1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
|
/* Pango
* pango-matrix.c: Matrix manipulation routines
*
* Copyright (C) 2000, 2006 Red Hat Software
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#include "config.h"
#include <stdlib.h>
#include <math.h>
#include "pango-matrix.h"
#include "pango-impl-utils.h"
G_DEFINE_BOXED_TYPE (PangoMatrix, pango_matrix,
pango_matrix_copy,
pango_matrix_free);
/**
* pango_matrix_copy:
* @matrix: (nullable): a `PangoMatrix`
*
* Copies a `PangoMatrix`.
*
* Return value: (nullable): the newly allocated `PangoMatrix`
*
* Since: 1.6
*/
PangoMatrix *
pango_matrix_copy (const PangoMatrix *matrix)
{
PangoMatrix *new_matrix;
if (matrix == NULL)
return NULL;
new_matrix = g_slice_new (PangoMatrix);
*new_matrix = *matrix;
return new_matrix;
}
/**
* pango_matrix_free:
* @matrix: (nullable): a `PangoMatrix`, may be %NULL
*
* Free a `PangoMatrix`.
*
* Since: 1.6
*/
void
pango_matrix_free (PangoMatrix *matrix)
{
if (matrix == NULL)
return;
g_slice_free (PangoMatrix, matrix);
}
/**
* pango_matrix_translate:
* @matrix: a `PangoMatrix`
* @tx: amount to translate in the X direction
* @ty: amount to translate in the Y direction
*
* Changes the transformation represented by @matrix to be the
* transformation given by first translating by (@tx, @ty)
* then applying the original transformation.
*
* Since: 1.6
*/
void
pango_matrix_translate (PangoMatrix *matrix,
double tx,
double ty)
{
g_return_if_fail (matrix != NULL);
matrix->x0 = matrix->xx * tx + matrix->xy * ty + matrix->x0;
matrix->y0 = matrix->yx * tx + matrix->yy * ty + matrix->y0;
}
/**
* pango_matrix_scale:
* @matrix: a `PangoMatrix`
* @scale_x: amount to scale by in X direction
* @scale_y: amount to scale by in Y direction
*
* Changes the transformation represented by @matrix to be the
* transformation given by first scaling by @sx in the X direction
* and @sy in the Y direction then applying the original
* transformation.
*
* Since: 1.6
*/
void
pango_matrix_scale (PangoMatrix *matrix,
double scale_x,
double scale_y)
{
g_return_if_fail (matrix != NULL);
matrix->xx *= scale_x;
matrix->xy *= scale_y;
matrix->yx *= scale_x;
matrix->yy *= scale_y;
}
/**
* pango_matrix_rotate:
* @matrix: a `PangoMatrix`
* @degrees: degrees to rotate counter-clockwise
*
* Changes the transformation represented by @matrix to be the
* transformation given by first rotating by @degrees degrees
* counter-clockwise then applying the original transformation.
*
* Since: 1.6
*/
void
pango_matrix_rotate (PangoMatrix *matrix,
double degrees)
{
PangoMatrix tmp;
gdouble r, s, c;
g_return_if_fail (matrix != NULL);
r = degrees * (G_PI / 180.);
s = sin (r);
c = cos (r);
tmp.xx = c;
tmp.xy = s;
tmp.yx = -s;
tmp.yy = c;
tmp.x0 = 0;
tmp.y0 = 0;
pango_matrix_concat (matrix, &tmp);
}
/**
* pango_matrix_concat:
* @matrix: a `PangoMatrix`
* @new_matrix: a `PangoMatrix`
*
* Changes the transformation represented by @matrix to be the
* transformation given by first applying transformation
* given by @new_matrix then applying the original transformation.
*
* Since: 1.6
*/
void
pango_matrix_concat (PangoMatrix *matrix,
const PangoMatrix *new_matrix)
{
PangoMatrix tmp;
g_return_if_fail (matrix != NULL);
tmp = *matrix;
matrix->xx = tmp.xx * new_matrix->xx + tmp.xy * new_matrix->yx;
matrix->xy = tmp.xx * new_matrix->xy + tmp.xy * new_matrix->yy;
matrix->yx = tmp.yx * new_matrix->xx + tmp.yy * new_matrix->yx;
matrix->yy = tmp.yx * new_matrix->xy + tmp.yy * new_matrix->yy;
matrix->x0 = tmp.xx * new_matrix->x0 + tmp.xy * new_matrix->y0 + tmp.x0;
matrix->y0 = tmp.yx * new_matrix->x0 + tmp.yy * new_matrix->y0 + tmp.y0;
}
/**
* pango_matrix_get_font_scale_factor:
* @matrix: (nullable): a `PangoMatrix`, may be %NULL
*
* Returns the scale factor of a matrix on the height of the font.
