summaryrefslogtreecommitdiff
path: root/doc/draft-ietf-codec-oggopus.xml
blob: 7489c20146e32c2ee71b56b73a190ae2925a7bfc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE rfc SYSTEM 'rfc2629.dtd' [
<!ENTITY rfc2119 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.2119.xml'>
<!ENTITY rfc3533 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.3533.xml'>
<!ENTITY rfc3629 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.3629.xml'>
<!ENTITY rfc4732 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.4732.xml'>
<!ENTITY rfc5226 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.5226.xml'>
<!ENTITY rfc5334 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.5334.xml'>
<!ENTITY rfc6381 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.6381.xml'>
<!ENTITY rfc6716 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.6716.xml'>
<!ENTITY rfc6982 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.6982.xml'>
<!ENTITY rfc7587 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.7587.xml'>
]>
<?rfc toc="yes" symrefs="yes" ?>

<rfc ipr="trust200902" category="std" docName="draft-ietf-codec-oggopus-09"
 updates="5334">

<front>
<title abbrev="Ogg Opus">Ogg Encapsulation for the Opus Audio Codec</title>
<author initials="T.B." surname="Terriberry" fullname="Timothy B. Terriberry">
<organization>Mozilla Corporation</organization>
<address>
<postal>
<street>650 Castro Street</street>
<city>Mountain View</city>
<region>CA</region>
<code>94041</code>
<country>USA</country>
</postal>
<phone>+1 650 903-0800</phone>
<email>tterribe@xiph.org</email>
</address>
</author>

<author initials="R." surname="Lee" fullname="Ron Lee">
<organization>Voicetronix</organization>
<address>
<postal>
<street>246 Pulteney Street, Level 1</street>
<city>Adelaide</city>
<region>SA</region>
<code>5000</code>
<country>Australia</country>
</postal>
<phone>+61 8 8232 9112</phone>
<email>ron@debian.org</email>
</address>
</author>

<author initials="R." surname="Giles" fullname="Ralph Giles">
<organization>Mozilla Corporation</organization>
<address>
<postal>
<street>163 West Hastings Street</street>
<city>Vancouver</city>
<region>BC</region>
<code>V6B 1H5</code>
<country>Canada</country>
</postal>
<phone>+1 778 785 1540</phone>
<email>giles@xiph.org</email>
</address>
</author>

<date day="23" month="November" year="2015"/>
<area>RAI</area>
<workgroup>codec</workgroup>

<abstract>
<t>
This document defines the Ogg encapsulation for the Opus interactive speech and
 audio codec.
This allows data encoded in the Opus format to be stored in an Ogg logical
 bitstream.
</t>
</abstract>
</front>

<middle>
<section anchor="intro" title="Introduction">
<t>
The IETF Opus codec is a low-latency audio codec optimized for both voice and
 general-purpose audio.
See <xref target="RFC6716"/> for technical details.
This document defines the encapsulation of Opus in a continuous, logical Ogg
 bitstream&nbsp;<xref target="RFC3533"/>.
Ogg encapsulation provides Opus with a long-term storage format supporting
 all of the essential features, including metadata, fast and accurate seeking,
 corruption detection, recapture after errors, low overhead, and the ability to
 multiplex Opus with other codecs (including video) with minimal buffering.
It also provides a live streamable format, capable of delivery over a reliable
 stream-oriented transport, without requiring all the data, or even the total
 length of the data, up-front, in a form that is identical to the on-disk
 storage format.
</t>
<t>
Ogg bitstreams are made up of a series of 'pages', each of which contains data
 from one or more 'packets'.
Pages are the fundamental unit of multiplexing in an Ogg stream.
Each page is associated with a particular logical stream and contains a capture
 pattern and checksum, flags to mark the beginning and end of the logical
 stream, and a 'granule position' that represents an absolute position in the
 stream, to aid seeking.
A single page can contain up to 65,025 octets of packet data from up to 255
 different packets.
Packets can be split arbitrarily across pages, and continued from one page to
 the next (allowing packets much larger than would fit on a single page).
Each page contains 'lacing values' that indicate how the data is partitioned
 into packets, allowing a demultiplexer (demuxer) to recover the packet
 boundaries without examining the encoded data.
A packet is said to 'complete' on a page when the page contains the final
 lacing value corresponding to that packet.
</t>
<t>
This encapsulation defines the contents of the packet data, including
 the necessary headers, the organization of those packets into a logical
 stream, and the interpretation of the codec-specific granule position field.
It does not attempt to describe or specify the existing Ogg container format.
Readers unfamiliar with the basic concepts mentioned above are encouraged to
 review the details in <xref target="RFC3533"/>.
</t>

</section>

<section anchor="terminology" title="Terminology">
<t>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
 "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in <xref target="RFC2119"/>.
</t>

</section>

<section anchor="packet_organization" title="Packet Organization">
<t>
An Ogg Opus stream is organized as follows.
</t>
<t>
There are two mandatory header packets.
The first packet in the logical Ogg bitstream MUST contain the identification
 (ID) header, which uniquely identifies a stream as Opus audio.
The format of this header is defined in <xref target="id_header"/>.
It is placed alone (without any other packet data) on the first page of
 the logical Ogg bitstream, and completes on that page.
This page has its 'beginning of stream' flag set.
</t>
<t>
The second packet in the logical Ogg bitstream MUST contain the comment header,
 which contains user-supplied metadata.
The format of this header is defined in <xref target="comment_header"/>.
It MAY span multiple pages, beginning on the second page of the logical
 stream.
However many pages it spans, the comment header packet MUST finish the page on
 which it completes.
</t>
<t>
All subsequent pages are audio data pages, and the Ogg packets they contain are
 audio data packets.
Each audio data packet contains one Opus packet for each of N different
 streams, where N is typically one for mono or stereo, but MAY be greater than
 one for multichannel audio.
The value N is specified in the ID header (see
 <xref target="channel_mapping"/>), and is fixed over the entire length of the
 logical Ogg bitstream.
</t>
<t>
The first (N&nbsp;-&nbsp;1) Opus packets, if any, are packed one after another
 into the Ogg packet, using the self-delimiting framing from Appendix&nbsp;B of
 <xref target="RFC6716"/>.
The remaining Opus packet is packed at the end of the Ogg packet using the
 regular, undelimited framing from Section&nbsp;3 of <xref target="RFC6716"/>.
All of the Opus packets in a single Ogg packet MUST be constrained to have the
 same duration.
An implementation of this specification SHOULD treat any Opus packet whose
 duration is different from that of the first Opus packet in an Ogg packet as
 if it were a malformed Opus packet with an invalid Table Of Contents (TOC)
 sequence.
</t>
<t>
The TOC sequence at the beginning of each Opus packet indicates the coding
 mode, audio bandwidth, channel count, duration (frame size), and number of
 frames per packet, as described in Section&nbsp;3.1
 of&nbsp;<xref target="RFC6716"/>.
The coding mode is one of SILK, Hybrid, or Constrained Energy Lapped Transform
 (CELT).
The combination of coding mode, audio bandwidth, and frame size is referred to
 as the configuration of an Opus packet.
</t>
<t>
Packets are placed into Ogg pages in order until the end of stream.
Audio data packets might span page boundaries.
The first audio data page could have the 'continued packet' flag set
 (indicating the first audio data packet is continued from a previous page) if,
 for example, it was a live stream joined mid-broadcast, with the headers
 pasted on the front.
A demuxer SHOULD NOT attempt to decode the data for the first packet on a page
 with the 'continued packet' flag set if the previous page with packet data
 does not end in a continued packet (i.e., did not end with a lacing value of
 255) or if the page sequence numbers are not consecutive, unless the demuxer
 has some special knowledge that would allow it to interpret this data
 despite the missing pieces.
An implementation MUST treat a zero-octet audio data packet as if it were a
 malformed Opus packet as described in
 Section&nbsp;3.4 of&nbsp;<xref target="RFC6716"/>.
</t>
<t>
A logical stream ends with a page with the 'end of stream' flag set, but
 implementations need to be prepared to deal with truncated streams that do not
 have a page marked 'end of stream'.
There is no reason for the final packet on the last page to be a continued
 packet, i.e., for the final lacing value to be less than 255.
However, demuxers might encounter such streams, possibly as the result of a
 transfer that did not complete or of corruption.
A demuxer SHOULD NOT attempt to decode the data from a packet that continues
 onto a subsequent page (i.e., when the page ends with a lacing value of 255)
 if the next page with packet data does not have the 'continued packet' flag
 set or does not exist, or if the page sequence numbers are not consecutive,
 unless the demuxer has some special knowledge that would allow it to interpret
 this data despite the missing pieces.
There MUST NOT be any more pages in an Opus logical bitstream after a page
 marked 'end of stream'.
</t>
</section>

