summaryrefslogtreecommitdiff
path: root/providers/implementations/ciphers/cipher_aes_cbc_hmac_sha1_hw.c
blob: dc2412c7b5fa96ff6ec0e1bc6724106c84c82352 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
/*
 * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the Apache License 2.0 (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

/*
 * All low level APIs are deprecated for public use, but still ok for internal
 * use where we're using them to implement the higher level EVP interface, as is
 * the case here.
 */
#include "internal/deprecated.h"

#include "cipher_aes_cbc_hmac_sha.h"

#if !defined(AES_CBC_HMAC_SHA_CAPABLE) || !defined(AESNI_CAPABLE)
int cipher_capable_aes_cbc_hmac_sha1(void)
{
    return 0;
}

const PROV_CIPHER_HW_AES_HMAC_SHA *PROV_CIPHER_HW_aes_cbc_hmac_sha1(void)
{
    return NULL;
}
#else

# include <openssl/rand.h>
# include "crypto/evp.h"
# include "internal/constant_time.h"

void sha1_block_data_order(void *c, const void *p, size_t len);
void aesni_cbc_sha1_enc(const void *inp, void *out, size_t blocks,
                        const AES_KEY *key, unsigned char iv[16],
                        SHA_CTX *ctx, const void *in0);

int cipher_capable_aes_cbc_hmac_sha1(void)
{
    return AESNI_CBC_HMAC_SHA_CAPABLE;
}

static int aesni_cbc_hmac_sha1_init_key(PROV_CIPHER_CTX *vctx,
                                        const unsigned char *key, size_t keylen)
{
    int ret;
    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
    PROV_AES_HMAC_SHA1_CTX *sctx = (PROV_AES_HMAC_SHA1_CTX *)vctx;

    if (ctx->base.enc)
        ret = aesni_set_encrypt_key(key, keylen * 8, &ctx->ks);
    else
        ret = aesni_set_decrypt_key(key, keylen * 8, &ctx->ks);

    SHA1_Init(&sctx->head);      /* handy when benchmarking */
    sctx->tail = sctx->head;
    sctx->md = sctx->head;

    ctx->payload_length = NO_PAYLOAD_LENGTH;

    return ret < 0 ? 0 : 1;
}

static void sha1_update(SHA_CTX *c, const void *data, size_t len)
{
    const unsigned char *ptr = data;
    size_t res;

    if ((res = c->num)) {
        res = SHA_CBLOCK - res;
        if (len < res)
            res = len;
        SHA1_Update(c, ptr, res);
        ptr += res;
        len -= res;
    }

    res = len % SHA_CBLOCK;
    len -= res;

    if (len) {
        sha1_block_data_order(c, ptr, len / SHA_CBLOCK);

        ptr += len;
        c->Nh += len >> 29;
        c->Nl += len <<= 3;
        if (c->Nl < (unsigned int)len)
            c->Nh++;
    }

    if (res)
        SHA1_Update(c, ptr, res);
}

# if !defined(OPENSSL_NO_MULTIBLOCK)

typedef struct {
    unsigned int A[8], B[8], C[8], D[8], E[8];
} SHA1_MB_CTX;

typedef struct {
    const unsigned char *ptr;
    int blocks;
} HASH_DESC;

typedef struct {
    const unsigned char *inp;
    unsigned char *out;
    int blocks;
    u64 iv[2];
} CIPH_DESC;

void sha1_multi_block(SHA1_MB_CTX *, const HASH_DESC *, int);
void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int);

static size_t tls1_multi_block_encrypt(void *vctx,
                                       unsigned char *out,
                                       const unsigned char *inp,
                                       size_t inp_len, int n4x)
{                               /* n4x is 1 or 2 */
    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
    PROV_AES_HMAC_SHA1_CTX *sctx = (PROV_AES_HMAC_SHA1_CTX *)vctx;
    HASH_DESC hash_d[8], edges[8];
    CIPH_DESC ciph_d[8];
    unsigned char storage[sizeof(SHA1_MB_CTX) + 32];
    union {
        u64 q[16];
        u32 d[32];
        u8 c[128];
    } blocks[8];
    SHA1_MB_CTX *mctx;
    unsigned int frag, last, packlen, i;
    unsigned int x4 = 4 * n4x, minblocks, processed = 0;
    size_t ret = 0;
    u8 *IVs;
#  if defined(BSWAP8)
    u64 seqnum;
#  endif