*
* That is, the scale factor in the direction perpendicular to the
* vector that the X coordinate is mapped to. If the scale in the X
* coordinate is needed as well, use [method@Pango.Matrix.get_font_scale_factors].
*
* Return value: the scale factor of @matrix on the height of the font,
* or 1.0 if @matrix is %NULL.
*
* Since: 1.12
*/
double
pango_matrix_get_font_scale_factor (const PangoMatrix *matrix)
{
double yscale;
pango_matrix_get_font_scale_factors (matrix, NULL, &yscale);
return yscale;
}
/**
* pango_matrix_get_font_scale_factors:
* @matrix: (nullable): a `PangoMatrix`
* @xscale: (out) (optional): output scale factor in the x direction
* @yscale: (out) (optional): output scale factor perpendicular to the x direction
*
* Calculates the scale factor of a matrix on the width and height of the font.
*
* That is, @xscale is the scale factor in the direction of the X coordinate,
* and @yscale is the scale factor in the direction perpendicular to the
* vector that the X coordinate is mapped to.
*
* Note that output numbers will always be non-negative.
*
* Since: 1.38
**/
void
pango_matrix_get_font_scale_factors (const PangoMatrix *matrix,
double *xscale, double *yscale)
{
/*
* Based on cairo-matrix.c:_cairo_matrix_compute_scale_factors()
*
* Copyright 2005, Keith Packard
*/
double major = 1., minor = 1.;
if (matrix)
{
double x = matrix->xx;
double y = matrix->yx;
major = sqrt (x*x + y*y);
if (major)
{
double det = matrix->xx * matrix->yy - matrix->yx * matrix->xy;
/*
* ignore mirroring
*/
if (det < 0)
det = - det;
minor = det / major;
}
else
minor = 0.;
}
if (xscale)
*xscale = major;
if (yscale)
*yscale = minor;
}
/**
* pango_matrix_get_slant_ratio:
* @matrix: a `PangoMatrix`
*
* Gets the slant ratio of a matrix.
*
* For a simple shear matrix in the form:
*
* 1 λ
* 0 1
*
* this is simply λ.
*
* Returns: the slant ratio of @matrix
*
* Since: 1.50
*/
double
pango_matrix_get_slant_ratio (const PangoMatrix *matrix)
{
double x0, y0;
double x1, y1;
x0 = 0;
y0 = 1;
pango_matrix_transform_distance (matrix, &x0, &y0);
x1 = 1;
y1 = 0;
pango_matrix_transform_distance (matrix, &x1, &y1);
return (x0 * x1 + y0 * y1) / (x0 * x0 + y0 * y0);
}
/**
* pango_matrix_transform_distance:
* @matrix: (nullable): a `PangoMatrix`
* @dx: (inout): in/out X component of a distance vector
* @dy: (inout): in/out Y component of a distance vector
*
* Transforms the distance vector (@dx,@dy) by @matrix.
*
* This is similar to [method@Pango.Matrix.transform_point],
* except that the translation components of the transformation
* are ignored. The calculation of the returned vector is as follows:
*
* ```
* dx2 = dx1 * xx + dy1 * xy;
* dy2 = dx1 * yx + dy1 * yy;
* ```
*
* Affine transformations are position invariant, so the same vector
* always transforms to the same vector. If (@x1,@y1) transforms
* to (@x2,@y2) then (@x1+@dx1,@y1+@dy1) will transform to
* (@x1+@dx2,@y1+@dy2) for all values of @x1 and @x2.
*
* Since: 1.16
*/
void
pango_matrix_transform_distance (const PangoMatrix *matrix,
double *dx,
double *dy)
{
if (matrix)
{
double new_x, new_y;
new_x = (matrix->xx * *dx + matrix->xy * *dy);
new_y = (matrix->yx * *dx + matrix->yy * *dy);
*dx = new_x;
*dy = new_y;
}
}
/**
* pango_matrix_transform_point:
* @matrix: (nullable): a `PangoMatrix`
* @x: (inout): in/out X position
* @y: (inout): in/out Y position
*
* Transforms the point (@x, @y) by @matrix.
*
* Since: 1.16
**/
void
pango_matrix_transform_point (const PangoMatrix *matrix,
double *x,
double *y)
{
if (matrix)
{
pango_matrix_transform_distance (matrix, x, y);
*x += matrix->x0;
*y += matrix->y0;
}
}
/**
* pango_matrix_transform_rectangle:
* @matrix: (nullable): a `PangoMatrix`
* @rect: (inout) (optional): in/out bounding box in Pango units
*
* First transforms @rect using @matrix, then calculates the bounding box
* of the transformed rectangle.
