summaryrefslogtreecommitdiff
path: root/heat/engine/watchrule.py
blob: 6450bb8bf6ed79969411dad0877175e538208866 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# vim: tabstop=4 shiftwidth=4 softtabstop=4

#
#    Licensed under the Apache License, Version 2.0 (the "License"); you may
#    not use this file except in compliance with the License. You may obtain
#    a copy of the License at
#
#         http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
#    WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
#    License for the specific language governing permissions and limitations
#    under the License.


import datetime
from heat.common import exception
from heat.openstack.common import log as logging
from heat.openstack.common import timeutils
from heat.engine import timestamp
from heat.db import api as db_api
from heat.engine import parser
from heat.rpc import api as rpc_api

logger = logging.getLogger(__name__)


class WatchRule(object):
    WATCH_STATES = (
        ALARM,
        NORMAL,
        NODATA
    ) = (
        rpc_api.WATCH_STATE_ALARM,
        rpc_api.WATCH_STATE_OK,
        rpc_api.WATCH_STATE_NODATA
    )
    ACTION_MAP = {ALARM: 'AlarmActions',
                  NORMAL: 'OKActions',
                  NODATA: 'InsufficientDataActions'}

    created_at = timestamp.Timestamp(db_api.watch_rule_get, 'created_at')
    updated_at = timestamp.Timestamp(db_api.watch_rule_get, 'updated_at')

    def __init__(self, context, watch_name, rule, stack_id=None,
                 state=NORMAL, wid=None, watch_data=[],
                 last_evaluated=timeutils.utcnow()):
        self.context = context
        self.now = timeutils.utcnow()
        self.name = watch_name
        self.state = state
        self.rule = rule
        self.stack_id = stack_id
        self.timeperiod = datetime.timedelta(seconds=int(rule['Period']))
        self.id = wid
        self.watch_data = watch_data
        self.last_evaluated = last_evaluated

    @classmethod
    def load(cls, context, watch_name=None, watch=None):
        '''
        Load the watchrule object, either by name or via an existing DB object
        '''
        if watch is None:
            try:
                watch = db_api.watch_rule_get_by_name(context, watch_name)
            except Exception as ex:
                logger.warn('WatchRule.load (%s) db error %s' %
                            (watch_name, str(ex)))
        if watch is None:
            raise exception.WatchRuleNotFound(watch_name=watch_name)
        else:
            return cls(context=context,
                       watch_name=watch.name,
                       rule=watch.rule,
                       stack_id=watch.stack_id,
                       state=watch.state,
                       wid=watch.id,
                       watch_data=watch.watch_data,
                       last_evaluated=watch.last_evaluated)

    def store(self):
        '''
        Store the watchrule in the database and return its ID
        If self.id is set, we update the existing rule
        '''

        wr_values = {
            'name': self.name,
            'rule': self.rule,
            'state': self.state,
            'stack_id': self.stack_id
        }

        if not self.id:
            wr = db_api.watch_rule_create(self.context, wr_values)
            self.id = wr.id
        else:
            db_api.watch_rule_update(self.context, self.id, wr_values)

    def do_data_cmp(self, data, threshold):
        op = self.rule['ComparisonOperator']
        if op == 'GreaterThanThreshold':
            return data > threshold
        elif op == 'GreaterThanOrEqualToThreshold':
            return data >= threshold
        elif op == 'LessThanThreshold':
            return data < threshold
        elif op == 'LessThanOrEqualToThreshold':
            return data <= threshold
        else:
            return False

    def do_Maximum(self):
        data = 0
        have_data = False
        for d in self.watch_data:
            if d.created_at < self.now - self.timeperiod:
                continue
            if not have_data:
                data = float(d.data[self.rule['MetricName']]['Value'])
                have_data = True
            if float(d.data[self.rule['MetricName']]['Value']) > data:
                data = float(d.data[self.rule['MetricName']]['Value'])

        if not have_data:
            return self.NODATA

        if self.do_data_cmp(data,
                            float(self.rule['Threshold'])):
            return self.ALARM
        else:
            return self.NORMAL