    /* ask for IVs in bulk */
    if (RAND_bytes_ex(ctx->base.libctx, (IVs = blocks[0].c), 16 * x4) <= 0)
        return 0;

    mctx = (SHA1_MB_CTX *) (storage + 32 - ((size_t)storage % 32)); /* align */

    frag = (unsigned int)inp_len >> (1 + n4x);
    last = (unsigned int)inp_len + frag - (frag << (1 + n4x));
    if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) {
        frag++;
        last -= x4 - 1;
    }

    packlen = 5 + 16 + ((frag + 20 + 16) & -16);

    /* populate descriptors with pointers and IVs */
    hash_d[0].ptr = inp;
    ciph_d[0].inp = inp;
    /* 5+16 is place for header and explicit IV */
    ciph_d[0].out = out + 5 + 16;
    memcpy(ciph_d[0].out - 16, IVs, 16);
    memcpy(ciph_d[0].iv, IVs, 16);
    IVs += 16;

    for (i = 1; i < x4; i++) {
        ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag;
        ciph_d[i].out = ciph_d[i - 1].out + packlen;
        memcpy(ciph_d[i].out - 16, IVs, 16);
        memcpy(ciph_d[i].iv, IVs, 16);
        IVs += 16;
    }

#  if defined(BSWAP8)
    memcpy(blocks[0].c, sctx->md.data, 8);
    seqnum = BSWAP8(blocks[0].q[0]);
#  endif
    for (i = 0; i < x4; i++) {
        unsigned int len = (i == (x4 - 1) ? last : frag);
#  if !defined(BSWAP8)
        unsigned int carry, j;
#  endif

        mctx->A[i] = sctx->md.h0;
        mctx->B[i] = sctx->md.h1;
        mctx->C[i] = sctx->md.h2;
        mctx->D[i] = sctx->md.h3;
        mctx->E[i] = sctx->md.h4;

        /* fix seqnum */
#  if defined(BSWAP8)
        blocks[i].q[0] = BSWAP8(seqnum + i);
#  else
        for (carry = i, j = 8; j--;) {
            blocks[i].c[j] = ((u8 *)sctx->md.data)[j] + carry;
            carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1);
        }
#  endif
        blocks[i].c[8] = ((u8 *)sctx->md.data)[8];
        blocks[i].c[9] = ((u8 *)sctx->md.data)[9];
        blocks[i].c[10] = ((u8 *)sctx->md.data)[10];
        /* fix length */
        blocks[i].c[11] = (u8)(len >> 8);
        blocks[i].c[12] = (u8)(len);

        memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13);
        hash_d[i].ptr += 64 - 13;
        hash_d[i].blocks = (len - (64 - 13)) / 64;

        edges[i].ptr = blocks[i].c;
        edges[i].blocks = 1;
    }

    /* hash 13-byte headers and first 64-13 bytes of inputs */
    sha1_multi_block(mctx, edges, n4x);
    /* hash bulk inputs */
#  define MAXCHUNKSIZE    2048
#  if     MAXCHUNKSIZE%64
#   error  "MAXCHUNKSIZE is not divisible by 64"
#  elif   MAXCHUNKSIZE
    /*
     * goal is to minimize pressure on L1 cache by moving in shorter steps,
     * so that hashed data is still in the cache by the time we encrypt it
     */
    minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64;
    if (minblocks > MAXCHUNKSIZE / 64) {
        for (i = 0; i < x4; i++) {
            edges[i].ptr = hash_d[i].ptr;
            edges[i].blocks = MAXCHUNKSIZE / 64;
            ciph_d[i].blocks = MAXCHUNKSIZE / 16;
        }
        do {
            sha1_multi_block(mctx, edges, n4x);
            aesni_multi_cbc_encrypt(ciph_d, &ctx->ks, n4x);

