summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorKoen Vos <koenvos@users.noreply.github.com>2016-01-13 11:54:40 +0800
committerKoen Vos <koenvos@users.noreply.github.com>2016-01-13 11:54:40 +0800
commitd845e44c07a43aa82e558699361d54bdfe755888 (patch)
tree206da38ea94603956498c4351a6fcf75b5b2d809
parent43e8bd46560d1aaf85fd682ab554e1f0753837ef (diff)
downloadopus-burg_optimization.tar.gz
faster Burg implementationburg_optimization
-rw-r--r--silk/fixed/burg_modified_FIX.c218
-rw-r--r--silk/float/burg_modified_FLP.c162
-rw-r--r--src/opus_demo.c7
3 files changed, 189 insertions, 198 deletions
diff --git a/silk/fixed/burg_modified_FIX.c b/silk/fixed/burg_modified_FIX.c
index 4878553b..7d072a46 100644
--- a/silk/fixed/burg_modified_FIX.c
+++ b/silk/fixed/burg_modified_FIX.c
@@ -34,7 +34,7 @@ POSSIBILITY OF SUCH DAMAGE.
#include "tuning_parameters.h"
#include "pitch.h"
-#define MAX_FRAME_SIZE 384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384 */
+/* This code implements the method from https://www.opus-codec.org/docs/vos_fastburg.pdf */
#define QA 25
#define N_BITS_HEAD_ROOM 2
@@ -54,45 +54,44 @@ void silk_burg_modified_c(
int arch /* I Run-time architecture */
)
{
- opus_int k, n, s, lz, rshifts, reached_max_gain;
+ opus_int k, n, s, lz, rshifts, rshifts_extra, reached_max_gain;
opus_int32 C0, num, nrg, rc_Q31, invGain_Q30, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2;
const opus_int16 *x_ptr;
- opus_int32 C_first_row[ SILK_MAX_ORDER_LPC ];
- opus_int32 C_last_row[ SILK_MAX_ORDER_LPC ];
- opus_int32 Af_QA[ SILK_MAX_ORDER_LPC ];
- opus_int32 CAf[ SILK_MAX_ORDER_LPC + 1 ];
- opus_int32 CAb[ SILK_MAX_ORDER_LPC + 1 ];
- opus_int32 xcorr[ SILK_MAX_ORDER_LPC ];
- opus_int64 C0_64;
-
- silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
+ opus_int32 Af_QA[ SILK_MAX_ORDER_LPC ];
+ opus_int32 g[ SILK_MAX_ORDER_LPC + 1 ];
+ opus_int32 c[ SILK_MAX_ORDER_LPC + 1 ];
/* Compute autocorrelations, added over subframes */
- C0_64 = silk_inner_prod16_aligned_64( x, x, subfr_length*nb_subfr, arch );
- lz = silk_CLZ64(C0_64);
- rshifts = 32 + 1 + N_BITS_HEAD_ROOM - lz;
- if (rshifts > MAX_RSHIFTS) rshifts = MAX_RSHIFTS;
- if (rshifts < MIN_RSHIFTS) rshifts = MIN_RSHIFTS;
-
- if (rshifts > 0) {
- C0 = (opus_int32)silk_RSHIFT64(C0_64, rshifts );
+ silk_sum_sqr_shift( &C0, &rshifts, x, nb_subfr * subfr_length );
+ if( rshifts > MAX_RSHIFTS ) {
+ C0 = silk_LSHIFT32( C0, rshifts - MAX_RSHIFTS );
+ silk_assert( C0 > 0 );
+ rshifts = MAX_RSHIFTS;
} else {
- C0 = silk_LSHIFT32((opus_int32)C0_64, -rshifts );
+ lz = silk_CLZ32( C0 ) - 1;
+ rshifts_extra = N_BITS_HEAD_ROOM - lz;
+ if( rshifts_extra > 0 ) {
+ rshifts_extra = silk_min( rshifts_extra, MAX_RSHIFTS - rshifts );
+ C0 = silk_RSHIFT32( C0, rshifts_extra );
+ } else {
+ rshifts_extra = silk_max( rshifts_extra, MIN_RSHIFTS - rshifts );
+ C0 = silk_LSHIFT32( C0, -rshifts_extra );
+ }
+ rshifts += rshifts_extra;
}
-
- CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */
- silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
+ silk_memset( c, 0, (D+1) * sizeof( opus_int32 ) );
if( rshifts > 0 ) {
for( s = 0; s < nb_subfr; s++ ) {
x_ptr = x + s * subfr_length;
for( n = 1; n < D + 1; n++ ) {
- C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64(
+ c[ n ] += (opus_int32)silk_RSHIFT64(
silk_inner_prod16_aligned_64( x_ptr, x_ptr + n, subfr_length - n, arch ), rshifts );
}
}
} else {
for( s = 0; s < nb_subfr; s++ ) {
int i;
+ opus_int32 xcorr[ SILK_MAX_ORDER_LPC ];
opus_int32 d;
x_ptr = x + s * subfr_length;
celt_pitch_xcorr(x_ptr, x_ptr + 1, xcorr, subfr_length - D, D, arch );
@@ -102,23 +101,50 @@ void silk_burg_modified_c(
xcorr[ n - 1 ] += d;
}
for( n = 1; n < D + 1; n++ ) {
- C_first_row[ n - 1 ] += silk_LSHIFT32( xcorr[ n - 1 ], -rshifts );
+ c[ n ] += silk_LSHIFT32( xcorr[ n - 1 ], -rshifts );
}
}
}
- silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
- /* Initialize */
- CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */
+ /* Multiply all correlations by 2 */
+ rshifts++;
- invGain_Q30 = (opus_int32)1 << 30;
+ /* Initialize */
+ c[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */
+ g[ 0 ] = c[ 0 ]; /* Q(-rshifts) */
+ tmp1 = 0;
+ if( rshifts > -N_BITS_HEAD_ROOM ) {
+ for( s = 0; s < nb_subfr; s++ ) {
+ x_ptr = x + s * subfr_length;
+ x1 = x_ptr[ 0 ];
+ x2 = x_ptr[ subfr_length - 1 ];
+ tmp1 = silk_SMLAWB( tmp1, silk_LSHIFT32( x1, 16 - rshifts ), x1 ); /* Q(-rshifts) */
+ tmp1 = silk_SMLAWB( tmp1, silk_LSHIFT32( x2, 16 - rshifts ), x2 ); /* Q(-rshifts) */
+ }
+ } else {
+ for( s = 0; s < nb_subfr; s++ ) {
+ x_ptr = x + s * subfr_length;
+ x1 = x_ptr[ 0 ];
+ x2 = x_ptr[ subfr_length - 1 ];
+ tmp1 = silk_MLA( tmp1, silk_LSHIFT32( x1, -rshifts ), x1 ); /* Q(-rshifts) */
+ tmp1 = silk_MLA( tmp1, silk_LSHIFT32( x2, -rshifts ), x2 ); /* Q(-rshifts) */
+ }
+ }
+ g[ 0 ] -= tmp1;
+ g[ 1 ] = c[ 1 ];
+ silk_assert( g[ 1 ] < g[ 0 ] && g[ 1 ] > -g[ 0 ] );
+ rc_Q31 = -silk_DIV32_varQ( g[ 1 ], g[ 0 ], 31 );
+ Af_QA[ 0 ] = silk_RSHIFT32( rc_Q31, 31 - QA ); /* QA */
+ invGain_Q30 = SILK_FIX_CONST( 1, 30 ) - silk_SMMUL( rc_Q31, rc_Q31 );
reached_max_gain = 0;
- for( n = 0; n < D; n++ ) {
- /* Update first row of correlation matrix (without first element) */
- /* Update last row of correlation matrix (without last element, stored in reversed order) */
- /* Update C * Af */
- /* Update C * flipud(Af) (stored in reversed order) */
- if( rshifts > -2 ) {
+ for( n = 1; n < D; n++ ) {
+ for( k = 0; k < (n >> 1) + 1; k++ ) {
+ tmp1 = g[ k ];
+ tmp2 = g[ n - k ];
+ g[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* Q(-rshifts) */
+ g[ n - k ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* Q(-rshifts) */
+ }
+ if( rshifts > -N_BITS_HEAD_ROOM ) {
for( s = 0; s < nb_subfr; s++ ) {
x_ptr = x + s * subfr_length;
x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], 16 - rshifts ); /* Q(16-rshifts) */
@@ -126,29 +152,29 @@ void silk_burg_modified_c(
tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], QA - 16 ); /* Q(QA-16) */
tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 ); /* Q(QA-16) */
for( k = 0; k < n; k++ ) {
- C_first_row[ k ] = silk_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */
- C_last_row[ k ] = silk_SMLAWB( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
+ c[ k + 1 ] = silk_SMLAWB( silk_SMLAWB( c[ k + 1 ], x1, x_ptr[ n - k - 1 ] ), /* Q( -rshifts ) */
+ x2, x_ptr[ subfr_length - n + k ] );
Atmp_QA = Af_QA[ k ];
tmp1 = silk_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ] ); /* Q(QA-16) */
tmp2 = silk_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] ); /* Q(QA-16) */
}
- tmp1 = silk_LSHIFT32( -tmp1, 32 - QA - rshifts ); /* Q(16-rshifts) */
+ tmp1 = silk_LSHIFT32( -tmp1, 32 - QA - rshifts ); /* Q(16-rshifts) */
tmp2 = silk_LSHIFT32( -tmp2, 32 - QA - rshifts ); /* Q(16-rshifts) */
for( k = 0; k <= n; k++ ) {
- CAf[ k ] = silk_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ] ); /* Q( -rshift ) */
- CAb[ k ] = silk_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] ); /* Q( -rshift ) */
+ g[ k ] = silk_SMLAWB( silk_SMLAWB( g[ k ], tmp1, x_ptr[ n - k ] ), /* Q( -rshift ) */
+ tmp2, x_ptr[ subfr_length - n + k - 1 ] );
}
}
} else {
for( s = 0; s < nb_subfr; s++ ) {
x_ptr = x + s * subfr_length;
- x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], -rshifts ); /* Q( -rshifts ) */
+ x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], -rshifts ); /* Q( -rshifts ) */
x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts ); /* Q( -rshifts ) */
tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], 17 ); /* Q17 */
tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 17 ); /* Q17 */
for( k = 0; k < n; k++ ) {
- C_first_row[ k ] = silk_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */
- C_last_row[ k ] = silk_MLA( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
+ c[ k + 1 ] = silk_MLA( silk_MLA( c[ k + 1 ], x1, x_ptr[ n - k - 1 ] ), /* Q( -rshifts ) */
+ x2, x_ptr[ subfr_length - n + k ] );
Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 17 ); /* Q17 */
tmp1 = silk_MLA( tmp1, x_ptr[ n - k - 1 ], Atmp1 ); /* Q17 */
tmp2 = silk_MLA( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 ); /* Q17 */
@@ -156,53 +182,47 @@ void silk_burg_modified_c(
tmp1 = -tmp1; /* Q17 */
tmp2 = -tmp2; /* Q17 */
for( k = 0; k <= n; k++ ) {
- CAf[ k ] = silk_SMLAWW( CAf[ k ], tmp1,
- silk_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) ); /* Q( -rshift ) */
- CAb[ k ] = silk_SMLAWW( CAb[ k ], tmp2,
- silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) ); /* Q( -rshift ) */
+ g[ k ] = silk_SMLAWW( silk_SMLAWW( g[ k ], /* Q( -rshift ) */
+ tmp1, silk_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) ),
+ tmp2, silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) );
}
}
}
/* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
- tmp1 = C_first_row[ n ]; /* Q( -rshifts ) */
- tmp2 = C_last_row[ n ]; /* Q( -rshifts ) */
+ tmp1 = c[ n + 1 ]; /* Q( -rshifts ) */
num = 0; /* Q( -rshifts ) */
