccf6..0000000000
--- a/ext/pdo_sqlite/sqlite/tool/report1.txt
+++ /dev/null
@@ -1,66 +0,0 @@
-The SQL database used for ACD contains 113 tables and indices implemented
-in GDBM. The following are statistics on the sizes of keys and data
-within these tables and indices.
-
-Entries: 962080
-Size: 45573853
-Avg Size: 48
-Key Size: 11045299
-Avg Key Size: 12
-Max Key Size: 99
-
-
- Size of key Cummulative
- and data Instances Percentage
------------- ---------- -----------
- 0..8 266 0%
- 9..12 5485 0%
- 13..16 73633 8%
- 17..24 180918 27%
- 25..32 209823 48%
- 33..40 148995 64%
- 41..48 76304 72%
- 49..56 14346 73%
- 57..64 15725 75%
- 65..80 44916 80%
- 81..96 127815 93%
- 97..112 34769 96%
- 113..128 13314 98%
- 129..144 8098 99%
- 145..160 3355 99%
- 161..176 1159 99%
- 177..192 629 99%
- 193..208 221 99%
- 209..224 210 99%
- 225..240 129 99%
- 241..256 57 99%
- 257..288 496 99%
- 289..320 60 99%
- 321..352 37 99%
- 353..384 46 99%
- 385..416 22 99%
- 417..448 24 99%
- 449..480 26 99%
- 481..512 27 99%
- 513..1024 471 99%
- 1025..2048 389 99%
- 2049..4096 182 99%
- 4097..8192 74 99%
- 8193..16384 34 99%
-16385..32768 17 99%
-32769..65536 5 99%
-65537..131073 3 100%
-
-
-This information is gathered to help design the new built-in
-backend for sqlite 2.0. Note in particular that 99% of all
-database entries have a combined key and data size of less than
-144 bytes. So if a leaf node in the new database is able to
-store 144 bytes of combined key and data, only 1% of the leaves
-will require overflow pages. Furthermore, note that no key
-is larger than 99 bytes, so if the key will never be on an
-overflow page.
-
-The average combined size of key+data is 48. Add in 16 bytes of
-overhead for a total of 64. That means that a 1K page will
-store (on average) about 16 entries.
diff --git a/ext/pdo_sqlite/sqlite/tool/showdb.c b/ext/pdo_sqlite/sqlite/tool/showdb.c
deleted file mode 100644
index b2ed562e95..0000000000
--- a/ext/pdo_sqlite/sqlite/tool/showdb.c
+++ /dev/null
@@ -1,86 +0,0 @@
-/*
-** A utility for printing all or part of an SQLite database file.
-*/
-#include <stdio.h>
-#include <ctype.h>
-#include <sys/types.h>
-#include <sys/stat.h>
-#include <fcntl.h>
-#include <unistd.h>
-#include <stdlib.h>
-
-
-static int pagesize = 1024;
-static int db = -1;
-static int mxPage = 0;
-static int perLine = 32;
-
-static void out_of_memory(void){
- fprintf(stderr,"Out of memory...\n");
- exit(1);
-}
-
-static print_page(int iPg){
- unsigned char *aData;
- int i, j;
- aData = malloc(pagesize);
- if( aData==0 ) out_of_memory();
- lseek(db, (iPg-1)*pagesize, SEEK_SET);
- read(db, aData, pagesize);
- fprintf(stdout, "Page %d:\n", iPg);
- for(i=0; i<pagesize; i += perLine){
- fprintf(stdout, " %03x: ",i);
- for(j=0; j<perLine; j++){
- fprintf(stdout,"%02x ", aData[i+j]);
- }
- for(j=0; j<perLine; j++){
- fprintf(stdout,"%c", isprint(aData[i+j]) ? aData[i+j] : '.');
- }
- fprintf(stdout,"\n");
- }
- free(aData);
-}
-
-int main(int argc, char **argv){
- struct stat sbuf;
- if( argc<2 ){
- fprintf(stderr,"Usage: %s FILENAME ?PAGE? ...\n", argv[0]);
- exit(1);
- }
- db = open(argv[1], O_RDONLY);
- if( db<0 ){
- fprintf(stderr,"%s: can't open %s\n", argv[0], argv[1]);
- exit(1);
- }
- fstat(db, &sbuf);
- mxPage = sbuf.st_size/pagesize + 1;
- if( argc==2 ){
- int i;
- for(i=1; i<=mxPage; i++) print_page(i);
- }else{
- int i;
- for(i=2; i<argc; i++){
- int iStart, iEnd;
- char *zLeft;
- iStart = strtol(argv[i], &zLeft, 0);
- if( zLeft && strcmp(zLeft,"..end")==0 ){
- iEnd = mxPage;
- }else if( zLeft && zLeft[0]=='.' && zLeft[1]=='.' ){
- iEnd = strtol(&zLeft[2], 0, 0);
- }else{
- iEnd = iStart;
- }
- if( iStart<1 || iEnd<iStart || iEnd>mxPage ){
- fprintf(stderr,
- "Page argument should be LOWER?..UPPER?. Range 1 to %d\n",
- mxPage);
- exit(1);
- }
- while( iStart<=iEnd ){
- print_page(iStart);
- iStart++;
- }
- }
- }
- close(db);
-}
diff --git a/ext/pdo_sqlite/sqlite/tool/showjournal.c b/ext/pdo_sqlite/sqlite/tool/showjournal.c
deleted file mode 100644
index ec93c91905..0000000000
--- a/ext/pdo_sqlite/sqlite/tool/showjournal.c
+++ /dev/null
@@ -1,76 +0,0 @@
-/*
-** A utility for printing an SQLite database journal.
-*/
-#include <stdio.h>
-#include <ctype.h>
-#include <sys/types.h>
-#include <sys/stat.h>
-#include <fcntl.h>
-#include <unistd.h>
-#include <stdlib.h>
-
-
-static int pagesize = 1024;
-static int db = -1;
-static int mxPage = 0;
-
-static void out_of_memory(void){
- fprintf(stderr,"Out of memory...\n");
- exit(1);
-}
-
-static print_page(int iPg){
- unsigned char *aData;
- int i, j;
- aData = malloc(pagesize);
- if( aData==0 ) out_of_memory();
- read(db, aData, pagesize);
- fprintf(stdout, "Page %d:\n", iPg);
- for(i=0; i<pagesize; i += 16){
- fprintf(stdout, " %03x: ",i);
- for(j=0; j<16; j++){
- fprintf(stdout,"%02x ", aData[i+j]);
- }
- for(j=0; j<16; j++){
- fprintf(stdout,"%c", isprint(aData[i+j]) ? aData[i+j] : '.');
- }
- fprintf(stdout,"\n");
- }
- free(aData);
-}
-
-int main(int argc, char **argv){
- struct stat sbuf;
- unsigned int u;
- int rc;
- unsigned char zBuf[10];
- unsigned char zBuf2[sizeof(u)];
- if( argc!=2 ){
- fprintf(stderr,"Usage: %s FILENAME\n", argv[0]);
- exit(1);
- }
- db = open(argv[1], O_RDONLY);
- if( db<0 ){
- fprintf(stderr,"%s: can't open %s\n", argv[0], argv[1]);
- exit(1);
- }
- read(db, zBuf, 8);
- if( zBuf[7]==0xd6 ){
- read(db, &u, sizeof(u));
- printf("Records in Journal: %u\n", u);
- read(db, &u, sizeof(u));
- printf("Magic Number: 0x%08x\n", u);
- }
- read(db, zBuf2, sizeof(zBuf2));
- u = zBuf2[0]<<24 | zBuf2[1]<<16 | zBuf2[2]<<8 | zBuf2[3];
- printf("Database Size: %u\n", u);
- while( read(db, zBuf2, sizeof(zBuf2))==sizeof(zBuf2) ){
- u = zBuf2[0]<<24 | zBuf2[1]<<16 | zBuf2[2]<<8 | zBuf2[3];
- print_page(u);
- if( zBuf[7]==0xd6 ){
- read(db, &u, sizeof(u));
- printf("Checksum: 0x%08x\n", u);
- }
- }
- close(db);
-}
diff --git a/ext/pdo_sqlite/sqlite/tool/space_used.tcl b/ext/pdo_sqlite/sqlite/tool/space_used.tcl
deleted file mode 100644
index 2044aa38c5..0000000000
--- a/ext/pdo_sqlite/sqlite/tool/space_used.tcl
+++ /dev/null
@@ -1,111 +0,0 @@
-# Run this TCL script using "testfixture" in order get a report that shows
-# how much disk space is used by a particular data to actually store data
-# versus how much space is unused.