    def do_Minimum(self):
        data = 0
        have_data = False
        for d in self.watch_data:
            if d.created_at < self.now - self.timeperiod:
                continue
            if not have_data:
                data = float(d.data[self.rule['MetricName']]['Value'])
                have_data = True
            elif float(d.data[self.rule['MetricName']]['Value']) < data:
                data = float(d.data[self.rule['MetricName']]['Value'])

        if not have_data:
            return self.NODATA

        if self.do_data_cmp(data,
                            float(self.rule['Threshold'])):
            return self.ALARM
        else:
            return self.NORMAL

    def do_SampleCount(self):
        '''
        count all samples within the specified period
        '''
        data = 0
        for d in self.watch_data:
            if d.created_at < self.now - self.timeperiod:
                continue
            data = data + 1

        if self.do_data_cmp(data,
                            float(self.rule['Threshold'])):
            return self.ALARM
        else:
            return self.NORMAL

    def do_Average(self):
        data = 0
        samples = 0
        for d in self.watch_data:
            if d.created_at < self.now - self.timeperiod:
                continue
            samples = samples + 1
            data = data + float(d.data[self.rule['MetricName']]['Value'])

        if samples == 0:
            return self.NODATA

        data = data / samples
        if self.do_data_cmp(data,
                            float(self.rule['Threshold'])):
            return self.ALARM
        else:
            return self.NORMAL

    def do_Sum(self):
        data = 0
        for d in self.watch_data:
            if d.created_at < self.now - self.timeperiod:
                logger.debug('ignoring %s' % str(d.data))
                continue
            data = data + float(d.data[self.rule['MetricName']]['Value'])

        if self.do_data_cmp(data,
                            float(self.rule['Threshold'])):
            return self.ALARM
        else:
            return self.NORMAL

    def get_alarm_state(self):
        fn = getattr(self, 'do_%s' % self.rule['Statistic'])
        return fn()

    def evaluate(self):
        # has enough time progressed to run the rule
        self.now = timeutils.utcnow()
        if self.now < (self.last_evaluated + self.timeperiod):
            return []
        return self.run_rule()

    def run_rule(self):
        new_state = self.get_alarm_state()

        actions = []
        if new_state != self.state:
            actions = self.rule_actions(new_state)
            self.state = new_state

        self.last_evaluated = self.now
        self.store()
        return actions

    def rule_actions(self, new_state):
        logger.warn('WATCH: stack:%s, watch_name:%s %s',
                    self.stack_id, self.name, new_state)
        actions = []
        if not self.ACTION_MAP[new_state] in self.rule:
            logger.info('no action for new state %s',
                        new_state)
        else:
            s = db_api.stack_get(self.context, self.stack_id)
            if s and s.status in (parser.Stack.CREATE_COMPLETE,
                                  parser.Stack.UPDATE_COMPLETE):
                stack = parser.Stack.load(self.context, stack=s)
                for a in self.rule[self.ACTION_MAP[new_state]]:
                    actions.append(stack[a].alarm)
            else:
                logger.warning("Could not process watch state %s for stack" %
                               new_state)
        return actions

    def create_watch_data(self, data):
        if not self.rule['MetricName'] in data:
            logger.warn('new data has incorrect metric:%s' %
                        (self.rule['MetricName']))
            raise ValueError('MetricName %s missing' %
                             self.rule['MetricName'])

        watch_data = {
            'data': data,
            'watch_rule_id': self.id
        }
        wd = db_api.watch_data_create(None, watch_data)
        logger.debug('new watch:%s data:%s' % (self.name, str(wd.data)))

    def set_watch_state(self, state):
        '''
        Temporarily set the watch state, returns list of functions to be
        scheduled in the stack ThreadGroup for the specified state
        '''

        if state not in self.WATCH_STATES:
            raise ValueError('Unknown watch state %s' % state)

        actions = []
        if state != self.state:
            actions = self.rule_actions(state)
            if actions:
                logger.debug("Overriding state %s for watch %s with %s" %
                            (self.state, self.name, state))
            else:
                logger.warning("Unable to override state %s for watch %s" %
                              (self.state, self.name))
        return actions