            for (i = 0; i < x4; i++) {
                edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
                hash_d[i].blocks -= MAXCHUNKSIZE / 64;
                edges[i].blocks = MAXCHUNKSIZE / 64;
                ciph_d[i].inp += MAXCHUNKSIZE;
                ciph_d[i].out += MAXCHUNKSIZE;
                ciph_d[i].blocks = MAXCHUNKSIZE / 16;
                memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16);
            }
            processed += MAXCHUNKSIZE;
            minblocks -= MAXCHUNKSIZE / 64;
        } while (minblocks > MAXCHUNKSIZE / 64);
    }
#  endif
#  undef  MAXCHUNKSIZE
    sha1_multi_block(mctx, hash_d, n4x);

    memset(blocks, 0, sizeof(blocks));
    for (i = 0; i < x4; i++) {
        unsigned int len = (i == (x4 - 1) ? last : frag),
            off = hash_d[i].blocks * 64;
        const unsigned char *ptr = hash_d[i].ptr + off;

        off = (len - processed) - (64 - 13) - off; /* remainder actually */
        memcpy(blocks[i].c, ptr, off);
        blocks[i].c[off] = 0x80;
        len += 64 + 13;         /* 64 is HMAC header */
        len *= 8;               /* convert to bits */
        if (off < (64 - 8)) {
#  ifdef BSWAP4
            blocks[i].d[15] = BSWAP4(len);
#  else
            PUTU32(blocks[i].c + 60, len);
#  endif
            edges[i].blocks = 1;
        } else {
#  ifdef BSWAP4
            blocks[i].d[31] = BSWAP4(len);
#  else
            PUTU32(blocks[i].c + 124, len);
#  endif
            edges[i].blocks = 2;
        }
        edges[i].ptr = blocks[i].c;
    }

    /* hash input tails and finalize */
    sha1_multi_block(mctx, edges, n4x);

    memset(blocks, 0, sizeof(blocks));
    for (i = 0; i < x4; i++) {
#  ifdef BSWAP4
        blocks[i].d[0] = BSWAP4(mctx->A[i]);
        mctx->A[i] = sctx->tail.h0;
        blocks[i].d[1] = BSWAP4(mctx->B[i]);
        mctx->B[i] = sctx->tail.h1;
        blocks[i].d[2] = BSWAP4(mctx->C[i]);
        mctx->C[i] = sctx->tail.h2;
        blocks[i].d[3] = BSWAP4(mctx->D[i]);
        mctx->D[i] = sctx->tail.h3;
        blocks[i].d[4] = BSWAP4(mctx->E[i]);
        mctx->E[i] = sctx->tail.h4;
        blocks[i].c[20] = 0x80;
        blocks[i].d[15] = BSWAP4((64 + 20) * 8);
#  else
        PUTU32(blocks[i].c + 0, mctx->A[i]);
        mctx->A[i] = sctx->tail.h0;
        PUTU32(blocks[i].c + 4, mctx->B[i]);
        mctx->B[i] = sctx->tail.h1;
        PUTU32(blocks[i].c + 8, mctx->C[i]);
        mctx->C[i] = sctx->tail.h2;
        PUTU32(blocks[i].c + 12, mctx->D[i]);
        mctx->D[i] = sctx->tail.h3;
        PUTU32(blocks[i].c + 16, mctx->E[i]);
        mctx->E[i] = sctx->tail.h4;
        blocks[i].c[20] = 0x80;
        PUTU32(blocks[i].c + 60, (64 + 20) * 8);
#  endif /* BSWAP */
        edges[i].ptr = blocks[i].c;
        edges[i].blocks = 1;
    }

    /* finalize MACs */
    sha1_multi_block(mctx, edges, n4x);

    for (i = 0; i < x4; i++) {
        unsigned int len = (i == (x4 - 1) ? last : frag), pad, j;
        unsigned char *out0 = out;

        memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed);
        ciph_d[i].inp = ciph_d[i].out;

        out += 5 + 16 + len;

        /* write MAC */
        PUTU32(out + 0, mctx->A[i]);
        PUTU32(out + 4, mctx->B[i]);
        PUTU32(out + 8, mctx->C[i]);
        PUTU32(out + 12, mctx->D[i]);
        PUTU32(out + 16, mctx->E[i]);
        out += 20;
        len += 20;

        /* pad */
        pad = 15 - len % 16;
        for (j = 0; j <= pad; j++)
            *(out++) = pad;
        len += pad + 1;

        ciph_d[i].blocks = (len - processed) / 16;
        len += 16;              /* account for explicit iv */