<section anchor="granpos" title="Granule Position">
<t>
The granule position MUST be zero for the ID header page and the
 page where the comment header completes.
That is, the first page in the logical stream, and the last header
 page before the first audio data page both have a granule position of zero.
</t>
<t>
The granule position of an audio data page encodes the total number of PCM
 samples in the stream up to and including the last fully-decodable sample from
 the last packet completed on that page.
The granule position of the first audio data page will usually be larger than
 zero, as described in <xref target="start_granpos_restrictions"/>.
</t>

<t>
A page that is entirely spanned by a single packet (that completes on a
 subsequent page) has no granule position, and the granule position field is
 set to the special value '-1' in two's complement.
</t>

<t>
The granule position of an audio data page is in units of PCM audio samples at
 a fixed rate of 48&nbsp;kHz (per channel; a stereo stream's granule position
 does not increment at twice the speed of a mono stream).
It is possible to run an Opus decoder at other sampling rates, but the value
 in the granule position field always counts samples assuming a 48&nbsp;kHz
 decoding rate, and the rest of this specification makes the same assumption.
</t>

<t>
The duration of an Opus packet can be any multiple of 2.5&nbsp;ms, up to a
 maximum of 120&nbsp;ms.
This duration is encoded in the TOC sequence at the beginning of each packet.
The number of samples returned by a decoder corresponds to this duration
 exactly, even for the first few packets.
For example, a 20&nbsp;ms packet fed to a decoder running at 48&nbsp;kHz will
 always return 960&nbsp;samples.
A demuxer can parse the TOC sequence at the beginning of each Ogg packet to
 work backwards or forwards from a packet with a known granule position (i.e.,
 the last packet completed on some page) in order to assign granule positions
 to every packet, or even every individual sample.
The one exception is the last page in the stream, as described below.
</t>

<t>
All other pages with completed packets after the first MUST have a granule
 position equal to the number of samples contained in packets that complete on
 that page plus the granule position of the most recent page with completed
 packets.
This guarantees that a demuxer can assign individual packets the same granule
 position when working forwards as when working backwards.
For this to work, there cannot be any gaps.
</t>

<section anchor="gap-repair" title="Repairing Gaps in Real-time Streams">
<t>
In order to support capturing a real-time stream that has lost or not
 transmitted packets, a multiplexer (muxer) SHOULD emit packets that explicitly
 request the use of Packet Loss Concealment (PLC) in place of the missing
 packets.
Implementations that fail to do so still MUST NOT increment the granule
 position for a page by anything other than the number of samples contained in
 packets that actually complete on that page.
</t>
<t>
Only gaps that are a multiple of 2.5&nbsp;ms are repairable, as these are the
 only durations that can be created by packet loss or discontinuous
 transmission.
Muxers need not handle other gap sizes.
Creating the necessary packets involves synthesizing a TOC byte (defined in
Section&nbsp;3.1 of&nbsp;<xref target="RFC6716"/>)&mdash;and whatever
 additional internal framing is needed&mdash;to indicate the packet duration
 for each stream.
The actual length of each missing Opus frame inside the packet is zero bytes,
 as defined in Section&nbsp;3.2.1 of&nbsp;<xref target="RFC6716"/>.
</t>

<t>
Zero-byte frames MAY be packed into packets using any of codes&nbsp;0, 1,
 2, or&nbsp;3.
When successive frames have the same configuration, the higher code packings
 reduce overhead.
Likewise, if the TOC configuration matches, the muxer MAY further combine the
 empty frames with previous or subsequent non-zero-length frames (using
 code&nbsp;2 or VBR code&nbsp;3).
</t>

<t>
<xref target="RFC6716"/> does not impose any requirements on the PLC, but this
 section outlines choices that are expected to have a positive influence on
 most PLC implementations, including the reference implementation.
Synthesized TOC sequences SHOULD maintain the same mode, audio bandwidth,
 channel count, and frame size as the previous packet (if any).
This is the simplest and usually the most well-tested case for the PLC to
 handle and it covers all losses that do not include a configuration switch,
 as defined in Section&nbsp;4.5 of&nbsp;<xref target="RFC6716"/>.
</t>

<t>
When a previous packet is available, keeping the audio bandwidth and channel
 count the same allows the PLC to provide maximum continuity in the concealment
 data it generates.
However, if the size of the gap is not a multiple of the most recent frame
 size, then the frame size will have to change for at least some frames.
Such changes SHOULD be delayed as long as possible to simplify
 things for PLC implementations.
</t>

<t>
As an example, a 95&nbsp;ms gap could be encoded as nineteen 5&nbsp;ms frames
 in two bytes with a single CBR code&nbsp;3 packet.
If the previous frame size was 20&nbsp;ms, using four 20&nbsp;ms frames
 followed by three 5&nbsp;ms frames requires 4&nbsp;bytes (plus an extra byte
 of Ogg lacing overhead), but allows the PLC to use its well-tested steady
 state behavior for as long as possible.
The total bitrate of the latter approach, including Ogg overhead, is about
 0.4&nbsp;kbps, so the impact on file size is minimal.
</t>

<t>
Changing modes is discouraged, since this causes some decoder implementations
 to reset their PLC state.
However, SILK and Hybrid mode frames cannot fill gaps that are not a multiple
 of 10&nbsp;ms.
If switching to CELT mode is needed to match the gap size, a muxer SHOULD do
 so at the end of the gap to allow the PLC to function for as long as possible.
</t>

<t>
In the example above, if the previous frame was a 20&nbsp;ms SILK mode frame,
 the better solution is to synthesize a packet describing four 20&nbsp;ms SILK
 frames, followed by a packet with a single 10&nbsp;ms SILK
 frame, and finally a packet with a 5&nbsp;ms CELT frame, to fill the 95&nbsp;ms
 gap.
This also requires four bytes to describe the synthesized packet data (two
 bytes for a CBR code 3 and one byte each for two code 0 packets) but three
 bytes of Ogg lacing overhead are needed to mark the packet boundaries.
At 0.6 kbps, this is still a minimal bitrate impact over a naive, low quality
 solution.
</t>

<t>
Since medium-band audio is an option only in the SILK mode, wideband frames
 SHOULD be generated if switching from that configuration to CELT mode, to
 ensure that any PLC implementation which does try to migrate state between
 the modes will be able to preserve all of the available audio bandwidth.
</t>

</section>

<section anchor="preskip" title="Pre-skip">
<t>
There is some amount of latency introduced during the decoding process, to
 allow for overlap in the CELT mode, stereo mixing in the SILK mode, and
 resampling.
The encoder might have introduced additional latency through its own resampling
 and analysis (though the exact amount is not specified).
Therefore, the first few samples produced by the decoder do not correspond to
 real input audio, but are instead composed of padding inserted by the encoder
 to compensate for this latency.
These samples need to be stored and decoded, as Opus is an asymptotically
 convergent predictive codec, meaning the decoded contents of each frame depend
 on the recent history of decoder inputs.
However, a player will want to skip these samples after decoding them.
</t>

<t>
A 'pre-skip' field in the ID header (see <xref target="id_header"/>) signals
 the number of samples that SHOULD be skipped (decoded but discarded) at the
 beginning of the stream, though some specific applications might have a reason
 for looking at that data.
This amount need not be a multiple of 2.5&nbsp;ms, MAY be smaller than a single
 packet, or MAY span the contents of several packets.
These samples are not valid audio.
</t>

<t>
For example, if the first Opus frame uses the CELT mode, it will always
 produce 120 samples of windowed overlap-add data.
However, the overlap data is initially all zeros (since there is no prior
 frame), meaning this cannot, in general, accurately represent the original
 audio.
The SILK mode requires additional delay to account for its analysis and
 resampling latency.
The encoder delays the original audio to avoid this problem.
</t>

<t>
The pre-skip field MAY also be used to perform sample-accurate cropping of
 already encoded streams.
In this case, a value of at least 3840&nbsp;samples (80&nbsp;ms) provides
 sufficient history to the decoder that it will have converged
 before the stream's output begins.
</t>

</section>

<section anchor="pcm_sample_position" title="PCM Sample Position">
<t>
The PCM sample position is determined from the granule position using the
 formula
</t>
<figure align="center">
<artwork align="center"><![CDATA[
'PCM sample position' = 'granule position' - 'pre-skip' .
]]></artwork>
</figure>