-#
-
-# Get the name of the database to analyze
-#
-if {[llength $argv]!=1} {
- puts stderr "Usage: $argv0 database-name"
- exit 1
-}
-set file_to_analyze [lindex $argv 0]
-
-# Open the database
-#
-sqlite db [lindex $argv 0]
-set DB [btree_open [lindex $argv 0]]
-
-# Output the schema for the generated report
-#
-puts \
-{BEGIN;
-CREATE TABLE space_used(
- name clob, -- Name of a table or index in the database file
- is_index boolean, -- TRUE if it is an index, false for a table
- payload int, -- Total amount of data stored in this table or index
- pri_pages int, -- Number of primary pages used
- ovfl_pages int, -- Number of overflow pages used
- pri_unused int, -- Number of unused bytes on primary pages
- ovfl_unused int -- Number of unused bytes on overflow pages
-);}
-
-# This query will be used to find the root page number for every index and
-# table in the database.
-#
-set sql {
- SELECT name, type, rootpage FROM sqlite_master
- UNION ALL
- SELECT 'sqlite_master', 'table', 2
- ORDER BY 1
-}
-
-# Initialize variables used for summary statistics.
-#
-set total_size 0
-set total_primary 0
-set total_overflow 0
-set total_unused_primary 0
-set total_unused_ovfl 0
-
-# Analyze every table in the database, one at a time.
-#
-foreach {name type rootpage} [db eval $sql] {
- set cursor [btree_cursor $DB $rootpage 0]
- set go [btree_first $cursor]
- set size 0
- catch {unset pg_used}
- set unused_ovfl 0
- set n_overflow 0
- while {$go==0} {
- set payload [btree_payload_size $cursor]
- incr size $payload
- set stat [btree_cursor_dump $cursor]
- set pgno [lindex $stat 0]
- set freebytes [lindex $stat 4]
- set pg_used($pgno) $freebytes
- if {$payload>238} {
- set n [expr {($payload-238+1019)/1020}]
- incr n_overflow $n
- incr unused_ovfl [expr {$n*1020+238-$payload}]
- }
- set go [btree_next $cursor]
- }
- btree_close_cursor $cursor
- set n_primary [llength [array names pg_used]]
- set unused_primary 0
- foreach x [array names pg_used] {incr unused_primary $pg_used($x)}
- regsub -all ' $name '' name
- puts -nonewline "INSERT INTO space_used VALUES('$name'"
- puts -nonewline ",[expr {$type=="index"}]"
- puts ",$size,$n_primary,$n_overflow,$unused_primary,$unused_ovfl);"
- incr total_size $size
- incr total_primary $n_primary
- incr total_overflow $n_overflow
- incr total_unused_primary $unused_primary
- incr total_unused_ovfl $unused_ovfl
-}
-
-# Output summary statistics:
-#
-puts "-- Total payload size: $total_size"
-puts "-- Total pages used: $total_primary primary and $total_overflow overflow"
-set file_pgcnt [expr {[file size [lindex $argv 0]]/1024}]
-puts -nonewline "-- Total unused bytes on primary pages: $total_unused_primary"
-if {$total_primary>0} {
- set upp [expr {$total_unused_primary/$total_primary}]
- puts " (avg $upp bytes/page)"
-} else {
- puts ""
-}
-puts -nonewline "-- Total unused bytes on overflow pages: $total_unused_ovfl"
-if {$total_overflow>0} {
- set upp [expr {$total_unused_ovfl/$total_overflow}]
- puts " (avg $upp bytes/page)"
-} else {
- puts ""
-}
-set n_free [expr {$file_pgcnt-$total_primary-$total_overflow}]
-if {$n_free>0} {incr n_free -1}
-puts "-- Total pages on freelist: $n_free"
-puts "COMMIT;"
diff --git a/ext/pdo_sqlite/sqlite/tool/spaceanal.tcl b/ext/pdo_sqlite/sqlite/tool/spaceanal.tcl
deleted file mode 100644
index c0fe5b5d87..0000000000
--- a/ext/pdo_sqlite/sqlite/tool/spaceanal.tcl
+++ /dev/null
@@ -1,810 +0,0 @@
-# Run this TCL script using "testfixture" in order get a report that shows
-# how much disk space is used by a particular data to actually store data
-# versus how much space is unused.
-#
-
-if {[catch {
-
-# Get the name of the database to analyze
-#
-#set argv $argv0
-if {[llength $argv]!=1} {
- puts stderr "Usage: $argv0 database-name"
- exit 1
-}
-set file_to_analyze [lindex $argv 0]
-if {![file exists $file_to_analyze]} {
- puts stderr "No such file: $file_to_analyze"
- exit 1
-}
-if {![file readable $file_to_analyze]} {
- puts stderr "File is not readable: $file_to_analyze"
- exit 1
-}
-if {[file size $file_to_analyze]<512} {
- puts stderr "Empty or malformed database: $file_to_analyze"
- exit 1
-}
-
-# Open the database
-#
-sqlite3 db [lindex $argv 0]
-set DB [btree_open [lindex $argv 0] 1000 0]
-
-# In-memory database for collecting statistics. This script loops through
-# the tables and indices in the database being analyzed, adding a row for each
-# to an in-memory database (for which the schema is shown below). It then
-# queries the in-memory db to produce the space-analysis report.
-#
-sqlite3 mem :memory:
-set tabledef\
-{CREATE TABLE space_used(
- name clob, -- Name of a table or index in the database file
- tblname clob, -- Name of associated table
- is_index boolean, -- TRUE if it is an index, false for a table
- nentry int, -- Number of entries in the BTree
- leaf_entries int, -- Number of leaf entries
- payload int, -- Total amount of data stored in this table or index
- ovfl_payload int, -- Total amount of data stored on overflow pages
- ovfl_cnt int, -- Number of entries that use overflow
- mx_payload int, -- Maximum payload size
- int_pages int, -- Number of interior pages used
- leaf_pages int, -- Number of leaf pages used
- ovfl_pages int, -- Number of overflow pages used
- int_unused int, -- Number of unused bytes on interior pages
- leaf_unused int, -- Number of unused bytes on primary pages
- ovfl_unused int -- Number of unused bytes on overflow pages
-);}
-mem eval $tabledef
-
-proc integerify {real} {
- return [expr int($real)]
-}
-mem function int integerify
-
-# Quote a string for use in an SQL query. Examples:
-#
-# [quote {hello world}] == {'hello world'}
-# [quote {hello world's}] == {'hello world''s'}
-#
-proc quote {txt} {
- regsub -all ' $txt '' q
- return '$q'
-}
-
-# This proc is a wrapper around the btree_cursor_info command. The
-# second argument is an open btree cursor returned by [btree_cursor].