*
* This function is useful for example when you want to draw a rotated
* @PangoLayout to an image buffer, and want to know how large the image
* should be and how much you should shift the layout when rendering.
*
* If you have a rectangle in device units (pixels), use
* [method@Pango.Matrix.transform_pixel_rectangle].
*
* If you have the rectangle in Pango units and want to convert to
* transformed pixel bounding box, it is more accurate to transform it first
* (using this function) and pass the result to pango_extents_to_pixels(),
* first argument, for an inclusive rounded rectangle.
* However, there are valid reasons that you may want to convert
* to pixels first and then transform, for example when the transformed
* coordinates may overflow in Pango units (large matrix translation for
* example).
*
* Since: 1.16
*/
void
pango_matrix_transform_rectangle (const PangoMatrix *matrix,
PangoRectangle *rect)
{
int i;
double quad_x[4], quad_y[4];
double dx1, dy1;
double dx2, dy2;
double min_x, max_x;
double min_y, max_y;
if (!rect || !matrix)
return;
quad_x[0] = pango_units_to_double (rect->x);
quad_y[0] = pango_units_to_double (rect->y);
pango_matrix_transform_point (matrix, &quad_x[0], &quad_y[0]);
dx1 = pango_units_to_double (rect->width);
dy1 = 0;
pango_matrix_transform_distance (matrix, &dx1, &dy1);
quad_x[1] = quad_x[0] + dx1;
quad_y[1] = quad_y[0] + dy1;
dx2 = 0;
dy2 = pango_units_to_double (rect->height);
pango_matrix_transform_distance (matrix, &dx2, &dy2);
quad_x[2] = quad_x[0] + dx2;
quad_y[2] = quad_y[0] + dy2;
quad_x[3] = quad_x[0] + dx1 + dx2;
quad_y[3] = quad_y[0] + dy1 + dy2;
min_x = max_x = quad_x[0];
min_y = max_y = quad_y[0];
for (i=1; i < 4; i++) {
if (quad_x[i] < min_x)
min_x = quad_x[i];
else if (quad_x[i] > max_x)
max_x = quad_x[i];
if (quad_y[i] < min_y)
min_y = quad_y[i];
else if (quad_y[i] > max_y)
max_y = quad_y[i];
}
rect->x = pango_units_from_double (min_x);
rect->y = pango_units_from_double (min_y);
rect->width = pango_units_from_double (max_x) - rect->x;
rect->height = pango_units_from_double (max_y) - rect->y;
}
/**
* pango_matrix_transform_pixel_rectangle:
* @matrix: (nullable): a `PangoMatrix`
* @rect: (inout) (optional): in/out bounding box in device units
*
* First transforms the @rect using @matrix, then calculates the bounding box
* of the transformed rectangle.
*
* This function is useful for example when you want to draw a rotated
* @PangoLayout to an image buffer, and want to know how large the image
* should be and how much you should shift the layout when rendering.
*
* For better accuracy, you should use [method@Pango.Matrix.transform_rectangle]
* on original rectangle in Pango units and convert to pixels afterward
* using [func@extents_to_pixels]'s first argument.
*
* Since: 1.16
*/
void
pango_matrix_transform_pixel_rectangle (const PangoMatrix *matrix,
PangoRectangle *rect)
{
int i;
double quad_x[4], quad_y[4];
double dx1, dy1;
double dx2, dy2;
double min_x, max_x;
double min_y, max_y;
if (!rect || !matrix)
return;
quad_x[0] = rect->x;
quad_y[0] = rect->y;
pango_matrix_transform_point (matrix, &quad_x[0], &quad_y[0]);
dx1 = rect->width;
dy1 = 0;
pango_matrix_transform_distance (matrix, &dx1, &dy1);
quad_x[1] = quad_x[0] + dx1;
quad_y[1] = quad_y[0] + dy1;
dx2 = 0;
dy2 = rect->height;
pango_matrix_transform_distance (matrix, &dx2, &dy2);
quad_x[2] = quad_x[0] + dx2;
quad_y[2] = quad_y[0] + dy2;
quad_x[3] = quad_x[0] + dx1 + dx2;
quad_y[3] = quad_y[0] + dy1 + dy2;
min_x = max_x = quad_x[0];
min_y = max_y = quad_y[0];
for (i=1; i < 4; i++)
{
if (quad_x[i] < min_x)
min_x = quad_x[i];
else if (quad_x[i] > max_x)
max_x = quad_x[i];
if (quad_y[i] < min_y)
min_y = quad_y[i];
else if (quad_y[i] > max_y)
max_y = quad_y[i];
}
rect->x = floor (min_x);
rect->y = floor (min_y);
rect->width = ceil (max_x - rect->x);
rect->height = ceil (max_y - rect->y);
}
|