<t>
For example, if the granule position of the first audio data page is 59,971,
 and the pre-skip is 11,971, then the PCM sample position of the last decoded
 sample from that page is 48,000.
</t>
<t>
This can be converted into a playback time using the formula
</t>
<figure align="center">
<artwork align="center"><![CDATA[
                  'PCM sample position'
'playback time' = --------------------- .
                         48000.0
]]></artwork>
</figure>

<t>
The initial PCM sample position before any samples are played is normally '0'.
In this case, the PCM sample position of the first audio sample to be played
 starts at '1', because it marks the time on the clock
 <spanx style="emph">after</spanx> that sample has been played, and a stream
 that is exactly one second long has a final PCM sample position of '48000',
 as in the example here.
</t>

<t>
Vorbis streams use a granule position smaller than the number of audio samples
 contained in the first audio data page to indicate that some of those samples
 are trimmed from the output (see <xref target="vorbis-trim"/>).
However, to do so, Vorbis requires that the first audio data page contains
 exactly two packets, in order to allow the decoder to perform PCM position
 adjustments before needing to return any PCM data.
Opus uses the pre-skip mechanism for this purpose instead, since the encoder
 might introduce more than a single packet's worth of latency, and since very
 large packets in streams with a very large number of channels might not fit
 on a single page.
</t>
</section>

<section anchor="end_trimming" title="End Trimming">
<t>
The page with the 'end of stream' flag set MAY have a granule position that
 indicates the page contains less audio data than would normally be returned by
 decoding up through the final packet.
This is used to end the stream somewhere other than an even frame boundary.
The granule position of the most recent audio data page with completed packets
 is used to make this determination, or '0' is used if there were no previous
 audio data pages with a completed packet.
The difference between these granule positions indicates how many samples to
 keep after decoding the packets that completed on the final page.
The remaining samples are discarded.
The number of discarded samples SHOULD be no larger than the number decoded
 from the last packet.
</t>
</section>

<section anchor="start_granpos_restrictions"
 title="Restrictions on the Initial Granule Position">
<t>
The granule position of the first audio data page with a completed packet MAY
 be larger than the number of samples contained in packets that complete on
 that page, however it MUST NOT be smaller, unless that page has the 'end of
 stream' flag set.
Allowing a granule position larger than the number of samples allows the
 beginning of a stream to be cropped or a live stream to be joined without
 rewriting the granule position of all the remaining pages.
This means that the PCM sample position just before the first sample to be
 played MAY be larger than '0'.
Synchronization when multiplexing with other logical streams still uses the PCM
 sample position relative to '0' to compute sample times.
This does not affect the behavior of pre-skip: exactly 'pre-skip' samples
 SHOULD be skipped from the beginning of the decoded output, even if the
 initial PCM sample position is greater than zero.
</t>

<t>
On the other hand, a granule position that is smaller than the number of
 decoded samples prevents a demuxer from working backwards to assign each
 packet or each individual sample a valid granule position, since granule
 positions are non-negative.
An implementation MUST reject as invalid any stream where the granule position
 is smaller than the number of samples contained in packets that complete on
 the first audio data page with a completed packet, unless that page has the
 'end of stream' flag set.
It MAY defer this action until it decodes the last packet completed on that
 page.
</t>

<t>
If that page has the 'end of stream' flag set, a demuxer MUST reject as invalid
 any stream where its granule position is smaller than the 'pre-skip' amount.
This would indicate that there are more samples to be skipped from the initial
 decoded output than exist in the stream.
If the granule position is smaller than the number of decoded samples produced
 by the packets that complete on that page, then a demuxer MUST use an initial
 granule position of '0', and can work forwards from '0' to timestamp
 individual packets.
If the granule position is larger than the number of decoded samples available,
 then the demuxer MUST still work backwards as described above, even if the
 'end of stream' flag is set, to determine the initial granule position, and
 thus the initial PCM sample position.
Both of these will be greater than '0' in this case.
</t>
</section>

<section anchor="seeking_and_preroll" title="Seeking and Pre-roll">
<t>
Seeking in Ogg files is best performed using a bisection search for a page
 whose granule position corresponds to a PCM position at or before the seek
 target.
With appropriately weighted bisection, accurate seeking can be performed in
 just one or two bisections on average, even in multi-gigabyte files.
See <xref target="seeking"/> for an example of general implementation guidance.
</t>

<t>
When seeking within an Ogg Opus stream, an implementation SHOULD start decoding
 (and discarding the output) at least 3840&nbsp;samples (80&nbsp;ms) prior to
 the seek target in order to ensure that the output audio is correct by the
 time it reaches the seek target.
This 'pre-roll' is separate from, and unrelated to, the 'pre-skip' used at the
 beginning of the stream.
If the point 80&nbsp;ms prior to the seek target comes before the initial PCM
 sample position, an implementation SHOULD start decoding from the beginning of
 the stream, applying pre-skip as normal, regardless of whether the pre-skip is
 larger or smaller than 80&nbsp;ms, and then continue to discard samples
 to reach the seek target (if any).
</t>
</section>

</section>

<section anchor="headers" title="Header Packets">
<t>
An Ogg Opus logical stream contains exactly two mandatory header packets:
 an identification header and a comment header.
</t>

<section anchor="id_header" title="Identification Header">

<figure anchor="id_header_packet" title="ID Header Packet" align="center">
<artwork align="center"><![CDATA[
 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      'O'      |      'p'      |      'u'      |      's'      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      'H'      |      'e'      |      'a'      |      'd'      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  Version = 1  | Channel Count |           Pre-skip            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                     Input Sample Rate (Hz)                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Output Gain (Q7.8 in dB)    | Mapping Family|               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               :
|                                                               |
:               Optional Channel Mapping Table...               :
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>