-# The first argument is the name of an array variable that exists in
-# the scope of the caller. If the third argument is non-zero, then
-# info is returned for the page that lies $up entries upwards in the
-# tree-structure. (i.e. $up==1 returns the parent page, $up==2 the
-# grandparent etc.)
-#
-# The following entries in that array are filled in with information retrieved
-# using [btree_cursor_info]:
-#
-# $arrayvar(page_no) = The page number
-# $arrayvar(entry_no) = The entry number
-# $arrayvar(page_entries) = Total number of entries on this page
-# $arrayvar(cell_size) = Cell size (local payload + header)
-# $arrayvar(page_freebytes) = Number of free bytes on this page
-# $arrayvar(page_freeblocks) = Number of free blocks on the page
-# $arrayvar(payload_bytes) = Total payload size (local + overflow)
-# $arrayvar(header_bytes) = Header size in bytes
-# $arrayvar(local_payload_bytes) = Local payload size
-# $arrayvar(parent) = Parent page number
-#
-proc cursor_info {arrayvar csr {up 0}} {
- upvar $arrayvar a
- foreach [list a(page_no) \
- a(entry_no) \
- a(page_entries) \
- a(cell_size) \
- a(page_freebytes) \
- a(page_freeblocks) \
- a(payload_bytes) \
- a(header_bytes) \
- a(local_payload_bytes) \
- a(parent) ] [btree_cursor_info $csr $up] {}
-}
-
-# Determine the page-size of the database. This global variable is used
-# throughout the script.
-#
-set pageSize [db eval {PRAGMA page_size}]
-
-# Analyze every table in the database, one at a time.
-#
-# The following query returns the name and root-page of each table in the
-# database, including the sqlite_master table.
-#
-set sql {
- SELECT name, rootpage FROM sqlite_master WHERE type='table'
- UNION ALL
- SELECT 'sqlite_master', 1
- ORDER BY 1
-}
-set wideZero [expr {10000000000 - 10000000000}]
-foreach {name rootpage} [db eval $sql] {
- puts stderr "Analyzing table $name..."
-
- # Code below traverses the table being analyzed (table name $name), using the
- # btree cursor $cursor. Statistics related to table $name are accumulated in
- # the following variables:
- #
- set total_payload $wideZero ;# Payload space used by all entries
- set total_ovfl $wideZero ;# Payload space on overflow pages
- set unused_int $wideZero ;# Unused space on interior nodes
- set unused_leaf $wideZero ;# Unused space on leaf nodes
- set unused_ovfl $wideZero ;# Unused space on overflow pages
- set cnt_ovfl $wideZero ;# Number of entries that use overflows
- set cnt_leaf_entry $wideZero ;# Number of leaf entries
- set cnt_int_entry $wideZero ;# Number of interor entries
- set mx_payload $wideZero ;# Maximum payload size
- set ovfl_pages $wideZero ;# Number of overflow pages used
- set leaf_pages $wideZero ;# Number of leaf pages
- set int_pages $wideZero ;# Number of interior pages
-
- # As the btree is traversed, the array variable $seen($pgno) is set to 1
- # the first time page $pgno is encountered.
- #
- catch {unset seen}
-
- # The following loop runs once for each entry in table $name. The table
- # is traversed using the btree cursor stored in variable $csr
- #
- set csr [btree_cursor $DB $rootpage 0]
- for {btree_first $csr} {![btree_eof $csr]} {btree_next $csr} {
- incr cnt_leaf_entry
-
- # Retrieve information about the entry the btree-cursor points to into
- # the array variable $ci (cursor info).
- #
- cursor_info ci $csr
-
- # Check if the payload of this entry is greater than the current
- # $mx_payload statistic for the table. Also increase the $total_payload
- # statistic.
- #
- if {$ci(payload_bytes)>$mx_payload} {set mx_payload $ci(payload_bytes)}
- incr total_payload $ci(payload_bytes)
-
- # If this entry uses overflow pages, then update the $cnt_ovfl,
- # $total_ovfl, $ovfl_pages and $unused_ovfl statistics.
- #
- set ovfl [expr {$ci(payload_bytes)-$ci(local_payload_bytes)}]
- if {$ovfl} {
- incr cnt_ovfl
- incr total_ovfl $ovfl
- set n [expr {int(ceil($ovfl/($pageSize-4.0)))}]
- incr ovfl_pages $n
- incr unused_ovfl [expr {$n*($pageSize-4) - $ovfl}]
- }
-
- # If this is the first table entry analyzed for the page, then update
- # the page-related statistics $leaf_pages and $unused_leaf. Also, if
- # this page has a parent page that has not been analyzed, retrieve
- # info for the parent and update statistics for it too.
- #
- if {![info exists seen($ci(page_no))]} {
- set seen($ci(page_no)) 1
- incr leaf_pages
- incr unused_leaf $ci(page_freebytes)
-
- # Now check if the page has a parent that has not been analyzed. If
- # so, update the $int_pages, $cnt_int_entry and $unused_int statistics
- # accordingly. Then check if the parent page has a parent that has
- # not yet been analyzed etc.
- #
- # set parent $ci(parent_page_no)
- for {set up 1} \
- {$ci(parent)!=0 && ![info exists seen($ci(parent))]} {incr up} \
- {
- # Mark the parent as seen.
- #
- set seen($ci(parent)) 1
-
- # Retrieve info for the parent and update statistics.
- cursor_info ci $csr $up
- incr int_pages
- incr cnt_int_entry $ci(page_entries)
- incr unused_int $ci(page_freebytes)
- }
- }
- }
- btree_close_cursor $csr
-
- # Handle the special case where a table contains no data. In this case
- # all statistics are zero, except for the number of leaf pages (1) and
- # the unused bytes on leaf pages ($pageSize - 8).
- #
- # An exception to the above is the sqlite_master table. If it is empty
- # then all statistics are zero except for the number of leaf pages (1),
- # and the number of unused bytes on leaf pages ($pageSize - 112).
- #
- if {[llength [array names seen]]==0} {
- set leaf_pages 1
- if {$rootpage==1} {
- set unused_leaf [expr {$pageSize-112}]
- } else {
- set unused_leaf [expr {$pageSize-8}]
- }
- }
-
- # Insert the statistics for the table analyzed into the in-memory database.
- #
- set sql "INSERT INTO space_used VALUES("
- append sql [quote $name]
- append sql ",[quote $name]"
- append sql ",0"
- append sql ",[expr {$cnt_leaf_entry+$cnt_int_entry}]"
- append sql ",$cnt_leaf_entry"
- append sql ",$total_payload"
- append sql ",$total_ovfl"
- append sql ",$cnt_ovfl"
- append sql ",$mx_payload"
- append sql ",$int_pages"
- append sql ",$leaf_pages"
- append sql ",$ovfl_pages"
- append sql ",$unused_int"
- append sql ",$unused_leaf"
- append sql ",$unused_ovfl"
- append sql );
- mem eval $sql
-}
-
-# Analyze every index in the database, one at a time.
-#
-# The query below returns the name, associated table and root-page number
-# for every index in the database.
-#
-set sql {
- SELECT name, tbl_name, rootpage FROM sqlite_master WHERE type='index'
- ORDER BY 2, 1
-}
-foreach {name tbl_name rootpage} [db eval $sql] {
- puts stderr "Analyzing index $name of table $tbl_name..."