- nrg = silk_ADD32( CAb[ 0 ], CAf[ 0 ] ); /* Q( 1-rshifts ) */
+ nrg = g[ 0 ]; /* Q( -rshifts ) */
for( k = 0; k < n; k++ ) {
Atmp_QA = Af_QA[ k ];
lz = silk_CLZ32( silk_abs( Atmp_QA ) ) - 1;
lz = silk_min( 32 - QA, lz );
Atmp1 = silk_LSHIFT32( Atmp_QA, lz ); /* Q( QA + lz ) */
-
- tmp1 = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( C_last_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
- tmp2 = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
- num = silk_ADD_LSHIFT32( num, silk_SMMUL( CAb[ n - k ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
- nrg = silk_ADD_LSHIFT32( nrg, silk_SMMUL( silk_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ),
- Atmp1 ), 32 - QA - lz ); /* Q( 1-rshifts ) */
+ tmp1 = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( c[ n - k ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
+ num = silk_ADD_LSHIFT32( num, silk_SMMUL( g[ n - k ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
+ nrg = silk_ADD_LSHIFT32( nrg, silk_SMMUL( g[ k + 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
}
- CAf[ n + 1 ] = tmp1; /* Q( -rshifts ) */
- CAb[ n + 1 ] = tmp2; /* Q( -rshifts ) */
- num = silk_ADD32( num, tmp2 ); /* Q( -rshifts ) */
- num = silk_LSHIFT32( -num, 1 ); /* Q( 1-rshifts ) */
+ g[ n + 1 ] = tmp1; /* Q( -rshifts ) */
+ num = silk_ADD32( num, tmp1 ); /* Q( -rshifts ) */
+ silk_assert( nrg > 0 );
/* Calculate the next order reflection (parcor) coefficient */
if( silk_abs( num ) < nrg ) {
- rc_Q31 = silk_DIV32_varQ( num, nrg, 31 );
+ rc_Q31 = -silk_DIV32_varQ( num, nrg, 31 );
} else {
- rc_Q31 = ( num > 0 ) ? silk_int32_MAX : silk_int32_MIN;
+ rc_Q31 = ( num > 0 ) ? silk_int32_MIN : silk_int32_MAX;
}
/* Update inverse prediction gain */
- tmp1 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 );
+ tmp1 = SILK_FIX_CONST( 1, 30 ) - silk_SMMUL( rc_Q31, rc_Q31 );
tmp1 = silk_LSHIFT( silk_SMMUL( invGain_Q30, tmp1 ), 2 );
if( tmp1 <= minInvGain_Q30 ) {
/* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
- tmp2 = ( (opus_int32)1 << 30 ) - silk_DIV32_varQ( minInvGain_Q30, invGain_Q30, 30 ); /* Q30 */
- rc_Q31 = silk_SQRT_APPROX( tmp2 ); /* Q15 */
+ tmp2 = SILK_FIX_CONST( 1, 30 ) - silk_DIV32_varQ( minInvGain_Q30, invGain_Q30, 30 ); /* Q30 */
+ rc_Q31 = silk_SQRT_APPROX( tmp2 ); /* Q15 */
/* Newton-Raphson iteration */
- rc_Q31 = silk_RSHIFT32( rc_Q31 + silk_DIV32( tmp2, rc_Q31 ), 1 ); /* Q15 */
- rc_Q31 = silk_LSHIFT32( rc_Q31, 16 ); /* Q31 */
+ rc_Q31 = silk_RSHIFT32( rc_Q31 + silk_DIV32( tmp2, rc_Q31 ), 1 ); /* Q15 */
+ rc_Q31 = silk_LSHIFT32( rc_Q31, 16 ); /* Q31 */
if( num < 0 ) {
/* Ensure adjusted reflection coefficients has the original sign */
rc_Q31 = -rc_Q31;
@@ -215,12 +235,12 @@ void silk_burg_modified_c(
/* Update the AR coefficients */
for( k = 0; k < (n + 1) >> 1; k++ ) {
- tmp1 = Af_QA[ k ]; /* QA */
- tmp2 = Af_QA[ n - k - 1 ]; /* QA */
- Af_QA[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* QA */
- Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* QA */