<t>
The fields in the identification (ID) header have the following meaning:
<list style="numbers">
<t>Magic Signature:
<vspace blankLines="1"/>
This is an 8-octet (64-bit) field that allows codec identification and is
 human-readable.
It contains, in order, the magic numbers:
<list style="empty">
<t>0x4F 'O'</t>
<t>0x70 'p'</t>
<t>0x75 'u'</t>
<t>0x73 's'</t>
<t>0x48 'H'</t>
<t>0x65 'e'</t>
<t>0x61 'a'</t>
<t>0x64 'd'</t>
</list>
Starting with "Op" helps distinguish it from audio data packets, as this is an
 invalid TOC sequence.
<vspace blankLines="1"/>
</t>
<t>Version (8 bits, unsigned):
<vspace blankLines="1"/>
The version number MUST always be '1' for this version of the encapsulation
 specification.
Implementations SHOULD treat streams where the upper four bits of the version
 number match that of a recognized specification as backwards-compatible with
 that specification.
That is, the version number can be split into "major" and "minor" version
 sub-fields, with changes to the "minor" sub-field (in the lower four bits)
 signaling compatible changes.
For example, an implementation of this specification SHOULD accept any stream
 with a version number of '15' or less, and SHOULD assume any stream with a
 version number '16' or greater is incompatible.
The initial version '1' was chosen to keep implementations from relying on this
 octet as a null terminator for the "OpusHead" string.
<vspace blankLines="1"/>
</t>
<t>Output Channel Count 'C' (8 bits, unsigned):
<vspace blankLines="1"/>
This is the number of output channels.
This might be different than the number of encoded channels, which can change
 on a packet-by-packet basis.
This value MUST NOT be zero.
The maximum allowable value depends on the channel mapping family, and might be
 as large as 255.
See <xref target="channel_mapping"/> for details.
<vspace blankLines="1"/>
</t>
<t>Pre-skip (16 bits, unsigned, little
 endian):
<vspace blankLines="1"/>
This is the number of samples (at 48&nbsp;kHz) to discard from the decoder
 output when starting playback, and also the number to subtract from a page's
 granule position to calculate its PCM sample position.
When cropping the beginning of existing Ogg Opus streams, a pre-skip of at
 least 3,840&nbsp;samples (80&nbsp;ms) is RECOMMENDED to ensure complete
 convergence in the decoder.
<vspace blankLines="1"/>
</t>
<t>Input Sample Rate (32 bits, unsigned, little
 endian):
<vspace blankLines="1"/>
This is the sample rate of the original input (before encoding), in Hz.
This field is <spanx style="emph">not</spanx> the sample rate to use for
 playback of the encoded data.
<vspace blankLines="1"/>
Opus can switch between internal audio bandwidths of 4, 6, 8, 12, and
 20&nbsp;kHz.
Each packet in the stream can have a different audio bandwidth.
Regardless of the audio bandwidth, the reference decoder supports decoding any
 stream at a sample rate of 8, 12, 16, 24, or 48&nbsp;kHz.
The original sample rate of the audio passed to the encoder is not preserved
 by the lossy compression.
<vspace blankLines="1"/>
An Ogg Opus player SHOULD select the playback sample rate according to the
 following procedure:
<list style="numbers">
<t>If the hardware supports 48&nbsp;kHz playback, decode at 48&nbsp;kHz.</t>
<t>Otherwise, if the hardware's highest available sample rate is a supported
 rate, decode at this sample rate.</t>
<t>Otherwise, if the hardware's highest available sample rate is less than
 48&nbsp;kHz, decode at the next higher Opus supported rate above the highest
 available hardware rate and resample.</t>
<t>Otherwise, decode at 48&nbsp;kHz and resample.</t>
</list>
However, the 'Input Sample Rate' field allows the muxer to pass the sample
 rate of the original input stream as metadata.
This is useful when the user requires the output sample rate to match the
 input sample rate.
For example, when not playing the output, an implementation writing PCM format
 samples to disk might choose to resample the audio back to the original input
 sample rate to reduce surprise to the user, who might reasonably expect to get
 back a file with the same sample rate.
<vspace blankLines="1"/>
A value of zero indicates 'unspecified'.
Muxers SHOULD write the actual input sample rate or zero, but implementations
 which do something with this field SHOULD take care to behave sanely if given
 crazy values (e.g., do not actually upsample the output to 10 MHz if
 requested).
Implementations SHOULD support input sample rates between 8&nbsp;kHz and
 192&nbsp;kHz (inclusive).
Rates outside this range MAY be ignored by falling back to the default rate of
 48&nbsp;kHz instead.
<vspace blankLines="1"/>
</t>
<t>Output Gain (16 bits, signed, little endian):
<vspace blankLines="1"/>
This is a gain to be applied when decoding.
It is 20*log10 of the factor by which to scale the decoder output to achieve
 the desired playback volume, stored in a 16-bit, signed, two's complement
 fixed-point value with 8 fractional bits (i.e., Q7.8).
<vspace blankLines="1"/>
To apply the gain, an implementation could use
<figure align="center">
<artwork align="center"><![CDATA[
sample *= pow(10, output_gain/(20.0*256)) ,
]]></artwork>
</figure>
 where output_gain is the raw 16-bit value from the header.
<vspace blankLines="1"/>
Players and media frameworks SHOULD apply it by default.
If a player chooses to apply any volume adjustment or gain modification, such
 as the R128_TRACK_GAIN (see <xref target="comment_header"/>), the adjustment
 MUST be applied in addition to this output gain in order to achieve playback
 at the normalized volume.
<vspace blankLines="1"/>
A muxer SHOULD set this field to zero, and instead apply any gain prior to
 encoding, when this is possible and does not conflict with the user's wishes.
A nonzero output gain indicates the gain was adjusted after encoding, or that
 a user wished to adjust the gain for playback while preserving the ability
 to recover the original signal amplitude.
<vspace blankLines="1"/>
Although the output gain has enormous range (+/- 128 dB, enough to amplify
 inaudible sounds to the threshold of physical pain), most applications can
 only reasonably use a small portion of this range around zero.
The large range serves in part to ensure that gain can always be losslessly
 transferred between OpusHead and R128 gain tags (see below) without
 saturating.
<vspace blankLines="1"/>
</t>
<t>Channel Mapping Family (8 bits, unsigned):
<vspace blankLines="1"/>
This octet indicates the order and semantic meaning of the output channels.
<vspace blankLines="1"/>
Each currently specified value of this octet indicates a mapping family, which
 defines a set of allowed channel counts, and the ordered set of channel names
 for each allowed channel count.
The details are described in <xref target="channel_mapping"/>.
</t>
<t>Channel Mapping Table:
This table defines the mapping from encoded streams to output channels.
Its contents are specified in <xref target="channel_mapping"/>.
</t>
</list>
</t>

<t>
All fields in the ID headers are REQUIRED, except for the channel mapping
 table, which MUST be omitted when the channel mapping family is 0, but
 is REQUIRED otherwise.
Implementations SHOULD reject streams with ID headers that do not contain
 enough data for these fields, even if they contain a valid Magic Signature.
Future versions of this specification, even backwards-compatible versions,
 might include additional fields in the ID header.
If an ID header has a compatible major version, but a larger minor version,
 an implementation MUST NOT reject it for containing additional data not
 specified here, provided it still completes on the first page.
</t>

<section anchor="channel_mapping" title="Channel Mapping">
<t>
An Ogg Opus stream allows mapping one number of Opus streams (N) to a possibly
 larger number of decoded channels (M&nbsp;+&nbsp;N) to yet another number of
 output channels (C), which might be larger or smaller than the number of
 decoded channels.
The order and meaning of these channels are defined by a channel mapping,
 which consists of the 'channel mapping family' octet and, for channel mapping
 families other than family&nbsp;0, a channel mapping table, as illustrated in
 <xref target="channel_mapping_table"/>.
</t>

<figure anchor="channel_mapping_table" title="Channel Mapping Table"
 align="center">
<artwork align="center"><![CDATA[
 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
                                                +-+-+-+-+-+-+-+-+
                                                | Stream Count  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Coupled Count |              Channel Mapping...               :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>

<t>
The fields in the channel mapping table have the following meaning:
<list style="numbers" counter="8">
<t>Stream Count 'N' (8 bits, unsigned):
<vspace blankLines="1"/>
This is the total number of streams encoded in each Ogg packet.
This value is necessary to correctly parse the packed Opus packets inside an
 Ogg packet, as described in <xref target="packet_organization"/>.
This value MUST NOT be zero, as without at least one Opus packet with a valid
 TOC sequence, a demuxer cannot recover the duration of an Ogg packet.
<vspace blankLines="1"/>
For channel mapping family&nbsp;0, this value defaults to 1, and is not coded.
<vspace blankLines="1"/>
</t>
<t>Coupled Stream Count 'M' (8 bits, unsigned):
This is the number of streams whose decoders are to be configured to produce
 two channels (stereo).
This MUST be no larger than the total number of streams, N.
<vspace blankLines="1"/>
Each packet in an Opus stream has an internal channel count of 1 or 2, which
 can change from packet to packet.
This is selected by the encoder depending on the bitrate and the audio being
 encoded.
The original channel count of the audio passed to the encoder is not
 necessarily preserved by the lossy compression.
<vspace blankLines="1"/>
Regardless of the internal channel count, any Opus stream can be decoded as
 mono (a single channel) or stereo (two channels) by appropriate initialization
 of the decoder.
The 'coupled stream count' field indicates that the decoders for the first M
 Opus streams are to be initialized for stereo (two-channel) output, and the
 remaining (N&nbsp;-&nbsp;M) decoders are to be initialized for mono (a single
 channel) only.
The total number of decoded channels, (M&nbsp;+&nbsp;N), MUST be no larger than
 255, as there is no way to index more channels than that in the channel
 mapping.
<vspace blankLines="1"/>
For channel mapping family&nbsp;0, this value defaults to (C&nbsp;-&nbsp;1)
 (i.e., 0 for mono and 1 for stereo), and is not coded.
<vspace blankLines="1"/>
</t>
<t>Channel Mapping (8*C bits):
This contains one octet per output channel, indicating which decoded channel
 is to be used for each one.
Let 'index' be the value of this octet for a particular output channel.
This value MUST either be smaller than (M&nbsp;+&nbsp;N), or be the special
 value 255.
If 'index' is less than 2*M, the output MUST be taken from decoding stream
 ('index'/2) as stereo and selecting the left channel if 'index' is even, and
 the right channel if 'index' is odd.
If 'index' is 2*M or larger, but less than 255, the output MUST be taken from
 decoding stream ('index'&nbsp;-&nbsp;M) as mono.
If 'index' is 255, the corresponding output channel MUST contain pure silence.
<vspace blankLines="1"/>
The number of output channels, C, is not constrained to match the number of
 decoded channels (M&nbsp;+&nbsp;N).
A single index value MAY appear multiple times, i.e., the same decoded channel
 might be mapped to multiple output channels.
Some decoded channels might not be assigned to any output channel, as well.
<vspace blankLines="1"/>
For channel mapping family&nbsp;0, the first index defaults to 0, and if
 C&nbsp;==&nbsp;2, the second index defaults to 1.
Neither index is coded.
</t>
</list>
</t>

<t>
After producing the output channels, the channel mapping family determines the
 semantic meaning of each one.
There are three defined mapping families in this specification.
</t>