-
- # Code below traverses the index being analyzed (index name $name), using the
- # btree cursor $cursor. Statistics related to index $name are accumulated in
- # the following variables:
- #
- set total_payload $wideZero ;# Payload space used by all entries
- set total_ovfl $wideZero ;# Payload space on overflow pages
- set unused_leaf $wideZero ;# Unused space on leaf nodes
- set unused_ovfl $wideZero ;# Unused space on overflow pages
- set cnt_ovfl $wideZero ;# Number of entries that use overflows
- set cnt_leaf_entry $wideZero ;# Number of leaf entries
- set mx_payload $wideZero ;# Maximum payload size
- set ovfl_pages $wideZero ;# Number of overflow pages used
- set leaf_pages $wideZero ;# Number of leaf pages
-
- # As the btree is traversed, the array variable $seen($pgno) is set to 1
- # the first time page $pgno is encountered.
- #
- catch {unset seen}
-
- # The following loop runs once for each entry in index $name. The index
- # is traversed using the btree cursor stored in variable $csr
- #
- set csr [btree_cursor $DB $rootpage 0]
- for {btree_first $csr} {![btree_eof $csr]} {btree_next $csr} {
- incr cnt_leaf_entry
-
- # Retrieve information about the entry the btree-cursor points to into
- # the array variable $ci (cursor info).
- #
- cursor_info ci $csr
-
- # Check if the payload of this entry is greater than the current
- # $mx_payload statistic for the table. Also increase the $total_payload
- # statistic.
- #
- set payload [btree_keysize $csr]
- if {$payload>$mx_payload} {set mx_payload $payload}
- incr total_payload $payload
-
- # If this entry uses overflow pages, then update the $cnt_ovfl,
- # $total_ovfl, $ovfl_pages and $unused_ovfl statistics.
- #
- set ovfl [expr {$payload-$ci(local_payload_bytes)}]
- if {$ovfl} {
- incr cnt_ovfl
- incr total_ovfl $ovfl
- set n [expr {int(ceil($ovfl/($pageSize-4.0)))}]
- incr ovfl_pages $n
- incr unused_ovfl [expr {$n*($pageSize-4) - $ovfl}]
- }
-
- # If this is the first table entry analyzed for the page, then update
- # the page-related statistics $leaf_pages and $unused_leaf.
- #
- if {![info exists seen($ci(page_no))]} {
- set seen($ci(page_no)) 1
- incr leaf_pages
- incr unused_leaf $ci(page_freebytes)
- }
- }
- btree_close_cursor $csr
-
- # Handle the special case where a index contains no data. In this case
- # all statistics are zero, except for the number of leaf pages (1) and
- # the unused bytes on leaf pages ($pageSize - 8).
- #
- if {[llength [array names seen]]==0} {
- set leaf_pages 1
- set unused_leaf [expr {$pageSize-8}]
- }
-
- # Insert the statistics for the index analyzed into the in-memory database.
- #
- set sql "INSERT INTO space_used VALUES("
- append sql [quote $name]
- append sql ",[quote $tbl_name]"
- append sql ",1"
- append sql ",$cnt_leaf_entry"
- append sql ",$cnt_leaf_entry"
- append sql ",$total_payload"
- append sql ",$total_ovfl"
- append sql ",$cnt_ovfl"
- append sql ",$mx_payload"
- append sql ",0"
- append sql ",$leaf_pages"
- append sql ",$ovfl_pages"
- append sql ",0"
- append sql ",$unused_leaf"
- append sql ",$unused_ovfl"
- append sql );
- mem eval $sql
-}
-
-# Generate a single line of output in the statistics section of the
-# report.
-#
-proc statline {title value {extra {}}} {
- set len [string length $title]
- set dots [string range {......................................} $len end]
- set len [string length $value]
- set sp2 [string range { } $len end]
- if {$extra ne ""} {
- set extra " $extra"
- }
- puts "$title$dots $value$sp2$extra"
-}
-
-# Generate a formatted percentage value for $num/$denom
-#
-proc percent {num denom {of {}}} {
- if {$denom==0.0} {return ""}
- set v [expr {$num*100.0/$denom}]
- set of {}
- if {$v==100.0 || $v<0.001 || ($v>1.0 && $v<99.0)} {
- return [format {%5.1f%% %s} $v $of]
- } elseif {$v<0.1 || $v>99.9} {
- return [format {%7.3f%% %s} $v $of]
- } else {
- return [format {%6.2f%% %s} $v $of]
- }
-}
-
-proc divide {num denom} {
- if {$denom==0} {return 0.0}
- return [format %.2f [expr double($num)/double($denom)]]
-}
-
-# Generate a subreport that covers some subset of the database.
-# the $where clause determines which subset to analyze.
-#
-proc subreport {title where} {
- global pageSize file_pgcnt
-
- # Query the in-memory database for the sum of various statistics
- # for the subset of tables/indices identified by the WHERE clause in
- # $where. Note that even if the WHERE clause matches no rows, the
- # following query returns exactly one row (because it is an aggregate).
- #
- # The results of the query are stored directly by SQLite into local
- # variables (i.e. $nentry, $nleaf etc.).
- #
- mem eval "
- SELECT
- int(sum(nentry)) AS nentry,
- int(sum(leaf_entries)) AS nleaf,
- int(sum(payload)) AS payload,
- int(sum(ovfl_payload)) AS ovfl_payload,
- max(mx_payload) AS mx_payload,
- int(sum(ovfl_cnt)) as ovfl_cnt,
- int(sum(leaf_pages)) AS leaf_pages,
- int(sum(int_pages)) AS int_pages,
- int(sum(ovfl_pages)) AS ovfl_pages,
- int(sum(leaf_unused)) AS leaf_unused,
- int(sum(int_unused)) AS int_unused,
- int(sum(ovfl_unused)) AS ovfl_unused
- FROM space_used WHERE $where" {} {}
-
- # Output the sub-report title, nicely decorated with * characters.
- #
- puts ""
- set len [string length $title]
- set stars [string repeat * [expr 65-$len]]
- puts "*** $title $stars"
- puts ""
-
- # Calculate statistics and store the results in TCL variables, as follows:
- #
- # total_pages: Database pages consumed.
- # total_pages_percent: Pages consumed as a percentage of the file.
- # storage: Bytes consumed.
- # payload_percent: Payload bytes used as a percentage of $storage.
- # total_unused: Unused bytes on pages.
- # avg_payload: Average payload per btree entry.
- # avg_fanout: Average fanout for internal pages.
- # avg_unused: Average unused bytes per btree entry.
- # ovfl_cnt_percent: Percentage of btree entries that use overflow pages.
- #
- set total_pages [expr {$leaf_pages+$int_pages+$ovfl_pages}]
- set total_pages_percent [percent $total_pages $file_pgcnt]
- set storage [expr {$total_pages*$pageSize}]
- set payload_percent [percent $payload $storage {of storage consumed}]
- set total_unused [expr {$ovfl_unused+$int_unused+$leaf_unused}]
- set avg_payload [divide $payload $nleaf]
- set avg_unused [divide $total_unused $nleaf]
- if {$int_pages>0} {
- # TODO: Is this formula correct?
- set nTab [mem eval "
- SELECT count(*) FROM (
- SELECT DISTINCT tblname FROM space_used WHERE $where AND is_index=0
- )
- "]
- set avg_fanout [mem eval "
- SELECT (sum(leaf_pages+int_pages)-$nTab)/sum(int_pages) FROM space_used
- WHERE $where AND is_index = 0
- "]
- set avg_fanout [format %.2f $avg_fanout]
- }
- set ovfl_cnt_percent [percent $ovfl_cnt $nleaf {of all entries}]
-
- # Print out the sub-report statistics.