        /* arrange header */
        out0[0] = ((u8 *)sctx->md.data)[8];
        out0[1] = ((u8 *)sctx->md.data)[9];
        out0[2] = ((u8 *)sctx->md.data)[10];
        out0[3] = (u8)(len >> 8);
        out0[4] = (u8)(len);

        ret += len + 5;
        inp += frag;
    }

    aesni_multi_cbc_encrypt(ciph_d, &ctx->ks, n4x);

    OPENSSL_cleanse(blocks, sizeof(blocks));
    OPENSSL_cleanse(mctx, sizeof(*mctx));

    ctx->multiblock_encrypt_len = ret;
    return ret;
}
# endif /* OPENSSL_NO_MULTIBLOCK */

static int aesni_cbc_hmac_sha1_cipher(PROV_CIPHER_CTX *vctx,
                                      unsigned char *out,
                                      const unsigned char *in, size_t len)
{
    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
    PROV_AES_HMAC_SHA1_CTX *sctx = (PROV_AES_HMAC_SHA1_CTX *)vctx;
    unsigned int l;
    size_t plen = ctx->payload_length;
    size_t iv = 0; /* explicit IV in TLS 1.1 and later */
    size_t aes_off = 0, blocks;
    size_t sha_off = SHA_CBLOCK - sctx->md.num;

    ctx->payload_length = NO_PAYLOAD_LENGTH;

    if (len % AES_BLOCK_SIZE)
        return 0;

    if (ctx->base.enc) {
        if (plen == NO_PAYLOAD_LENGTH)
            plen = len;
        else if (len !=
                 ((plen + SHA_DIGEST_LENGTH +
                   AES_BLOCK_SIZE) & -AES_BLOCK_SIZE))
            return 0;
        else if (ctx->aux.tls_ver >= TLS1_1_VERSION)
            iv = AES_BLOCK_SIZE;

        if (plen > (sha_off + iv)
                && (blocks = (plen - (sha_off + iv)) / SHA_CBLOCK)) {
            sha1_update(&sctx->md, in + iv, sha_off);

            aesni_cbc_sha1_enc(in, out, blocks, &ctx->ks, ctx->base.iv,
                               &sctx->md, in + iv + sha_off);
            blocks *= SHA_CBLOCK;
            aes_off += blocks;
            sha_off += blocks;
            sctx->md.Nh += blocks >> 29;
            sctx->md.Nl += blocks <<= 3;
            if (sctx->md.Nl < (unsigned int)blocks)
                sctx->md.Nh++;
        } else {
            sha_off = 0;
        }
        sha_off += iv;
        sha1_update(&sctx->md, in + sha_off, plen - sha_off);

        if (plen != len) {      /* "TLS" mode of operation */
            if (in != out)
                memcpy(out + aes_off, in + aes_off, plen - aes_off);

            /* calculate HMAC and append it to payload */
            SHA1_Final(out + plen, &sctx->md);
            sctx->md = sctx->tail;
            sha1_update(&sctx->md, out + plen, SHA_DIGEST_LENGTH);
            SHA1_Final(out + plen, &sctx->md);

            /* pad the payload|hmac */
            plen += SHA_DIGEST_LENGTH;
            for (l = len - plen - 1; plen < len; plen++)
                out[plen] = l;
            /* encrypt HMAC|padding at once */
            aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off,
                              &ctx->ks, ctx->base.iv, 1);
        } else {
            aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off,
                              &ctx->ks, ctx->base.iv, 1);
        }
    } else {
        union {
            unsigned int u[SHA_DIGEST_LENGTH / sizeof(unsigned int)];
            unsigned char c[32 + SHA_DIGEST_LENGTH];
        } mac, *pmac;

        /* arrange cache line alignment */
        pmac = (void *)(((size_t)mac.c + 31) & ((size_t)0 - 32));

        if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
            size_t inp_len, mask, j, i;
            unsigned int res, maxpad, pad, bitlen;
            int ret = 1;
            union {
                unsigned int u[SHA_LBLOCK];
                unsigned char c[SHA_CBLOCK];
            } *data = (void *)sctx->md.data;

            if ((ctx->aux.tls_aad[plen - 4] << 8 | ctx->aux.tls_aad[plen - 3])
                >= TLS1_1_VERSION) {
                if (len < (AES_BLOCK_SIZE + SHA_DIGEST_LENGTH + 1))
                    return 0;