<section anchor="channel_mapping_0" title="Channel Mapping Family 0">
<t>
Allowed numbers of channels: 1 or 2.
RTP mapping.
This is the same channel interpretation as <xref target="RFC7587"/>.
</t>
<t>
<list style="symbols">
<t>1 channel: monophonic (mono).</t>
<t>2 channels: stereo (left, right).</t>
</list>
Special mapping: This channel mapping value also
 indicates that the contents consists of a single Opus stream that is stereo if
 and only if C&nbsp;==&nbsp;2, with stream index&nbsp;0 mapped to output
 channel&nbsp;0 (mono, or left channel) and stream index&nbsp;1 mapped to
 output channel&nbsp;1 (right channel) if stereo.
When the 'channel mapping family' octet has this value, the channel mapping
 table MUST be omitted from the ID header packet.
</t>
</section>

<section anchor="channel_mapping_1" title="Channel Mapping Family 1">
<t>
Allowed numbers of channels: 1...8.
Vorbis channel order (see below).
</t>
<t>
Each channel is assigned to a speaker location in a conventional surround
 arrangement.
Specific locations depend on the number of channels, and are given below
 in order of the corresponding channel indices.
<list style="symbols">
  <t>1 channel: monophonic (mono).</t>
  <t>2 channels: stereo (left, right).</t>
  <t>3 channels: linear surround (left, center, right)</t>
  <t>4 channels: quadraphonic (front&nbsp;left, front&nbsp;right, rear&nbsp;left, rear&nbsp;right).</t>
  <t>5 channels: 5.0 surround (front&nbsp;left, front&nbsp;center, front&nbsp;right, rear&nbsp;left, rear&nbsp;right).</t>
  <t>6 channels: 5.1 surround (front&nbsp;left, front&nbsp;center, front&nbsp;right, rear&nbsp;left, rear&nbsp;right, LFE).</t>
  <t>7 channels: 6.1 surround (front&nbsp;left, front&nbsp;center, front&nbsp;right, side&nbsp;left, side&nbsp;right, rear&nbsp;center, LFE).</t>
  <t>8 channels: 7.1 surround (front&nbsp;left, front&nbsp;center, front&nbsp;right, side&nbsp;left, side&nbsp;right, rear&nbsp;left, rear&nbsp;right, LFE)</t>
</list>
</t>
<t>
This set of surround options and speaker location orderings is the same
 as those used by the Vorbis codec <xref target="vorbis-mapping"/>.
The ordering is different from the one used by the
 WAVE <xref target="wave-multichannel"/> and
 Free Lossless Audio Codec (FLAC) <xref target="flac"/> formats,
 so correct ordering requires permutation of the output channels when decoding
 to or encoding from those formats.
'LFE' here refers to a Low Frequency Effects channel, often mapped to a
  subwoofer with no particular spatial position.
Implementations SHOULD identify 'side' or 'rear' speaker locations with
 'surround' and 'back' as appropriate when interfacing with audio formats
 or systems which prefer that terminology.
</t>
</section>

<section anchor="channel_mapping_255"
 title="Channel Mapping Family 255">
<t>
Allowed numbers of channels: 1...255.
No defined channel meaning.
</t>
<t>
Channels are unidentified.
General-purpose players SHOULD NOT attempt to play these streams.
Offline implementations MAY deinterleave the output into separate PCM files,
 one per channel.
Implementations SHOULD NOT produce output for channels mapped to stream index
 255 (pure silence) unless they have no other way to indicate the index of
 non-silent channels.
</t>
</section>

<section anchor="channel_mapping_undefined"
 title="Undefined Channel Mappings">
<t>
The remaining channel mapping families (2...254) are reserved.
A demuxer implementation encountering a reserved channel mapping family value
 SHOULD act as though the value is 255.
</t>
</section>

<section anchor="downmix" title="Downmixing">
<t>
An Ogg Opus player MUST support any valid channel mapping with a channel
 mapping family of 0 or 1, even if the number of channels does not match the
 physically connected audio hardware.
Players SHOULD perform channel mixing to increase or reduce the number of
 channels as needed.
</t>

<t>
Implementations MAY use the following matrices to implement downmixing from
 multichannel files using <xref target="channel_mapping_1">Channel Mapping
 Family 1</xref>, which are known to give acceptable results for stereo.
Matrices for 3 and 4 channels are normalized so each coefficient row sums
 to 1 to avoid clipping.
For 5 or more channels they are normalized to 2 as a compromise between
 clipping and dynamic range reduction.
</t>
<t>
In these matrices the front left and front right channels are generally
passed through directly.
When a surround channel is split between both the left and right stereo
 channels, coefficients are chosen so their squares sum to 1, which
 helps preserve the perceived intensity.
Rear channels are mixed more diffusely or attenuated to maintain focus
 on the front channels.
</t>

<figure anchor="downmix-matrix-3"
 title="Stereo downmix matrix for the linear surround channel mapping"
 align="center">
<artwork align="center"><![CDATA[
L output = ( 0.585786 * left + 0.414214 * center                    )
R output = (                   0.414214 * center + 0.585786 * right )
]]></artwork>
<postamble>
Exact coefficient values are 1 and 1/sqrt(2), multiplied by
 1/(1&nbsp;+&nbsp;1/sqrt(2)) for normalization.
</postamble>
</figure>

<figure anchor="downmix-matrix-4"
 title="Stereo downmix matrix for the quadraphonic channel mapping"
 align="center">
<artwork align="center"><![CDATA[
/          \   /                                     \ / FL \
| L output |   | 0.422650 0.000000 0.366025 0.211325 | | FR |
| R output | = | 0.000000 0.422650 0.211325 0.366025 | | RL |
\          /   \                                     / \ RR /
]]></artwork>
<postamble>
Exact coefficient values are 1, sqrt(3)/2 and 1/2, multiplied by
 1/(1&nbsp;+&nbsp;sqrt(3)/2&nbsp;+&nbsp;1/2) for normalization.
</postamble>
</figure>

<figure anchor="downmix-matrix-5"
 title="Stereo downmix matrix for the 5.0 surround mapping"
 align="center">
<artwork align="center"><![CDATA[
                                                         / FL \
/   \   /                                              \ | FC |
| L |   | 0.650802 0.460186 0.000000 0.563611 0.325401 | | FR |
| R | = | 0.000000 0.460186 0.650802 0.325401 0.563611 | | RL |
\   /   \                                              / | RR |
                                                         \    /
]]></artwork>
<postamble>
Exact coefficient values are 1, 1/sqrt(2), sqrt(3)/2 and 1/2, multiplied by
 2/(1&nbsp;+&nbsp;1/sqrt(2)&nbsp;+&nbsp;sqrt(3)/2&nbsp;+&nbsp;1/2)
 for normalization.
</postamble>
</figure>

<figure anchor="downmix-matrix-6"
 title="Stereo downmix matrix for the 5.1 surround mapping"
 align="center">
<artwork align="center"><![CDATA[
                                                                /FL \
/ \   /                                                       \ |FC |
|L|   | 0.529067 0.374107 0.000000 0.458186 0.264534 0.374107 | |FR |
|R| = | 0.000000 0.374107 0.529067 0.264534 0.458186 0.374107 | |RL |
\ /   \                                                       / |RR |
                                                                \LFE/
]]></artwork>
<postamble>
Exact coefficient values are 1, 1/sqrt(2), sqrt(3)/2 and 1/2, multiplied by
2/(1&nbsp;+&nbsp;1/sqrt(2)&nbsp;+&nbsp;sqrt(3)/2&nbsp;+&nbsp;1/2 + 1/sqrt(2))
 for normalization.
</postamble>
</figure>

<figure anchor="downmix-matrix-7"
 title="Stereo downmix matrix for the 6.1 surround mapping"
 align="center">
<artwork align="center"><![CDATA[
 /                                                                \
 | 0.455310 0.321953 0.000000 0.394310 0.227655 0.278819 0.321953 |
 | 0.000000 0.321953 0.455310 0.227655 0.394310 0.278819 0.321953 |
 \                                                                /
]]></artwork>
<postamble>
Exact coefficient values are 1, 1/sqrt(2), sqrt(3)/2, 1/2 and
 sqrt(3)/2/sqrt(2), multiplied by
 2/(1&nbsp;+&nbsp;1/sqrt(2)&nbsp;+&nbsp;sqrt(3)/2&nbsp;+&nbsp;1/2 +
 sqrt(3)/2/sqrt(2) + 1/sqrt(2)) for normalization.
The coefficients are in the same order as in <xref target="channel_mapping_1" />,
 and the matrices above.
</postamble>
</figure>