- #
- statline {Percentage of total database} $total_pages_percent
- statline {Number of entries} $nleaf
- statline {Bytes of storage consumed} $storage
- statline {Bytes of payload} $payload $payload_percent
- statline {Average payload per entry} $avg_payload
- statline {Average unused bytes per entry} $avg_unused
- if {[info exists avg_fanout]} {
- statline {Average fanout} $avg_fanout
- }
- statline {Maximum payload per entry} $mx_payload
- statline {Entries that use overflow} $ovfl_cnt $ovfl_cnt_percent
- if {$int_pages>0} {
- statline {Index pages used} $int_pages
- }
- statline {Primary pages used} $leaf_pages
- statline {Overflow pages used} $ovfl_pages
- statline {Total pages used} $total_pages
- if {$int_unused>0} {
- set int_unused_percent \
- [percent $int_unused [expr {$int_pages*$pageSize}] {of index space}]
- statline "Unused bytes on index pages" $int_unused $int_unused_percent
- }
- statline "Unused bytes on primary pages" $leaf_unused \
- [percent $leaf_unused [expr {$leaf_pages*$pageSize}] {of primary space}]
- statline "Unused bytes on overflow pages" $ovfl_unused \
- [percent $ovfl_unused [expr {$ovfl_pages*$pageSize}] {of overflow space}]
- statline "Unused bytes on all pages" $total_unused \
- [percent $total_unused $storage {of all space}]
- return 1
-}
-
-# Calculate the overhead in pages caused by auto-vacuum.
-#
-# This procedure calculates and returns the number of pages used by the
-# auto-vacuum 'pointer-map'. If the database does not support auto-vacuum,
-# then 0 is returned. The two arguments are the size of the database file in
-# pages and the page size used by the database (in bytes).
-proc autovacuum_overhead {filePages pageSize} {
-
- # Read the value of meta 4. If non-zero, then the database supports
- # auto-vacuum. It would be possible to use "PRAGMA auto_vacuum" instead,
- # but that would not work if the SQLITE_OMIT_PRAGMA macro was defined
- # when the library was built.
- set meta4 [lindex [btree_get_meta $::DB] 4]
-
- # If the database is not an auto-vacuum database or the file consists
- # of one page only then there is no overhead for auto-vacuum. Return zero.
- if {0==$meta4 || $filePages==1} {
- return 0
- }
-
- # The number of entries on each pointer map page. The layout of the
- # database file is one pointer-map page, followed by $ptrsPerPage other
- # pages, followed by a pointer-map page etc. The first pointer-map page
- # is the second page of the file overall.
- set ptrsPerPage [expr double($pageSize/5)]
-
- # Return the number of pointer map pages in the database.
- return [expr int(ceil( ($filePages-1.0)/($ptrsPerPage+1.0) ))]
-}
-
-
-# Calculate the summary statistics for the database and store the results
-# in TCL variables. They are output below. Variables are as follows:
-#
-# pageSize: Size of each page in bytes.
-# file_bytes: File size in bytes.
-# file_pgcnt: Number of pages in the file.
-# file_pgcnt2: Number of pages in the file (calculated).
-# av_pgcnt: Pages consumed by the auto-vacuum pointer-map.
-# av_percent: Percentage of the file consumed by auto-vacuum pointer-map.
-# inuse_pgcnt: Data pages in the file.
-# inuse_percent: Percentage of pages used to store data.
-# free_pgcnt: Free pages calculated as (<total pages> - <in-use pages>)
-# free_pgcnt2: Free pages in the file according to the file header.
-# free_percent: Percentage of file consumed by free pages (calculated).
-# free_percent2: Percentage of file consumed by free pages (header).
-# ntable: Number of tables in the db.
-# nindex: Number of indices in the db.
-# nautoindex: Number of indices created automatically.
-# nmanindex: Number of indices created manually.
-# user_payload: Number of bytes of payload in table btrees
-# (not including sqlite_master)
-# user_percent: $user_payload as a percentage of total file size.
-
-set file_bytes [file size $file_to_analyze]
-set file_pgcnt [expr {$file_bytes/$pageSize}]
-
-set av_pgcnt [autovacuum_overhead $file_pgcnt $pageSize]
-set av_percent [percent $av_pgcnt $file_pgcnt]
-
-set sql {SELECT sum(leaf_pages+int_pages+ovfl_pages) FROM space_used}
-set inuse_pgcnt [expr int([mem eval $sql])]
-set inuse_percent [percent $inuse_pgcnt $file_pgcnt]
-
-set free_pgcnt [expr $file_pgcnt-$inuse_pgcnt-$av_pgcnt]
-set free_percent [percent $free_pgcnt $file_pgcnt]
-set free_pgcnt2 [lindex [btree_get_meta $DB] 0]
-set free_percent2 [percent $free_pgcnt2 $file_pgcnt]
-
-set file_pgcnt2 [expr {$inuse_pgcnt+$free_pgcnt2+$av_pgcnt}]
-
-set ntable [db eval {SELECT count(*)+1 FROM sqlite_master WHERE type='table'}]
-set nindex [db eval {SELECT count(*) FROM sqlite_master WHERE type='index'}]
-set sql {SELECT count(*) FROM sqlite_master WHERE name LIKE 'sqlite_autoindex%'}
-set nautoindex [db eval $sql]
-set nmanindex [expr {$nindex-$nautoindex}]
-
-# set total_payload [mem eval "SELECT sum(payload) FROM space_used"]
-set user_payload [mem one {SELECT int(sum(payload)) FROM space_used
- WHERE NOT is_index AND name NOT LIKE 'sqlite_master'}]
-set user_percent [percent $user_payload $file_bytes]
-
-# Output the summary statistics calculated above.
-#
-puts "/** Disk-Space Utilization Report For $file_to_analyze"
-puts "*** As of [clock format [clock seconds] -format {%Y-%b-%d %H:%M:%S}]"
-puts ""
-statline {Page size in bytes} $pageSize
-statline {Pages in the whole file (measured)} $file_pgcnt
-statline {Pages in the whole file (calculated)} $file_pgcnt2
-statline {Pages that store data} $inuse_pgcnt $inuse_percent
-statline {Pages on the freelist (per header)} $free_pgcnt2 $free_percent2
-statline {Pages on the freelist (calculated)} $free_pgcnt $free_percent
-statline {Pages of auto-vacuum overhead} $av_pgcnt $av_percent
-statline {Number of tables in the database} $ntable
-statline {Number of indices} $nindex
-statline {Number of named indices} $nmanindex
-statline {Automatically generated indices} $nautoindex
-statline {Size of the file in bytes} $file_bytes
-statline {Bytes of user payload stored} $user_payload $user_percent
-
-# Output table rankings
-#
-puts ""
-puts "*** Page counts for all tables with their indices ********************"
-puts ""
-mem eval {SELECT tblname, count(*) AS cnt,
- int(sum(int_pages+leaf_pages+ovfl_pages)) AS size
- FROM space_used GROUP BY tblname ORDER BY size+0 DESC, tblname} {} {
- statline [string toupper $tblname] $size [percent $size $file_pgcnt]
-}
-
-# Output subreports
-#
-if {$nindex>0} {
- subreport {All tables and indices} 1
-}
-subreport {All tables} {NOT is_index}
-if {$nindex>0} {
- subreport {All indices} {is_index}
-}
-foreach tbl [mem eval {SELECT name FROM space_used WHERE NOT is_index
- ORDER BY name}] {
- regsub ' $tbl '' qn
- set name [string toupper $tbl]
- set n [mem eval "SELECT count(*) FROM space_used WHERE tblname='$qn'"]
- if {$n>1} {
- subreport "Table $name and all its indices" "tblname='$qn'"
- subreport "Table $name w/o any indices" "name='$qn'"
- subreport "Indices of table $name" "tblname='$qn' AND is_index"
- } else {
- subreport "Table $name" "name='$qn'"
- }
-}
-
-# Output instructions on what the numbers above mean.