+ tmp1 = Af_QA[ k ]; /* QA */
+ tmp2 = Af_QA[ n - k - 1 ]; /* QA */
+ Af_QA[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* QA */
+ Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* QA */
}
- Af_QA[ n ] = silk_RSHIFT32( rc_Q31, 31 - QA ); /* QA */
+ Af_QA[ n ] = silk_RSHIFT32( rc_Q31, 31 - QA ); /* QA */
if( reached_max_gain ) {
/* Reached max prediction gain; set remaining coefficients to zero and exit loop */
@@ -229,47 +249,27 @@ void silk_burg_modified_c(
}
break;
}
-
- /* Update C * Af and C * Ab */
- for( k = 0; k <= n + 1; k++ ) {
- tmp1 = CAf[ k ]; /* Q( -rshifts ) */
- tmp2 = CAb[ n - k + 1 ]; /* Q( -rshifts ) */
- CAf[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* Q( -rshifts ) */
- CAb[ n - k + 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* Q( -rshifts ) */
- }
}
- if( reached_max_gain ) {
- for( k = 0; k < D; k++ ) {
- /* Scale coefficients */
- A_Q16[ k ] = -silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 );
- }
- /* Subtract energy of preceding samples from C0 */
- if( rshifts > 0 ) {
- for( s = 0; s < nb_subfr; s++ ) {
- x_ptr = x + s * subfr_length;
- C0 -= (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64( x_ptr, x_ptr, D, arch ), rshifts );
- }
- } else {
- for( s = 0; s < nb_subfr; s++ ) {
- x_ptr = x + s * subfr_length;
- C0 -= silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr, D, arch), -rshifts);
- }
+ for( k = 0; k < D; k++ ) {
+ /* Scale coefficients */
+ A_Q16[ k ] = -silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 );
+ }
+
+ /* Subtract energy of preceding samples from C0 */
+ rshifts--; /* divide c0 by two */
+ if( rshifts > 0 ) {
+ for( s = 0; s < nb_subfr; s++ ) {
+ x_ptr = x + s * subfr_length;
+ C0 -= (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64( x_ptr, x_ptr, D, arch ), rshifts );
}
- /* Approximate residual energy */
- *res_nrg = silk_LSHIFT( silk_SMMUL( invGain_Q30, C0 ), 2 );
- *res_nrg_Q = -rshifts;
} else {
- /* Return residual energy */
- nrg = CAf[ 0 ]; /* Q( -rshifts ) */
- tmp1 = (opus_int32)1 << 16; /* Q16 */
- for( k = 0; k < D; k++ ) {
- Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 ); /* Q16 */
- nrg = silk_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 ); /* Q( -rshifts ) */
- tmp1 = silk_SMLAWW( tmp1, Atmp1, Atmp1 ); /* Q16 */
- A_Q16[ k ] = -Atmp1;
+ for( s = 0; s < nb_subfr; s++ ) {
+ x_ptr = x + s * subfr_length;
+ C0 -= silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr, D, arch), -rshifts);
}
- *res_nrg = silk_SMLAWW( nrg, silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ), -tmp1 );/* Q( -rshifts ) */
- *res_nrg_Q = -rshifts;
}
+ /* Approximate residual energy */
+ *res_nrg = silk_LSHIFT( silk_SMMUL( invGain_Q30, C0 ), 2 );
+ *res_nrg_Q = -rshifts;
}
diff --git a/silk/float/burg_modified_FLP.c b/silk/float/burg_modified_FLP.c
index ea5dc25a..7ef4cac2 100644
--- a/silk/float/burg_modified_FLP.c
+++ b/silk/float/burg_modified_FLP.c
@@ -33,11 +33,11 @@ POSSIBILITY OF SUCH DAMAGE.