                /* omit explicit iv */
                memcpy(ctx->base.iv, in, AES_BLOCK_SIZE);

                in += AES_BLOCK_SIZE;
                out += AES_BLOCK_SIZE;
                len -= AES_BLOCK_SIZE;
            } else if (len < (SHA_DIGEST_LENGTH + 1))
                return 0;

            /* decrypt HMAC|padding at once */
            aesni_cbc_encrypt(in, out, len, &ctx->ks, ctx->base.iv, 0);

            /* figure out payload length */
            pad = out[len - 1];
            maxpad = len - (SHA_DIGEST_LENGTH + 1);
            maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8);
            maxpad &= 255;

            mask = constant_time_ge(maxpad, pad);
            ret &= mask;
            /*
             * If pad is invalid then we will fail the above test but we must
             * continue anyway because we are in constant time code. However,
             * we'll use the maxpad value instead of the supplied pad to make
             * sure we perform well defined pointer arithmetic.
             */
            pad = constant_time_select(mask, pad, maxpad);

            inp_len = len - (SHA_DIGEST_LENGTH + pad + 1);

            ctx->aux.tls_aad[plen - 2] = inp_len >> 8;
            ctx->aux.tls_aad[plen - 1] = inp_len;

            /* calculate HMAC */
            sctx->md = sctx->head;
            sha1_update(&sctx->md, ctx->aux.tls_aad, plen);

            /* code containing lucky-13 fix */
            len -= SHA_DIGEST_LENGTH; /* amend mac */
            if (len >= (256 + SHA_CBLOCK)) {
                j = (len - (256 + SHA_CBLOCK)) & (0 - SHA_CBLOCK);
                j += SHA_CBLOCK - sctx->md.num;
                sha1_update(&sctx->md, out, j);
                out += j;
                len -= j;
                inp_len -= j;
            }

            /* but pretend as if we hashed padded payload */
            bitlen = sctx->md.Nl + (inp_len << 3); /* at most 18 bits */
# ifdef BSWAP4
            bitlen = BSWAP4(bitlen);
# else
            mac.c[0] = 0;
            mac.c[1] = (unsigned char)(bitlen >> 16);
            mac.c[2] = (unsigned char)(bitlen >> 8);
            mac.c[3] = (unsigned char)bitlen;
            bitlen = mac.u[0];
# endif /* BSWAP */

            pmac->u[0] = 0;
            pmac->u[1] = 0;
            pmac->u[2] = 0;
            pmac->u[3] = 0;
            pmac->u[4] = 0;

            for (res = sctx->md.num, j = 0; j < len; j++) {
                size_t c = out[j];
                mask = (j - inp_len) >> (sizeof(j) * 8 - 8);
                c &= mask;
                c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8));
                data->c[res++] = (unsigned char)c;

                if (res != SHA_CBLOCK)
                    continue;

                /* j is not incremented yet */
                mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1));
                data->u[SHA_LBLOCK - 1] |= bitlen & mask;
                sha1_block_data_order(&sctx->md, data, 1);
                mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1));
                pmac->u[0] |= sctx->md.h0 & mask;
                pmac->u[1] |= sctx->md.h1 & mask;
                pmac->u[2] |= sctx->md.h2 & mask;
                pmac->u[3] |= sctx->md.h3 & mask;
                pmac->u[4] |= sctx->md.h4 & mask;
                res = 0;
            }

            for (i = res; i < SHA_CBLOCK; i++, j++)
                data->c[i] = 0;

            if (res > SHA_CBLOCK - 8) {
                mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1));
                data->u[SHA_LBLOCK - 1] |= bitlen & mask;
                sha1_block_data_order(&sctx->md, data, 1);
                mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
                pmac->u[0] |= sctx->md.h0 & mask;
                pmac->u[1] |= sctx->md.h1 & mask;
                pmac->u[2] |= sctx->md.h2 & mask;
                pmac->u[3] |= sctx->md.h3 & mask;
                pmac->u[4] |= sctx->md.h4 & mask;

                memset(data, 0, SHA_CBLOCK);
                j += 64;
            }
            data->u[SHA_LBLOCK - 1] = bitlen;
            sha1_block_data_order(&sctx->md, data, 1);
            mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
            pmac->u[0] |= sctx->md.h0 & mask;
            pmac->u[1] |= sctx->md.h1 & mask;
            pmac->u[2] |= sctx->md.h2 & mask;
            pmac->u[3] |= sctx->md.h3 & mask;
            pmac->u[4] |= sctx->md.h4 & mask;