-#
-puts {
-*** Definitions ******************************************************
-
-Page size in bytes
-
- The number of bytes in a single page of the database file.
- Usually 1024.
-
-Number of pages in the whole file
-}
-puts \
-" The number of $pageSize-byte pages that go into forming the complete
- database"
-puts \
-{
-Pages that store data
-
- The number of pages that store data, either as primary B*Tree pages or
- as overflow pages. The number at the right is the data pages divided by
- the total number of pages in the file.
-
-Pages on the freelist
-
- The number of pages that are not currently in use but are reserved for
- future use. The percentage at the right is the number of freelist pages
- divided by the total number of pages in the file.
-
-Pages of auto-vacuum overhead
-
- The number of pages that store data used by the database to facilitate
- auto-vacuum. This is zero for databases that do not support auto-vacuum.
-
-Number of tables in the database
-
- The number of tables in the database, including the SQLITE_MASTER table
- used to store schema information.
-
-Number of indices
-
- The total number of indices in the database.
-
-Number of named indices
-
- The number of indices created using an explicit CREATE INDEX statement.
-
-Automatically generated indices
-
- The number of indices used to implement PRIMARY KEY or UNIQUE constraints
- on tables.
-
-Size of the file in bytes
-
- The total amount of disk space used by the entire database files.
-
-Bytes of user payload stored
-
- The total number of bytes of user payload stored in the database. The
- schema information in the SQLITE_MASTER table is not counted when
- computing this number. The percentage at the right shows the payload
- divided by the total file size.
-
-Percentage of total database
-
- The amount of the complete database file that is devoted to storing
- information described by this category.
-
-Number of entries
-
- The total number of B-Tree key/value pairs stored under this category.
-
-Bytes of storage consumed
-
- The total amount of disk space required to store all B-Tree entries
- under this category. The is the total number of pages used times
- the pages size.
-
-Bytes of payload
-
- The amount of payload stored under this category. Payload is the data
- part of table entries and the key part of index entries. The percentage
- at the right is the bytes of payload divided by the bytes of storage
- consumed.
-
-Average payload per entry
-
- The average amount of payload on each entry. This is just the bytes of
- payload divided by the number of entries.
-
-Average unused bytes per entry
-
- The average amount of free space remaining on all pages under this
- category on a per-entry basis. This is the number of unused bytes on
- all pages divided by the number of entries.
-
-Maximum payload per entry
-
- The largest payload size of any entry.
-
-Entries that use overflow
-
- The number of entries that user one or more overflow pages.
-
-Total pages used
-
- This is the number of pages used to hold all information in the current
- category. This is the sum of index, primary, and overflow pages.
-
-Index pages used
-
- This is the number of pages in a table B-tree that hold only key (rowid)
- information and no data.
-
-Primary pages used
-
- This is the number of B-tree pages that hold both key and data.
-
-Overflow pages used
-
- The total number of overflow pages used for this category.
-
-Unused bytes on index pages
-
- The total number of bytes of unused space on all index pages. The
- percentage at the right is the number of unused bytes divided by the
- total number of bytes on index pages.
-
-Unused bytes on primary pages
-
- The total number of bytes of unused space on all primary pages. The
- percentage at the right is the number of unused bytes divided by the
- total number of bytes on primary pages.
-
-Unused bytes on overflow pages
-
- The total number of bytes of unused space on all overflow pages. The
- percentage at the right is the number of unused bytes divided by the
- total number of bytes on overflow pages.
-
-Unused bytes on all pages
-
- The total number of bytes of unused space on all primary and overflow
- pages. The percentage at the right is the number of unused bytes
- divided by the total number of bytes.
-}
-
-# Output a dump of the in-memory database. This can be used for more
-# complex offline analysis.
-#
-puts "**********************************************************************"
-puts "The entire text of this report can be sourced into any SQL database"
-puts "engine for further analysis. All of the text above is an SQL comment."
-puts "The data used to generate this report follows:"
-puts "*/"
-puts "BEGIN;"
-puts $tabledef
-unset -nocomplain x
-mem eval {SELECT * FROM space_used} x {
- puts -nonewline "INSERT INTO space_used VALUES"
- set sep (
- foreach col $x(*) {
- set v $x($col)
- if {$v=="" || ![string is double $v]} {set v [quote $v]}
- puts -nonewline $sep$v
- set sep ,
- }
- puts ");"
-}
-puts "COMMIT;"
-
-} err]} {
- puts "ERROR: $err"
- puts $errorInfo
- exit 1
-}
diff --git a/ext/pdo_sqlite/sqlite/tool/speedtest.tcl b/ext/pdo_sqlite/sqlite/tool/speedtest.tcl
deleted file mode 100644
index ef39dc5461..0000000000
--- a/ext/pdo_sqlite/sqlite/tool/speedtest.tcl
+++ /dev/null
@@ -1,275 +0,0 @@
-#!/usr/bin/tclsh
-#
-# Run this script using TCLSH to do a speed comparison between
-# various versions of SQLite and PostgreSQL and MySQL
-#
-
-# Run a test
-#
-set cnt 1
-proc runtest {title} {
- global cnt
- set sqlfile test$cnt.sql
- puts "<h2>Test $cnt: $title</h2>"
- incr cnt
- set fd [open $sqlfile r]
- set sql [string trim [read $fd [file size $sqlfile]]]
- close $fd
- set sx [split $sql \n]
- set n [llength $sx]
- if {$n>8} {
- set sql {}
- for {set i 0} {$i<3} {incr i} {append sql [lindex $sx $i]<br>\n}
- append sql "<i>... [expr {$n-6}] lines omitted</i><br>\n"
- for {set i [expr {$n-3}]} {$i<$n} {incr i} {