<figure anchor="downmix-matrix-8"
 title="Stereo downmix matrix for the 7.1 surround mapping"
 align="center">
<artwork align="center"><![CDATA[
/                                                                 \
| .388631 .274804 .000000 .336565 .194316 .336565 .194316 .274804 |
| .000000 .274804 .388631 .194316 .336565 .194316 .336565 .274804 |
\                                                                 /
]]></artwork>
<postamble>
Exact coefficient values are 1, 1/sqrt(2), sqrt(3)/2 and 1/2, multiplied by
 2/(2&nbsp;+&nbsp;2/sqrt(2)&nbsp;+&nbsp;sqrt(3)) for normalization.
The coefficients are in the same order as in <xref target="channel_mapping_1" />,
 and the matrices above.
</postamble>
</figure>

</section>

</section> <!-- end channel_mapping_table -->

</section> <!-- end id_header -->

<section anchor="comment_header" title="Comment Header">

<figure anchor="comment_header_packet" title="Comment Header Packet"
 align="center">
<artwork align="center"><![CDATA[
 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      'O'      |      'p'      |      'u'      |      's'      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      'T'      |      'a'      |      'g'      |      's'      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                     Vendor String Length                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
:                        Vendor String...                       :
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                   User Comment List Length                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                 User Comment #0 String Length                 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
:                   User Comment #0 String...                   :
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                 User Comment #1 String Length                 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
:                                                               :
]]></artwork>
</figure>

<t>
The comment header consists of a 64-bit magic signature, followed by data in
 the same format as the <xref target="vorbis-comment"/> header used in Ogg
 Vorbis, except (like Ogg Theora and Speex) the final "framing bit" specified
 in the Vorbis spec is not present.
<list style="numbers">
<t>Magic Signature:
<vspace blankLines="1"/>
This is an 8-octet (64-bit) field that allows codec identification and is
 human-readable.
It contains, in order, the magic numbers:
<list style="empty">
<t>0x4F 'O'</t>
<t>0x70 'p'</t>
<t>0x75 'u'</t>
<t>0x73 's'</t>
<t>0x54 'T'</t>
<t>0x61 'a'</t>
<t>0x67 'g'</t>
<t>0x73 's'</t>
</list>
Starting with "Op" helps distinguish it from audio data packets, as this is an
 invalid TOC sequence.
<vspace blankLines="1"/>
</t>
<t>Vendor String Length (32 bits, unsigned, little endian):
<vspace blankLines="1"/>
This field gives the length of the following vendor string, in octets.
It MUST NOT indicate that the vendor string is longer than the rest of the
 packet.
<vspace blankLines="1"/>
</t>
<t>Vendor String (variable length, UTF-8 vector):
<vspace blankLines="1"/>
This is a simple human-readable tag for vendor information, encoded as a UTF-8
 string&nbsp;<xref target="RFC3629"/>.
No terminating null octet is necessary.
<vspace blankLines="1"/>
This tag is intended to identify the codec encoder and encapsulation
 implementations, for tracing differences in technical behavior.
User-facing applications can use the 'ENCODER' user comment tag to identify
 themselves.
<vspace blankLines="1"/>
</t>
<t>User Comment List Length (32 bits, unsigned, little endian):
<vspace blankLines="1"/>
This field indicates the number of user-supplied comments.
It MAY indicate there are zero user-supplied comments, in which case there are
 no additional fields in the packet.
It MUST NOT indicate that there are so many comments that the comment string
 lengths would require more data than is available in the rest of the packet.
<vspace blankLines="1"/>
</t>
<t>User Comment #i String Length (32 bits, unsigned, little endian):
<vspace blankLines="1"/>
This field gives the length of the following user comment string, in octets.
There is one for each user comment indicated by the 'user comment list length'
 field.
It MUST NOT indicate that the string is longer than the rest of the packet.
<vspace blankLines="1"/>
</t>
<t>User Comment #i String (variable length, UTF-8 vector):
<vspace blankLines="1"/>
This field contains a single user comment string.
There is one for each user comment indicated by the 'user comment list length'
 field.
</t>
</list>
</t>

<t>
The vendor string length and user comment list length are REQUIRED, and
 implementations SHOULD reject comment headers that do not contain enough data
 for these fields, or that do not contain enough data for the corresponding
 vendor string or user comments they describe.
Making this check before allocating the associated memory to contain the data
 helps prevent a possible Denial-of-Service (DoS) attack from small comment
 headers that claim to contain strings longer than the entire packet or more
 user comments than than could possibly fit in the packet.
</t>

<t>
Immediately following the user comment list, the comment header MAY
 contain zero-padding or other binary data which is not specified here.
If the least-significant bit of the first byte of this data is 1, then editors
 SHOULD preserve the contents of this data when updating the tags, but if this
 bit is 0, all such data MAY be treated as padding, and truncated or discarded
 as desired.
This allows informal experimentation with the format of this binary data until
 it can be specified later.
</t>

<t>
The comment header can be arbitrarily large and might be spread over a large
 number of Ogg pages.
Implementations MUST avoid attempting to allocate excessive amounts of memory
 when presented with a very large comment header.
To accomplish this, implementations MAY reject a comment header larger than
 125,829,120&nbsp;octets, and MAY ignore individual comments that are not fully
 contained within the first 61,440 octets of the comment header.
</t>

<section anchor="comment_format" title="Tag Definitions">
<t>
The user comment strings follow the NAME=value format described by
 <xref target="vorbis-comment"/> with the same recommended tag names:
 ARTIST, TITLE, DATE, ALBUM, and so on.
</t>
<t>
Two new comment tags are introduced here:
</t>

<t>First, an optional gain for track normalization:</t>
<figure align="center">
<artwork align="left"><![CDATA[
R128_TRACK_GAIN=-573
]]></artwork>
</figure>
<t>
 representing the volume shift needed to normalize the track's volume
 during isolated playback, in random shuffle, and so on.
The gain is a Q7.8 fixed point number in dB, as in the ID header's 'output
 gain' field.
This tag is similar to the REPLAYGAIN_TRACK_GAIN tag in
 Vorbis&nbsp;<xref target="replay-gain"/>, except that the normal volume
 reference is the <xref target="EBU-R128"/> standard.
</t>
<t>Second, an optional gain for album normalization:</t>
<figure align="center">
<artwork align="left"><![CDATA[
R128_ALBUM_GAIN=111
]]></artwork>
</figure>
<t>
 representing the volume shift needed to normalize the overall volume when
 played as part of a particular collection of tracks.
The gain is also a Q7.8 fixed point number in dB, as in the ID header's
 'output gain' field.
</t>
<t>
An Ogg Opus stream MUST NOT have more than one of each of these tags, and if
 present their values MUST be an integer from -32768 to 32767, inclusive,
 represented in ASCII as a base 10 number with no whitespace.
A leading '+' or '-' character is valid.
Leading zeros are also permitted, but the value MUST be represented by
 no more than 6 characters.
Other non-digit characters MUST NOT be present.
</t>
<t>
If present, R128_TRACK_GAIN and R128_ALBUM_GAIN MUST correctly represent
 the R128 normalization gain relative to the 'output gain' field specified
 in the ID header.
If a player chooses to make use of the R128_TRACK_GAIN tag or the
 R128_ALBUM_GAIN tag, it MUST apply those gains
 <spanx style="emph">in addition</spanx> to the 'output gain' value.
If a tool modifies the ID header's 'output gain' field, it MUST also update or
 remove the R128_TRACK_GAIN and R128_ALBUM_GAIN comment tags if present.
A muxer SHOULD place the gain it wants other tools to use by default into the
 'output gain' field, and not the comment tag.
</t>
<t>
To avoid confusion with multiple normalization schemes, an Opus comment header
 SHOULD NOT contain any of the REPLAYGAIN_TRACK_GAIN, REPLAYGAIN_TRACK_PEAK,
 REPLAYGAIN_ALBUM_GAIN, or REPLAYGAIN_ALBUM_PEAK tags, unless they are only
 to be used in some context where there is guaranteed to be no such confusion.
<xref target="EBU-R128"/> normalization is preferred to the earlier
 REPLAYGAIN schemes because of its clear definition and adoption by industry.
Peak normalizations are difficult to calculate reliably for lossy codecs
 because of variation in excursion heights due to decoder differences.
In the authors' investigations they were not applied consistently or broadly
 enough to merit inclusion here.
</t>
</section> <!-- end comment_format -->
</section> <!-- end comment_header -->