#include "tuning_parameters.h"
#include "define.h"
-#define MAX_FRAME_SIZE 384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384*/
+/* This code implements the method from https://www.opus-codec.org/docs/vos_fastburg.pdf */
/* Compute reflection coefficients from input signal */
-silk_float silk_burg_modified_FLP( /* O returns residual energy */
- silk_float A[], /* O prediction coefficients (length order) */
+silk_float silk_burg_modified_FLP(
+ silk_float af[], /* O prediction coefficients (length order) */
const silk_float x[], /* I input signal, length: nb_subfr*(D+L_sub) */
const silk_float minInvGain, /* I minimum inverse prediction gain */
const opus_int subfr_length, /* I input signal subframe length (incl. D preceding samples) */
@@ -46,75 +46,81 @@ silk_float silk_burg_modified_FLP( /* O returns residual energy
)
{
opus_int k, n, s, reached_max_gain;
- double C0, invGain, num, nrg_f, nrg_b, rc, Atmp, tmp1, tmp2;
+ double invGain, num, nrg, rc, tmp1, tmp2, x1, x2, atmp;
const silk_float *x_ptr;
- double C_first_row[ SILK_MAX_ORDER_LPC ], C_last_row[ SILK_MAX_ORDER_LPC ];
- double CAf[ SILK_MAX_ORDER_LPC + 1 ], CAb[ SILK_MAX_ORDER_LPC + 1 ];
- double Af[ SILK_MAX_ORDER_LPC ];
-
- silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
+ double c[ SILK_MAX_ORDER_LPC + 1 ];
+ double g[ SILK_MAX_ORDER_LPC + 1 ];
+ double a[ SILK_MAX_ORDER_LPC ];
/* Compute autocorrelations, added over subframes */
- C0 = silk_energy_FLP( x, nb_subfr * subfr_length );
- silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( double ) );
+ silk_memset( c, 0, (D + 1) * sizeof( double ) );
for( s = 0; s < nb_subfr; s++ ) {
x_ptr = x + s * subfr_length;
- for( n = 1; n < D + 1; n++ ) {
- C_first_row[ n - 1 ] += silk_inner_product_FLP( x_ptr, x_ptr + n, subfr_length - n );
+ for( n = 0; n < D + 1; n++ ) {
+ c[ n ] += silk_inner_product_FLP( x_ptr, x_ptr + n, subfr_length - n );
}
}
- silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( double ) );
+ for( n = 0; n < D + 1; n++ ) {
+ c[ n ] *= 2.0;
+ }
/* Initialize */
- CAb[ 0 ] = CAf[ 0 ] = C0 + FIND_LPC_COND_FAC * C0 + 1e-9f;
- invGain = 1.0f;
+ c[ 0 ] += FIND_LPC_COND_FAC * c[ 0 ] + 1e-9f ;
+ g[ 0 ] = c[ 0 ];
+ tmp1 = 0.0f;
+ for( s = 0; s < nb_subfr; s++ ) {
+ x_ptr = x + s * subfr_length;
+ x1 = x_ptr[ 0 ];
+ x2 = x_ptr[ subfr_length - 1 ];
+ tmp1 += x1 * x1 + x2 * x2;
+ }
+ g[ 0 ] -= tmp1;
+ g[ 1 ] = c[ 1 ];
+ rc = - g[ 1 ] / g[ 0 ];
+ silk_assert( rc > -1.0 && rc < 1.0 );
+ a[ 0 ] = rc;
+ invGain = ( 1.0 - rc * rc );
reached_max_gain = 0;
- for( n = 0; n < D; n++ ) {
- /* Update first row of correlation matrix (without first element) */
- /* Update last row of correlation matrix (without last element, stored in reversed order) */
- /* Update C * Af */
- /* Update C * flipud(Af) (stored in reversed order) */