- append sql [lindex $sx $i]<br>\n
- }
- } else {
- regsub -all \n [string trim $sql] <br> sql
- }
- puts "<blockquote>"
- puts "$sql"
- puts "</blockquote><table border=0 cellpadding=0 cellspacing=0>"
- set format {<tr><td>%s</td><td align="right">&nbsp;&nbsp;&nbsp;%.3f</td></tr>}
- set delay 1000
-# exec sync; after $delay;
-# set t [time "exec psql drh <$sqlfile" 1]
-# set t [expr {[lindex $t 0]/1000000.0}]
-# puts [format $format PostgreSQL: $t]
- exec sync; after $delay;
- set t [time "exec mysql -f drh <$sqlfile" 1]
- set t [expr {[lindex $t 0]/1000000.0}]
- puts [format $format MySQL: $t]
-# set t [time "exec ./sqlite232 s232.db <$sqlfile" 1]
-# set t [expr {[lindex $t 0]/1000000.0}]
-# puts [format $format {SQLite 2.3.2:} $t]
-# set t [time "exec ./sqlite-100 s100.db <$sqlfile" 1]
-# set t [expr {[lindex $t 0]/1000000.0}]
-# puts [format $format {SQLite 2.4 (cache=100):} $t]
- exec sync; after $delay;
- set t [time "exec ./sqlite248 s2k.db <$sqlfile" 1]
- set t [expr {[lindex $t 0]/1000000.0}]
- puts [format $format {SQLite 2.4.8:} $t]
- exec sync; after $delay;
- set t [time "exec ./sqlite248 sns.db <$sqlfile" 1]
- set t [expr {[lindex $t 0]/1000000.0}]
- puts [format $format {SQLite 2.4.8 (nosync):} $t]
- exec sync; after $delay;
- set t [time "exec ./sqlite2412 s2kb.db <$sqlfile" 1]
- set t [expr {[lindex $t 0]/1000000.0}]
- puts [format $format {SQLite 2.4.12:} $t]
- exec sync; after $delay;
- set t [time "exec ./sqlite2412 snsb.db <$sqlfile" 1]
- set t [expr {[lindex $t 0]/1000000.0}]
- puts [format $format {SQLite 2.4.12 (nosync):} $t]
-# set t [time "exec ./sqlite-t1 st1.db <$sqlfile" 1]
-# set t [expr {[lindex $t 0]/1000000.0}]
-# puts [format $format {SQLite 2.4 (test):} $t]
- puts "</table>"
-}
-
-# Initialize the environment
-#
-expr srand(1)
-catch {exec /bin/sh -c {rm -f s*.db}}
-set fd [open clear.sql w]
-puts $fd {
- drop table t1;
- drop table t2;
-}
-close $fd
-catch {exec psql drh <clear.sql}
-catch {exec mysql drh <clear.sql}
-set fd [open 2kinit.sql w]
-puts $fd {
- PRAGMA default_cache_size=2000;
- PRAGMA default_synchronous=on;
-}
-close $fd
-exec ./sqlite248 s2k.db <2kinit.sql
-exec ./sqlite2412 s2kb.db <2kinit.sql
-set fd [open nosync-init.sql w]
-puts $fd {
- PRAGMA default_cache_size=2000;
- PRAGMA default_synchronous=off;
-}
-close $fd
-exec ./sqlite248 sns.db <nosync-init.sql
-exec ./sqlite2412 snsb.db <nosync-init.sql
-set ones {zero one two three four five six seven eight nine
- ten eleven twelve thirteen fourteen fifteen sixteen seventeen
- eighteen nineteen}
-set tens {{} ten twenty thirty forty fifty sixty seventy eighty ninety}
-proc number_name {n} {
- if {$n>=1000} {
- set txt "[number_name [expr {$n/1000}]] thousand"
- set n [expr {$n%1000}]
- } else {
- set txt {}
- }
- if {$n>=100} {
- append txt " [lindex $::ones [expr {$n/100}]] hundred"
- set n [expr {$n%100}]
- }
- if {$n>=20} {
- append txt " [lindex $::tens [expr {$n/10}]]"
- set n [expr {$n%10}]
- }
- if {$n>0} {
- append txt " [lindex $::ones $n]"
- }
- set txt [string trim $txt]
- if {$txt==""} {set txt zero}
- return $txt
-}
-
-
-
-set fd [open test$cnt.sql w]
-puts $fd "CREATE TABLE t1(a INTEGER, b INTEGER, c VARCHAR(100));"
-for {set i 1} {$i<=1000} {incr i} {
- set r [expr {int(rand()*100000)}]
- puts $fd "INSERT INTO t1 VALUES($i,$r,'[number_name $r]');"
-}
-close $fd
-runtest {1000 INSERTs}
-
-
-
-set fd [open test$cnt.sql w]
-puts $fd "BEGIN;"
-puts $fd "CREATE TABLE t2(a INTEGER, b INTEGER, c VARCHAR(100));"
-for {set i 1} {$i<=25000} {incr i} {
- set r [expr {int(rand()*500000)}]
- puts $fd "INSERT INTO t2 VALUES($i,$r,'[number_name $r]');"
-}
-puts $fd "COMMIT;"
-close $fd
-runtest {25000 INSERTs in a transaction}
-
-
-
-set fd [open test$cnt.sql w]
-for {set i 0} {$i<100} {incr i} {
- set lwr [expr {$i*100}]
- set upr [expr {($i+10)*100}]
- puts $fd "SELECT count(*), avg(b) FROM t2 WHERE b>=$lwr AND b<$upr;"
-}
-close $fd
-runtest {100 SELECTs without an index}
-
-
-
-set fd [open test$cnt.sql w]
-for {set i 1} {$i<=100} {incr i} {
- puts $fd "SELECT count(*), avg(b) FROM t2 WHERE c LIKE '%[number_name $i]%';"
-}
-close $fd
-runtest {100 SELECTs on a string comparison}
-
-
-
-set fd [open test$cnt.sql w]
-puts $fd {CREATE INDEX i2a ON t2(a);}
-puts $fd {CREATE INDEX i2b ON t2(b);}
-close $fd
-runtest {Creating an index}
-
-
-
-set fd [open test$cnt.sql w]
-for {set i 0} {$i<5000} {incr i} {
- set lwr [expr {$i*100}]
- set upr [expr {($i+1)*100}]
- puts $fd "SELECT count(*), avg(b) FROM t2 WHERE b>=$lwr AND b<$upr;"
-}
-close $fd
-runtest {5000 SELECTs with an index}
-
-
-
-set fd [open test$cnt.sql w]
-puts $fd "BEGIN;"
-for {set i 0} {$i<1000} {incr i} {
- set lwr [expr {$i*10}]
- set upr [expr {($i+1)*10}]
- puts $fd "UPDATE t1 SET b=b*2 WHERE a>=$lwr AND a<$upr;"
-}
-puts $fd "COMMIT;"
-close $fd
-runtest {1000 UPDATEs without an index}
-
-
-
-set fd [open test$cnt.sql w]
-puts $fd "BEGIN;"
-for {set i 1} {$i<=25000} {incr i} {
- set r [expr {int(rand()*500000)}]
- puts $fd "UPDATE t2 SET b=$r WHERE a=$i;"
-}
-puts $fd "COMMIT;"
-close $fd
-runtest {25000 UPDATEs with an index}
-
-
-set fd [open test$cnt.sql w]
-puts $fd "BEGIN;"
-for {set i 1} {$i<=25000} {incr i} {
- set r [expr {int(rand()*500000)}]
- puts $fd "UPDATE t2 SET c='[number_name $r]' WHERE a=$i;"
-}
-puts $fd "COMMIT;"
-close $fd
-runtest {25000 text UPDATEs with an index}
-
-
-
-set fd [open test$cnt.sql w]
-puts $fd "BEGIN;"
-puts $fd "INSERT INTO t1 SELECT * FROM t2;"
-puts $fd "INSERT INTO t2 SELECT * FROM t1;"
-puts $fd "COMMIT;"
-close $fd
-runtest {INSERTs from a SELECT}
-
-
-
-set fd [open test$cnt.sql w]
-puts $fd {DELETE FROM t2 WHERE c LIKE '%fifty%';}
-close $fd
-runtest {DELETE without an index}
-
-
-
-set fd [open test$cnt.sql w]
-puts $fd {DELETE FROM t2 WHERE a>10 AND a<20000;}
-close $fd
-runtest {DELETE with an index}
-
-
-
-set fd [open test$cnt.sql w]
-puts $fd {INSERT INTO t2 SELECT * FROM t1;}
-close $fd
-runtest {A big INSERT after a big DELETE}
-
-
-