</section> <!-- end headers -->

<section anchor="packet_size_limits" title="Packet Size Limits">
<t>
Technically, valid Opus packets can be arbitrarily large due to the padding
 format, although the amount of non-padding data they can contain is bounded.
These packets might be spread over a similarly enormous number of Ogg pages.
When encoding, implementations SHOULD limit the use of padding in audio data
 packets to no more than is necessary to make a variable bitrate (VBR) stream
 constant bitrate (CBR), unless they have no reasonable way to determine what
 is necessary.
Demuxers SHOULD reject audio data packets (treat them as if they were malformed
 Opus packets with an invalid TOC sequence) larger than 61,440 octets per
 Opus stream, unless they have a specific reason for allowing extra padding.
Such packets necessarily contain more padding than needed to make a stream CBR.
Demuxers MUST avoid attempting to allocate excessive amounts of memory when
 presented with a very large packet.
Demuxers MAY reject or partially process audio data packets larger than
 61,440&nbsp;octets in an Ogg Opus stream with channel mapping families&nbsp;0
 or&nbsp;1.
Demuxers MAY reject or partially process audio data packets in any Ogg Opus
 stream if the packet is larger than 61,440&nbsp;octets and also larger than
 7,680&nbsp;octets per Opus stream.
The presence of an extremely large packet in the stream could indicate a
 memory exhaustion attack or stream corruption.
</t>
<t>
In an Ogg Opus stream, the largest possible valid packet that does not use
 padding has a size of (61,298*N&nbsp;-&nbsp;2) octets.
With 255&nbsp;streams, this is 15,630,988&nbsp;octets and can
 span up to 61,298&nbsp;Ogg pages, all but one of which will have a granule
 position of -1.
This is of course a very extreme packet, consisting of 255&nbsp;streams, each
 containing 120&nbsp;ms of audio encoded as 2.5&nbsp;ms frames, each frame
 using the maximum possible number of octets (1275) and stored in the least
 efficient manner allowed (a VBR code&nbsp;3 Opus packet).
Even in such a packet, most of the data will be zeros as 2.5&nbsp;ms frames
 cannot actually use all 1275&nbsp;octets.
</t>
<t>
The largest packet consisting of entirely useful data is
 (15,326*N&nbsp;-&nbsp;2) octets.
This corresponds to 120&nbsp;ms of audio encoded as 10&nbsp;ms frames in either
 SILK or Hybrid mode, but at a data rate of over 1&nbsp;Mbps, which makes little
 sense for the quality achieved.
</t>
<t>
A more reasonable limit is (7,664*N&nbsp;-&nbsp;2) octets.
This corresponds to 120&nbsp;ms of audio encoded as 20&nbsp;ms stereo CELT mode
 frames, with a total bitrate just under 511&nbsp;kbps (not counting the Ogg
 encapsulation overhead).
For channel mapping family 1, N=8 provides a reasonable upper bound, as it
 allows for each of the 8 possible output channels to be decoded from a
 separate stereo Opus stream.
This gives a size of 61,310&nbsp;octets, which is rounded up to a multiple of
 1,024&nbsp;octets to yield the audio data packet size of 61,440&nbsp;octets
 that any implementation is expected to be able to process successfully.
</t>
</section>

<section anchor="encoder" title="Encoder Guidelines">
<t>
When encoding Opus streams, Ogg muxers SHOULD take into account the
 algorithmic delay of the Opus encoder.
</t>
<t>
In encoders derived from the reference
 implementation&nbsp;<xref target="RFC6716"/>, the number of samples can be
 queried with:
</t>
<figure align="center">
<artwork align="center"><![CDATA[
 opus_encoder_ctl(encoder_state, OPUS_GET_LOOKAHEAD(&delay_samples));
]]></artwork>
</figure>
<t>
To achieve good quality in the very first samples of a stream, implementations
 MAY use linear predictive coding (LPC) extrapolation to generate at least 120
 extra samples at the beginning to avoid the Opus encoder having to encode a
 discontinuous signal.
For more information on linear prediction, see
 <xref target="linear-prediction"/>.
For an input file containing 'length' samples, the implementation SHOULD set
 the pre-skip header value to (delay_samples&nbsp;+&nbsp;extra_samples), encode
 at least (length&nbsp;+&nbsp;delay_samples&nbsp;+&nbsp;extra_samples)
 samples, and set the granule position of the last page to
 (length&nbsp;+&nbsp;delay_samples&nbsp;+&nbsp;extra_samples).
This ensures that the encoded file has the same duration as the original, with
 no time offset. The best way to pad the end of the stream is to also use LPC
 extrapolation, but zero-padding is also acceptable.
</t>

<section anchor="lpc" title="LPC Extrapolation">
<t>
The first step in LPC extrapolation is to compute linear prediction
 coefficients. <xref target="lpc-sample"/>
When extending the end of the signal, order-N (typically with N ranging from 8
 to 40) LPC analysis is performed on a window near the end of the signal.
The last N samples are used as memory to an infinite impulse response (IIR)
 filter.
</t>
<t>
The filter is then applied on a zero input to extrapolate the end of the signal.
Let a(k) be the kth LPC coefficient and x(n) be the nth sample of the signal,
 each new sample past the end of the signal is computed as:
</t>
<figure align="center">
<artwork align="center"><![CDATA[
        N
       ---
x(n) = \   a(k)*x(n-k)
       /
       ---
       k=1
]]></artwork>
</figure>
<t>
The process is repeated independently for each channel.
It is possible to extend the beginning of the signal by applying the same
 process backward in time.
When extending the beginning of the signal, it is best to apply a "fade in" to
 the extrapolated signal, e.g. by multiplying it by a half-Hanning window
 <xref target="hanning"/>.
</t>

</section>

<section anchor="continuous_chaining" title="Continuous Chaining">
<t>
In some applications, such as Internet radio, it is desirable to cut a long
 stream into smaller chains, e.g. so the comment header can be updated.
This can be done simply by separating the input streams into segments and
 encoding each segment independently.
The drawback of this approach is that it creates a small discontinuity
 at the boundary due to the lossy nature of Opus.
A muxer MAY avoid this discontinuity by using the following procedure:
<list style="numbers">
<t>Encode the last frame of the first segment as an independent frame by
 turning off all forms of inter-frame prediction.
De-emphasis is allowed.</t>
<t>Set the granule position of the last page to a point near the end of the
 last frame.</t>
<t>Begin the second segment with a copy of the last frame of the first
 segment.</t>
<t>Set the pre-skip value of the second stream in such a way as to properly
 join the two streams.</t>
<t>Continue the encoding process normally from there, without any reset to
 the encoder.</t>
</list>
</t>
<t>
In encoders derived from the reference implementation, inter-frame prediction
 can be turned off by calling:
</t>
<figure align="center">
<artwork align="center"><![CDATA[
 opus_encoder_ctl(encoder_state, OPUS_SET_PREDICTION_DISABLED(1));
]]></artwork>
</figure>
<t>
For best results, this implementation requires that prediction be explicitly
 enabled again before resuming normal encoding, even after a reset.
</t>

</section>

</section>

<section anchor="implementation" title="Implementation Status">
<t>
A brief summary of major implementations of this draft is available
 at <eref target="https://wiki.xiph.org/OggOpusImplementation"/>,
 along with their status.
</t>
<t>
[Note to RFC Editor: please remove this entire section before
 final publication per <xref target="RFC6982"/>, along with
 its references.]
</t>
</section>

<section anchor="security" title="Security Considerations">
<t>
Implementations of the Opus codec need to take appropriate security
 considerations into account, as outlined in <xref target="RFC4732"/>.
This is just as much a problem for the container as it is for the codec itself.
Robustness against malicious payloads is extremely important.
Malicious payloads MUST NOT cause an implementation to overrun its allocated
 memory or to take an excessive amount of resources to decode.
Although problems in encoding applications are typically rarer, the same
 applies to the muxer.
Malicious audio input streams MUST NOT cause an implementation to overrun its
 allocated memory or consume excessive resources because this would allow an
 attacker to attack transcoding gateways.
</t>

<t>
Like most other container formats, Ogg Opus streams SHOULD NOT be used with
 insecure ciphers or cipher modes that are vulnerable to known-plaintext
 attacks.
Elements such as the Ogg page capture pattern and the magic signatures in the
 ID header and the comment header all have easily predictable values, in
 addition to various elements of the codec data itself.
</t>
</section>

<section anchor="content_type" title="Content Type">
<t>
An "Ogg Opus file" consists of one or more sequentially multiplexed segments,
 each containing exactly one Ogg Opus stream.
The RECOMMENDED mime-type for Ogg Opus files is "audio/ogg".
</t>