# ifdef BSWAP4
            pmac->u[0] = BSWAP4(pmac->u[0]);
            pmac->u[1] = BSWAP4(pmac->u[1]);
            pmac->u[2] = BSWAP4(pmac->u[2]);
            pmac->u[3] = BSWAP4(pmac->u[3]);
            pmac->u[4] = BSWAP4(pmac->u[4]);
# else
            for (i = 0; i < 5; i++) {
                res = pmac->u[i];
                pmac->c[4 * i + 0] = (unsigned char)(res >> 24);
                pmac->c[4 * i + 1] = (unsigned char)(res >> 16);
                pmac->c[4 * i + 2] = (unsigned char)(res >> 8);
                pmac->c[4 * i + 3] = (unsigned char)res;
            }
# endif /* BSWAP4 */
            len += SHA_DIGEST_LENGTH;
            sctx->md = sctx->tail;
            sha1_update(&sctx->md, pmac->c, SHA_DIGEST_LENGTH);
            SHA1_Final(pmac->c, &sctx->md);

            /* verify HMAC */
            out += inp_len;
            len -= inp_len;
            /* version of code with lucky-13 fix */
            {
                unsigned char *p = out + len - 1 - maxpad - SHA_DIGEST_LENGTH;
                size_t off = out - p;
                unsigned int c, cmask;

                maxpad += SHA_DIGEST_LENGTH;
                for (res = 0, i = 0, j = 0; j < maxpad; j++) {
                    c = p[j];
                    cmask =
                        ((int)(j - off - SHA_DIGEST_LENGTH)) >> (sizeof(int) *
                                                                 8 - 1);
                    res |= (c ^ pad) & ~cmask; /* ... and padding */
                    cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1);
                    res |= (c ^ pmac->c[i]) & cmask;
                    i += 1 & cmask;
                }
                maxpad -= SHA_DIGEST_LENGTH;

                res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
                ret &= (int)~res;
            }
            return ret;
        } else {
            /* decrypt HMAC|padding at once */
            aesni_cbc_encrypt(in, out, len, &ctx->ks, ctx->base.iv, 0);
            sha1_update(&sctx->md, out, len);
        }
    }

    return 1;
}

/* EVP_CTRL_AEAD_SET_MAC_KEY */
static void aesni_cbc_hmac_sha1_set_mac_key(void *vctx,
                                            const unsigned char *mac, size_t len)
{
    PROV_AES_HMAC_SHA1_CTX *ctx = (PROV_AES_HMAC_SHA1_CTX *)vctx;
    unsigned int i;
    unsigned char hmac_key[64];

    memset(hmac_key, 0, sizeof(hmac_key));

    if (len > (int)sizeof(hmac_key)) {
        SHA1_Init(&ctx->head);
        sha1_update(&ctx->head, mac, len);
        SHA1_Final(hmac_key, &ctx->head);
    } else {
        memcpy(hmac_key, mac, len);
    }

    for (i = 0; i < sizeof(hmac_key); i++)
        hmac_key[i] ^= 0x36; /* ipad */
    SHA1_Init(&ctx->head);
    sha1_update(&ctx->head, hmac_key, sizeof(hmac_key));

    for (i = 0; i < sizeof(hmac_key); i++)
        hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */
    SHA1_Init(&ctx->tail);
    sha1_update(&ctx->tail, hmac_key, sizeof(hmac_key));

    OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
}

/* EVP_CTRL_AEAD_TLS1_AAD */
static int aesni_cbc_hmac_sha1_set_tls1_aad(void *vctx,
                                            unsigned char *aad_rec, int aad_len)
{
    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
    PROV_AES_HMAC_SHA1_CTX *sctx = (PROV_AES_HMAC_SHA1_CTX *)vctx;
    unsigned char *p = aad_rec;
    unsigned int len;

    if (aad_len != EVP_AEAD_TLS1_AAD_LEN)
        return -1;

    len = p[aad_len - 2] << 8 | p[aad_len - 1];

    if (ctx->base.enc) {
        ctx->payload_length = len;
        if ((ctx->aux.tls_ver =
             p[aad_len - 4] << 8 | p[aad_len - 3]) >= TLS1_1_VERSION) {
            if (len < AES_BLOCK_SIZE)
                return 0;
            len -= AES_BLOCK_SIZE;
            p[aad_len - 2] = len >> 8;
            p[aad_len - 1] = len;
        }
        sctx->md = sctx->head;
        sha1_update(&sctx->md, p, aad_len);
        ctx->tls_aad_pad = (int)(((len + SHA_DIGEST_LENGTH +
                       AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)
                     - len);
        return 1;
    } else {
        memcpy(ctx->aux.tls_aad, aad_rec, aad_len);
        ctx->payload_length = aad_len;
        ctx->tls_aad_pad = SHA_DIGEST_LENGTH;
        return 1;
    }
}

# if !defined(OPENSSL_NO_MULTIBLOCK)

/* EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE */
static int aesni_cbc_hmac_sha1_tls1_multiblock_max_bufsize(void *vctx)
{
    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;

    OPENSSL_assert(ctx->multiblock_max_send_fragment != 0);
    return (int)(5 + 16
                 + (((int)ctx->multiblock_max_send_fragment + 20 + 16) & -16));
}

/* EVP_CTRL_TLS1_1_MULTIBLOCK_AAD */
static int aesni_cbc_hmac_sha1_tls1_multiblock_aad(
    void *vctx, EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param)
{
    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
    PROV_AES_HMAC_SHA1_CTX *sctx = (PROV_AES_HMAC_SHA1_CTX *)vctx;
    unsigned int n4x = 1, x4;
    unsigned int frag, last, packlen, inp_len;

    inp_len = param->inp[11] << 8 | param->inp[12];
    ctx->multiblock_interleave = param->interleave;

    if (ctx->base.enc) {
        if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION)
            return -1;

        if (inp_len) {
            if (inp_len < 4096)
                return 0; /* too short */

            if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5))
                n4x = 2; /* AVX2 */
        } else if ((n4x = param->interleave / 4) && n4x <= 2)
            inp_len = param->len;
        else
            return -1;

        sctx->md = sctx->head;
        sha1_update(&sctx->md, param->inp, 13);

        x4 = 4 * n4x;
        n4x += 1;

        frag = inp_len >> n4x;
        last = inp_len + frag - (frag << n4x);
        if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) {
            frag++;
            last -= x4 - 1;
        }

        packlen = 5 + 16 + ((frag + 20 + 16) & -16);
        packlen = (packlen << n4x) - packlen;
        packlen += 5 + 16 + ((last + 20 + 16) & -16);

        param->interleave = x4;
        /* The returned values used by get need to be stored */
        ctx->multiblock_interleave = x4;
        ctx->multiblock_aad_packlen = packlen;
        return 1;
    }
    return -1;      /* not yet */
}

/* EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT */
static int aesni_cbc_hmac_sha1_tls1_multiblock_encrypt(
    void *ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param)
{
    return (int)tls1_multi_block_encrypt(ctx, param->out,
                                         param->inp, param->len,
                                         param->interleave / 4);
}

# endif /* OPENSSL_NO_MULTIBLOCK */

static const PROV_CIPHER_HW_AES_HMAC_SHA cipher_hw_aes_hmac_sha1 = {
    {
      aesni_cbc_hmac_sha1_init_key,
      aesni_cbc_hmac_sha1_cipher
    },
    aesni_cbc_hmac_sha1_set_mac_key,
    aesni_cbc_hmac_sha1_set_tls1_aad,
# if !defined(OPENSSL_NO_MULTIBLOCK)
    aesni_cbc_hmac_sha1_tls1_multiblock_max_bufsize,
    aesni_cbc_hmac_sha1_tls1_multiblock_aad,
    aesni_cbc_hmac_sha1_tls1_multiblock_encrypt
# endif
};

const PROV_CIPHER_HW_AES_HMAC_SHA *PROV_CIPHER_HW_aes_cbc_hmac_sha1(void)
{
    return &cipher_hw_aes_hmac_sha1;
}

#endif /* !defined(AES_CBC_HMAC_SHA_CAPABLE) || !defined(AESNI_CAPABLE) */