-set fd [open test$cnt.sql w]
-puts $fd {BEGIN;}
-puts $fd {DELETE FROM t1;}
-for {set i 1} {$i<=3000} {incr i} {
- set r [expr {int(rand()*100000)}]
- puts $fd "INSERT INTO t1 VALUES($i,$r,'[number_name $r]');"
-}
-puts $fd {COMMIT;}
-close $fd
-runtest {A big DELETE followed by many small INSERTs}
-
-
-
-set fd [open test$cnt.sql w]
-puts $fd {DROP TABLE t1;}
-puts $fd {DROP TABLE t2;}
-close $fd
-runtest {DROP TABLE}
diff --git a/ext/pdo_sqlite/sqlite/tool/speedtest2.tcl b/ext/pdo_sqlite/sqlite/tool/speedtest2.tcl
deleted file mode 100644
index 4fd632d4c7..0000000000
--- a/ext/pdo_sqlite/sqlite/tool/speedtest2.tcl
+++ /dev/null
@@ -1,207 +0,0 @@
-#!/usr/bin/tclsh
-#
-# Run this script using TCLSH to do a speed comparison between
-# various versions of SQLite and PostgreSQL and MySQL
-#
-
-# Run a test
-#
-set cnt 1
-proc runtest {title} {
- global cnt
- set sqlfile test$cnt.sql
- puts "<h2>Test $cnt: $title</h2>"
- incr cnt
- set fd [open $sqlfile r]
- set sql [string trim [read $fd [file size $sqlfile]]]
- close $fd
- set sx [split $sql \n]
- set n [llength $sx]
- if {$n>8} {
- set sql {}
- for {set i 0} {$i<3} {incr i} {append sql [lindex $sx $i]<br>\n}
- append sql "<i>... [expr {$n-6}] lines omitted</i><br>\n"
- for {set i [expr {$n-3}]} {$i<$n} {incr i} {
- append sql [lindex $sx $i]<br>\n
- }
- } else {
- regsub -all \n [string trim $sql] <br> sql
- }
- puts "<blockquote>"
- puts "$sql"
- puts "</blockquote><table border=0 cellpadding=0 cellspacing=0>"
- set format {<tr><td>%s</td><td align="right">&nbsp;&nbsp;&nbsp;%.3f</td></tr>}
- set delay 1000
- exec sync; after $delay;
- set t [time "exec psql drh <$sqlfile" 1]
- set t [expr {[lindex $t 0]/1000000.0}]
- puts [format $format PostgreSQL: $t]
- exec sync; after $delay;
- set t [time "exec mysql -f drh <$sqlfile" 1]
- set t [expr {[lindex $t 0]/1000000.0}]
- puts [format $format MySQL: $t]
-# set t [time "exec ./sqlite232 s232.db <$sqlfile" 1]
-# set t [expr {[lindex $t 0]/1000000.0}]
-# puts [format $format {SQLite 2.3.2:} $t]
-# set t [time "exec ./sqlite-100 s100.db <$sqlfile" 1]
-# set t [expr {[lindex $t 0]/1000000.0}]
-# puts [format $format {SQLite 2.4 (cache=100):} $t]
- exec sync; after $delay;
- set t [time "exec ./sqlite240 s2k.db <$sqlfile" 1]
- set t [expr {[lindex $t 0]/1000000.0}]
- puts [format $format {SQLite 2.4:} $t]
- exec sync; after $delay;
- set t [time "exec ./sqlite240 sns.db <$sqlfile" 1]
- set t [expr {[lindex $t 0]/1000000.0}]
- puts [format $format {SQLite 2.4 (nosync):} $t]
-# set t [time "exec ./sqlite-t1 st1.db <$sqlfile" 1]
-# set t [expr {[lindex $t 0]/1000000.0}]
-# puts [format $format {SQLite 2.4 (test):} $t]
- puts "</table>"
-}
-
-# Initialize the environment
-#
-expr srand(1)
-catch {exec /bin/sh -c {rm -f s*.db}}
-set fd [open clear.sql w]
-puts $fd {
- drop table t1;
- drop table t2;
-}
-close $fd
-catch {exec psql drh <clear.sql}
-catch {exec mysql drh <clear.sql}
-set fd [open 2kinit.sql w]
-puts $fd {
- PRAGMA default_cache_size=2000;
- PRAGMA default_synchronous=on;
-}
-close $fd
-exec ./sqlite240 s2k.db <2kinit.sql
-exec ./sqlite-t1 st1.db <2kinit.sql
-set fd [open nosync-init.sql w]
-puts $fd {
- PRAGMA default_cache_size=2000;
- PRAGMA default_synchronous=off;
-}
-close $fd
-exec ./sqlite240 sns.db <nosync-init.sql
-set ones {zero one two three four five six seven eight nine
- ten eleven twelve thirteen fourteen fifteen sixteen seventeen
- eighteen nineteen}
-set tens {{} ten twenty thirty forty fifty sixty seventy eighty ninety}
-proc number_name {n} {
- if {$n>=1000} {
- set txt "[number_name [expr {$n/1000}]] thousand"
- set n [expr {$n%1000}]
- } else {
- set txt {}
- }
- if {$n>=100} {
- append txt " [lindex $::ones [expr {$n/100}]] hundred"
- set n [expr {$n%100}]
- }
- if {$n>=20} {
- append txt " [lindex $::tens [expr {$n/10}]]"
- set n [expr {$n%10}]
- }
- if {$n>0} {
- append txt " [lindex $::ones $n]"
- }
- set txt [string trim $txt]
- if {$txt==""} {set txt zero}
- return $txt
-}
-
-
-set fd [open test$cnt.sql w]
-puts $fd "BEGIN;"
-puts $fd "CREATE TABLE t1(a INTEGER, b INTEGER, c VARCHAR(100));"
-for {set i 1} {$i<=25000} {incr i} {
- set r [expr {int(rand()*500000)}]
- puts $fd "INSERT INTO t1 VALUES($i,$r,'[number_name $r]');"
-}
-puts $fd "COMMIT;"
-close $fd
-runtest {25000 INSERTs in a transaction}
-
-
-set fd [open test$cnt.sql w]
-puts $fd "DELETE FROM t1;"
-close $fd
-runtest {DELETE everything}
-
-
-set fd [open test$cnt.sql w]
-puts $fd "BEGIN;"
-for {set i 1} {$i<=25000} {incr i} {
- set r [expr {int(rand()*500000)}]
- puts $fd "INSERT INTO t1 VALUES($i,$r,'[number_name $r]');"
-}
-puts $fd "COMMIT;"
-close $fd
-runtest {25000 INSERTs in a transaction}
-
-
-set fd [open test$cnt.sql w]
-puts $fd "DELETE FROM t1;"
-close $fd
-runtest {DELETE everything}
-
-
-set fd [open test$cnt.sql w]
-puts $fd "BEGIN;"
-for {set i 1} {$i<=25000} {incr i} {
- set r [expr {int(rand()*500000)}]
- puts $fd "INSERT INTO t1 VALUES($i,$r,'[number_name $r]');"
-}
-puts $fd "COMMIT;"
-close $fd
-runtest {25000 INSERTs in a transaction}
-
-
-set fd [open test$cnt.sql w]
-puts $fd "DELETE FROM t1;"
-close $fd
-runtest {DELETE everything}
-
-
-set fd [open test$cnt.sql w]
-puts $fd "BEGIN;"
-for {set i 1} {$i<=25000} {incr i} {
- set r [expr {int(rand()*500000)}]
- puts $fd "INSERT INTO t1 VALUES($i,$r,'[number_name $r]');"
-}
-puts $fd "COMMIT;"
-close $fd
-runtest {25000 INSERTs in a transaction}
-
-
-set fd [open test$cnt.sql w]
-puts $fd "DELETE FROM t1;"
-close $fd
-runtest {DELETE everything}
-
-
-set fd [open test$cnt.sql w]
-puts $fd "BEGIN;"
-for {set i 1} {$i<=25000} {incr i} {
- set r [expr {int(rand()*500000)}]
- puts $fd "INSERT INTO t1 VALUES($i,$r,'[number_name $r]');"
-}
-puts $fd "COMMIT;"
-close $fd
-runtest {25000 INSERTs in a transaction}
-
-
-set fd [open test$cnt.sql w]
-puts $fd "DELETE FROM t1;"
-close $fd
-runtest {DELETE everything}
-
-
-set fd [open test$cnt.sql w]
-puts $fd {DROP TABLE t1;}
-close $fd
-runtest {DROP TABLE}