<t>
If more specificity is desired, one MAY indicate the presence of Opus streams
 using the codecs parameter defined in <xref target="RFC6381"/> and
 <xref target="RFC5334"/>, e.g.,
</t>
<figure>
<artwork align="center"><![CDATA[
    audio/ogg; codecs=opus
]]></artwork>
</figure>
<t>
 for an Ogg Opus file.
</t>

<t>
The RECOMMENDED filename extension for Ogg Opus files is '.opus'.
</t>

<t>
When Opus is concurrently multiplexed with other streams in an Ogg container,
 one SHOULD use one of the "audio/ogg", "video/ogg", or "application/ogg"
 mime-types, as defined in <xref target="RFC5334"/>.
Such streams are not strictly "Ogg Opus files" as described above,
 since they contain more than a single Opus stream per sequentially
 multiplexed segment, e.g. video or multiple audio tracks.
In such cases the the '.opus' filename extension is NOT RECOMMENDED.
</t>

<t>
In either case, this document updates <xref target="RFC5334"/>
 to add 'opus' as a codecs parameter value with char[8]: 'OpusHead'
 as Codec Identifier.
</t>
</section>

<section anchor="iana" title="IANA Considerations">
<t>
This document updates the IANA Media Types registry to add .opus
 as a file extension for "audio/ogg", and to add itself as a reference
 alongside <xref target="RFC5334"/> for "audio/ogg", "video/ogg", and
 "application/ogg" Media Types.
</t>
<t>
This document defines a new registry "Opus Channel Mapping Families" to
 indicate how the semantic meanings of the channels in a multi-channel Opus
 stream are described.
IANA SHALL create a new name space of "Opus Channel Mapping Families".
All maintenance within and additions to the contents of this name space MUST be
 according to the "Specification Requried with Expert Review" registration
 policy as defined in <xref target="RFC5226"/>.
Each registry entry consists of a Channel Mapping Family Number, which is
 specified in decimal in the range 0 to 255, inclusive, and a Reference (or
 list of references)
Each Reference must point to sufficient documentation to describe what
 information is coded in the Opus identification header for this channel
 mapping family, how a demuxer determines the Stream Count ('N') and Coupled
 Stream Count ('M') from this information, and how it determines the proper
 interpretation of each of the decoded channels.
</t>
<t>
This document defines three initial assignments for this registry.
</t>
<texttable>
<ttcol>Value</ttcol><ttcol>Reference</ttcol>
<c>0</c><c>[RFCXXXX] <xref target="channel_mapping_0"/></c>
<c>1</c><c>[RFCXXXX] <xref target="channel_mapping_1"/></c>
<c>255</c><c>[RFCXXXX] <xref target="channel_mapping_255"/></c>
</texttable>
<t>
The designated expert will determine if the Reference points to a specification
 that meets the requirements for permanence and ready availability laid out
 in&nbsp;<xref target="RFC5226"/> and that it specifies the information
 described above with sufficient clarity to allow interoperable
 implementations.
</t>
</section>

<section anchor="Acknowledgments" title="Acknowledgments">
<t>
Thanks to Ben Campbell, Mark Harris, Greg Maxwell, Christopher "Monty"
 Montgomery, Jean-Marc Valin, and Mo Zanaty for their valuable contributions to
 this document.
Additional thanks to Andrew D'Addesio, Greg Maxwell, and Vincent Penquerc'h for
 their feedback based on early implementations.
</t>
</section>

<section title="RFC Editor Notes">
<t>
In&nbsp;<xref target="iana"/>, "RFCXXXX" is to be replaced with the RFC number
 assigned to this draft.
</t>
<t>
In the Copyright Notice at the start of the document, the following paragraph
 is to be appended after the regular copyright notice text:
</t>
<t>
"The licenses granted by the IETF Trust to this RFC under Section&nbsp;3.c of
 the Trust Legal Provisions shall also include the right to extract text from
 Sections&nbsp;1 through&nbsp;14 of this RFC and create derivative works from
 these extracts, and to copy, publish, display, and distribute such derivative
 works in any medium and for any purpose, provided that no such derivative work
 shall be presented, displayed, or published in a manner that states or implies
 that it is part of this RFC or any other IETF Document."
</t>
</section>

</middle>
<back>
<references title="Normative References">
 &rfc2119;
 &rfc3533;
 &rfc3629;
 &rfc4732;
 &rfc5226;
 &rfc5334;
 &rfc6381;
 &rfc6716;

<reference anchor="EBU-R128" target="https://tech.ebu.ch/loudness">
<front>
  <title>Loudness Recommendation EBU R128</title>
  <author>
    <organization>EBU Technical Committee</organization>
  </author>
  <date month="August" year="2011"/>
</front>
</reference>

<reference anchor="vorbis-comment"
 target="https://www.xiph.org/vorbis/doc/v-comment.html">
<front>
<title>Ogg Vorbis I Format Specification: Comment Field and Header
 Specification</title>
<author initials="C." surname="Montgomery"
 fullname="Christopher &quot;Monty&quot; Montgomery"/>
<date month="July" year="2002"/>
</front>
</reference>

</references>

<references title="Informative References">

<!--?rfc include="http://xml.resource.org/public/rfc/bibxml/reference.RFC.3550.xml"?-->
 &rfc6982;
 &rfc7587;

<reference anchor="flac"
 target="https://xiph.org/flac/format.html">
  <front>
    <title>FLAC - Free Lossless Audio Codec Format Description</title>
    <author initials="J." surname="Coalson" fullname="Josh Coalson"/>
    <date month="January" year="2008"/>
  </front>
</reference>

<reference anchor="hanning"
 target="https://en.wikipedia.org/wiki/Hamming_function#Hann_.28Hanning.29_window">
  <front>
    <title>Hann window</title>
    <author>
      <organization>Wikipedia</organization>
    </author>
    <date month="May" year="2013"/>
  </front>
</reference>

<reference anchor="linear-prediction"
 target="https://en.wikipedia.org/wiki/Linear_predictive_coding">
  <front>
    <title>Linear Predictive Coding</title>
    <author>
      <organization>Wikipedia</organization>
    </author>
    <date month="January" year="2014"/>
  </front>
</reference>

<reference anchor="lpc-sample"
  target="https://svn.xiph.org/trunk/vorbis/lib/lpc.c">
<front>
  <title>Autocorrelation LPC coeff generation algorithm
    (Vorbis source code)</title>
<author initials="J." surname="Degener" fullname="Jutta Degener"/>
<author initials="C." surname="Bormann" fullname="Carsten Bormann"/>
<date month="November" year="1994"/>
</front>
</reference>


<reference anchor="replay-gain"
 target="https://wiki.xiph.org/VorbisComment#Replay_Gain">
<front>
<title>VorbisComment: Replay Gain</title>
<author initials="C." surname="Parker" fullname="Conrad Parker"/>
<author initials="M." surname="Leese" fullname="Martin Leese"/>
<date month="June" year="2009"/>
</front>
</reference>

<reference anchor="seeking"
 target="https://wiki.xiph.org/Seeking">
<front>
<title>Granulepos Encoding and How Seeking Really Works</title>
<author initials="S." surname="Pfeiffer" fullname="Silvia Pfeiffer"/>
<author initials="C." surname="Parker" fullname="Conrad Parker"/>
<author initials="G." surname="Maxwell" fullname="Greg Maxwell"/>
<date month="May" year="2012"/>
</front>
</reference>

<reference anchor="vorbis-mapping"
 target="https://www.xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-810004.3.9">
<front>
<title>The Vorbis I Specification, Section 4.3.9 Output Channel Order</title>
<author initials="C." surname="Montgomery"
 fullname="Christopher &quot;Monty&quot; Montgomery"/>
<date month="January" year="2010"/>
</front>
</reference>

<reference anchor="vorbis-trim"
 target="https://xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-132000A.2">
  <front>
    <title>The Vorbis I Specification, Appendix&nbsp;A: Embedding Vorbis
      into an Ogg stream</title>
    <author initials="C." surname="Montgomery"
     fullname="Christopher &quot;Monty&quot; Montgomery"/>
    <date month="November" year="2008"/>
  </front>
</reference>

<reference anchor="wave-multichannel"
 target="http://msdn.microsoft.com/en-us/windows/hardware/gg463006.aspx">
  <front>
    <title>Multiple Channel Audio Data and WAVE Files</title>
    <author>
      <organization>Microsoft Corporation</organization>
    </author>
    <date month="March" year="2007"/>
  </front>
</reference>

</references>

</back>
</rfc>