+ for( n = 1; n < D; n++ ) {
+ for( k = 0; k < (n >> 1) + 1; k++ ) {
+ tmp1 = g[ k ];
+ tmp2 = g[ n - k ];
+ g[ k ] = tmp1 + rc * tmp2;
+ g[ n - k ] = tmp2 + rc * tmp1;
+ }
for( s = 0; s < nb_subfr; s++ ) {
x_ptr = x + s * subfr_length;
- tmp1 = x_ptr[ n ];
- tmp2 = x_ptr[ subfr_length - n - 1 ];
+ x1 = x_ptr[ n ];
+ x2 = x_ptr[ subfr_length - n - 1 ];
+ tmp1 = x1;
+ tmp2 = x2;
for( k = 0; k < n; k++ ) {
- C_first_row[ k ] -= x_ptr[ n ] * x_ptr[ n - k - 1 ];
- C_last_row[ k ] -= x_ptr[ subfr_length - n - 1 ] * x_ptr[ subfr_length - n + k ];
- Atmp = Af[ k ];
- tmp1 += x_ptr[ n - k - 1 ] * Atmp;
- tmp2 += x_ptr[ subfr_length - n + k ] * Atmp;
+ atmp = a[ k ];
+ c[ k + 1 ] -= x1 * x_ptr[ n - k - 1 ] + x2 * x_ptr[ subfr_length - n + k ];
+ tmp1 += x_ptr[ n - k - 1 ] * atmp;
+ tmp2 += x_ptr[ subfr_length - n + k ] * atmp;
}
for( k = 0; k <= n; k++ ) {
- CAf[ k ] -= tmp1 * x_ptr[ n - k ];
- CAb[ k ] -= tmp2 * x_ptr[ subfr_length - n + k - 1 ];
+ g[ k ] -= tmp1 * x_ptr[ n - k ] + tmp2 * x_ptr[ subfr_length - n + k - 1 ];
}
}
- tmp1 = C_first_row[ n ];
- tmp2 = C_last_row[ n ];
- for( k = 0; k < n; k++ ) {
- Atmp = Af[ k ];
- tmp1 += C_last_row[ n - k - 1 ] * Atmp;
- tmp2 += C_first_row[ n - k - 1 ] * Atmp;
- }
- CAf[ n + 1 ] = tmp1;
- CAb[ n + 1 ] = tmp2;
/* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
- num = CAb[ n + 1 ];
- nrg_b = CAb[ 0 ];
- nrg_f = CAf[ 0 ];
+ tmp1 = c[ n + 1 ];
+ num = 0.0f;
+ nrg = g[ 0 ];
for( k = 0; k < n; k++ ) {
- Atmp = Af[ k ];
- num += CAb[ n - k ] * Atmp;
- nrg_b += CAb[ k + 1 ] * Atmp;
- nrg_f += CAf[ k + 1 ] * Atmp;
+ atmp = a[ k ];
+ tmp1 += c[ n - k ] * atmp;
+ num += g[ n - k ] * atmp;
+ nrg += g[ k + 1 ] * atmp;
}
- silk_assert( nrg_f > 0.0 );
- silk_assert( nrg_b > 0.0 );
+ g[ n + 1] = tmp1;
+ num += tmp1;
+ silk_assert( nrg > 0.0 );
/* Calculate the next order reflection (parcor) coefficient */
- rc = -2.0 * num / ( nrg_f + nrg_b );
+ rc = -num / nrg;
silk_assert( rc > -1.0 && rc < 1.0 );
/* Update inverse prediction gain */
@@ -123,7 +129,7 @@ silk_float silk_burg_modified_FLP( /* O returns residual energy
/* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
rc = sqrt( 1.0 - minInvGain / invGain );
if( num > 0 ) {
- /* Ensure adjusted reflection coefficients has the original sign */
+ /* Ensure adjusted reflection coefficient has the original sign */
rc = -rc;
}
invGain = minInvGain;
@@ -134,53 +140,35 @@ silk_float silk_burg_modified_FLP( /* O returns residual energy
/* Update the AR coefficients */
for( k = 0; k < (n + 1) >> 1; k++ ) {
- tmp1 = Af[ k ];
- tmp2 = Af[ n - k - 1 ];
- Af[ k ] = tmp1 + rc * tmp2;
- Af[ n - k - 1 ] = tmp2 + rc * tmp1;
+ tmp1 = a[ k ];
+ tmp2 = a[ n - k - 1 ];
+ a[ k ] = tmp1 + rc * tmp2;
+ a[ n - k - 1 ] = tmp2 + rc * tmp1;
}
- Af[ n ] = rc;
+ a[ n ] = rc;
if( reached_max_gain ) {
/* Reached max prediction gain; set remaining coefficients to zero and exit loop */
for( k = n + 1; k < D; k++ ) {
- Af[ k ] = 0.0;
+ a[ k ] = 0.0;
}
break;
}
-
- /* Update C * Af and C * Ab */
- for( k = 0; k <= n + 1; k++ ) {
- tmp1 = CAf[ k ];
- CAf[ k ] += rc * CAb[ n - k + 1 ];
- CAb[ n - k + 1 ] += rc * tmp1;
- }
}
- if( reached_max_gain ) {
- /* Convert to silk_float */
- for( k = 0; k < D; k++ ) {
- A[ k ] = (silk_float)( -Af[ k ] );
- }
- /* Subtract energy of preceding samples from C0 */
- for( s = 0; s < nb_subfr; s++ ) {
- C0 -= silk_energy_FLP( x + s * subfr_length, D );
- }
- /* Approximate residual energy */
- nrg_f = C0 * invGain;
- } else {
- /* Compute residual energy and store coefficients as silk_float */
- nrg_f = CAf[ 0 ];
- tmp1 = 1.0;
- for( k = 0; k < D; k++ ) {
- Atmp = Af[ k ];
- nrg_f += CAf[ k + 1 ] * Atmp;
- tmp1 += Atmp * Atmp;
- A[ k ] = (silk_float)(-Atmp);
- }
- nrg_f -= FIND_LPC_COND_FAC * C0 * tmp1;
+ /* Convert to silk_float */
+ for( k = 0; k < D; k++ ) {
+ af[ k ] = (silk_float)( -a[ k ] );
+ }
+
+ nrg = c[ 0 ] * 0.5 * (1.0 - FIND_LPC_COND_FAC);
+ /* Subtract energy of preceding samples from C0 */
+ for( s = 0; s < nb_subfr; s++ ) {
+ nrg -= silk_energy_FLP( x + s * subfr_length, D );
}
+ /* Approximate residual energy */
+ nrg *= invGain;
- /* Return residual energy */
- return (silk_float)nrg_f;
+ /* Return approximate residual energy */
+ return (silk_float)nrg;
}
diff --git a/src/opus_demo.c b/src/opus_demo.c
index 9e99a3b2..485818cb 100644
--- a/src/opus_demo.c
+++ b/src/opus_demo.c
@@ -242,7 +242,7 @@ int main(int argc, char *argv[])
int stop=0;
short *in, *out;
int application=OPUS_APPLICATION_AUDIO;
- double bits=0.0, bits_max=0.0, bits_act=0.0, bits2=0.0, nrg;
+ double bits=0.0, bits_max=0.0, bits_act=0.0, bits2=0.0, bits_act2=0.0, nrg;
double tot_samples=0;
opus_uint64 tot_in, tot_out;
int bandwidth=OPUS_AUTO;
@@ -848,6 +848,7 @@ int main(int argc, char *argv[])
nrg /= frame_size * channels;
if( nrg > 1e5 ) {
bits_act += len[toggle]*8;
+ bits_act2 += len[toggle]*len[toggle]*64;
count_act++;
}
}
@@ -866,9 +867,11 @@ int main(int argc, char *argv[])
1e-3*bits_max*sampling_rate/frame_size);
if (!decode_only)
fprintf (stderr, "active bitrate: %7.3f kb/s\n",
- 1e-3*bits_act*sampling_rate/(1e-15+frame_size*(double)count_act));
+ 1e-3*bits_act*sampling_rate/(frame_size*(double)count_act));
fprintf (stderr, "bitrate standard deviation: %7.3f kb/s\n",
1e-3*sqrt(bits2/count - bits*bits/(count*(double)count))*sampling_rate/frame_size);
+ fprintf (stderr, "active standard deviation: %7.3f kb/s\n",
+ 1e-3*sqrt(bits_act2/count_act - bits_act*bits_act/(count_act*(double)count_act))*sampling_rate/frame_size);
/* Close any files to which intermediate results were stored */
SILK_DEBUG_STORE_CLOSE_FILES
silk_TimerSave("opus_timing.txt");