summaryrefslogtreecommitdiff
path: root/engines/e_afalg.c
blob: c0189951e6cd381dc101c09af12057bec30df3fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
/*
 * Copyright 2016-2021 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the Apache License 2.0 (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

/* We need to use some deprecated APIs */
#define OPENSSL_SUPPRESS_DEPRECATED

/* Required for vmsplice */
#ifndef _GNU_SOURCE
# define _GNU_SOURCE
#endif
#include <stdio.h>
#include <string.h>
#include <unistd.h>

#include <openssl/engine.h>
#include <openssl/async.h>
#include <openssl/err.h>
#include "internal/nelem.h"

#include <sys/socket.h>
#include <linux/version.h>
#define K_MAJ   4
#define K_MIN1  1
#define K_MIN2  0
#if LINUX_VERSION_CODE < KERNEL_VERSION(K_MAJ, K_MIN1, K_MIN2) || \
    !defined(AF_ALG)
# ifndef PEDANTIC
#  warning "AFALG ENGINE requires Kernel Headers >= 4.1.0"
#  warning "Skipping Compilation of AFALG engine"
# endif
void engine_load_afalg_int(void);
void engine_load_afalg_int(void)
{
}
#else

# include <linux/if_alg.h>
# include <fcntl.h>
# include <sys/utsname.h>

# include <linux/aio_abi.h>
# include <sys/syscall.h>
# include <errno.h>

# include "e_afalg.h"
# include "e_afalg_err.c"

# ifndef SOL_ALG
#  define SOL_ALG 279
# endif

# ifdef ALG_ZERO_COPY
#  ifndef SPLICE_F_GIFT
#   define SPLICE_F_GIFT    (0x08)
#  endif
# endif

# define ALG_AES_IV_LEN 16
# define ALG_IV_LEN(len) (sizeof(struct af_alg_iv) + (len))
# define ALG_OP_TYPE     unsigned int
# define ALG_OP_LEN      (sizeof(ALG_OP_TYPE))

# ifdef OPENSSL_NO_DYNAMIC_ENGINE
void engine_load_afalg_int(void);
# endif

/* Local Linkage Functions */
static int afalg_init_aio(afalg_aio *aio);
static int afalg_fin_cipher_aio(afalg_aio *ptr, int sfd,
                                unsigned char *buf, size_t len);
static int afalg_create_sk(afalg_ctx *actx, const char *ciphertype,
                                const char *ciphername);
static int afalg_destroy(ENGINE *e);
static int afalg_init(ENGINE *e);
static int afalg_finish(ENGINE *e);
static const EVP_CIPHER *afalg_aes_cbc(int nid);
static cbc_handles *get_cipher_handle(int nid);
static int afalg_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
                         const int **nids, int nid);
static int afalg_cipher_init(EVP_CIPHER_CTX *ctx, const unsigned char *key,
                             const unsigned char *iv, int enc);
static int afalg_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
                           const unsigned char *in, size_t inl);
static int afalg_cipher_cleanup(EVP_CIPHER_CTX *ctx);
static int afalg_chk_platform(void);

/* Engine Id and Name */
static const char *engine_afalg_id = "afalg";
static const char *engine_afalg_name = "AFALG engine support";

static int afalg_cipher_nids[] = {
    NID_aes_128_cbc,
    NID_aes_192_cbc,
    NID_aes_256_cbc,
};

static cbc_handles cbc_handle[] = {{AES_KEY_SIZE_128, NULL},
                                    {AES_KEY_SIZE_192, NULL},
                                    {AES_KEY_SIZE_256, NULL}};

static ossl_inline int io_setup(unsigned n, aio_context_t *ctx)
{
    return syscall(__NR_io_setup, n, ctx);
}

static ossl_inline int eventfd(int n)
{
    return syscall(__NR_eventfd2, n, 0);
}

static ossl_inline int io_destroy(aio_context_t ctx)
{
    return syscall(__NR_io_destroy, ctx);
}

static ossl_inline int io_read(aio_context_t ctx, long n, struct iocb **iocb)
{
    return syscall(__NR_io_submit, ctx, n, iocb);
}

/* A version of 'struct timespec' with 32-bit time_t and nanoseconds.  */
struct __timespec32
{
  __kernel_long_t tv_sec;
  __kernel_long_t tv_nsec;
};

static ossl_inline int io_getevents(aio_context_t ctx, long min, long max,
                               struct io_event *events,
                               struct timespec *timeout)
{
#if defined(__NR_io_pgetevents_time64)
    /* Check if we are a 32-bit architecture with a 64-bit time_t */
    if (sizeof(*timeout) != sizeof(struct __timespec32)) {
        int ret = syscall(__NR_io_pgetevents_time64, ctx, min, max, events,
                          timeout, NULL);
        if (ret == 0 || errno != ENOSYS)
            return ret;
    }
#endif

#if defined(__NR_io_getevents)
    if (sizeof(*timeout) == sizeof(struct __timespec32))
        /*
         * time_t matches our architecture length, we can just use
         * __NR_io_getevents
         */
        return syscall(__NR_io_getevents, ctx, min, max, events, timeout);
    else {
        /*
         * We don't have __NR_io_pgetevents_time64, but we are using a
         * 64-bit time_t on a 32-bit architecture. If we can fit the
         * timeout value in a 32-bit time_t, then let's do that
         * and then use the __NR_io_getevents syscall.
         */
        if (timeout && timeout->tv_sec == (long)timeout->tv_sec) {
            struct __timespec32 ts32;

            ts32.tv_sec = (__kernel_long_t) timeout->tv_sec;
            ts32.tv_nsec = (__kernel_long_t) timeout->tv_nsec;

            return syscall(__NR_io_getevents, ctx, min, max, events, ts32);
        } else {
            return syscall(__NR_io_getevents, ctx, min, max, events, NULL);
        }
    }
#endif

    errno = ENOSYS;
    return -1;
}

static void afalg_waitfd_cleanup(ASYNC_WAIT_CTX *ctx, const void *key,
                                 OSSL_ASYNC_FD waitfd, void *custom)
{
    close(waitfd);
}

static int afalg_setup_async_event_notification(afalg_aio *aio)
{
    ASYNC_JOB *job;
    ASYNC_WAIT_CTX *waitctx;
    void *custom = NULL;
    int ret;

    if ((job = ASYNC_get_current_job()) != NULL) {
        /* Async mode */
        waitctx = ASYNC_get_wait_ctx(job);
        if (waitctx == NULL) {
            ALG_WARN("%s(%d): ASYNC_get_wait_ctx error", __FILE__, __LINE__);
            return 0;
        }
        /* Get waitfd from ASYNC_WAIT_CTX if it is already set */
        ret = ASYNC_WAIT_CTX_get_fd(waitctx, engine_afalg_id,
                                    &aio->efd, &custom);
        if (ret == 0) {
            /*
             * waitfd is not set in ASYNC_WAIT_CTX, create a new one
             * and set it. efd will be signaled when AIO operation completes
             */
            aio->efd = eventfd(0);
            if (aio->efd == -1) {
                ALG_PERR("%s(%d): Failed to get eventfd : ", __FILE__,
                         __LINE__);
                AFALGerr(AFALG_F_AFALG_SETUP_ASYNC_EVENT_NOTIFICATION,
                         AFALG_R_EVENTFD_FAILED);
                return 0;
            }
            ret = ASYNC_WAIT_CTX_set_wait_fd(waitctx, engine_afalg_id,
                                             aio->efd, custom,
                                             afalg_waitfd_cleanup);
            if (ret == 0) {
                ALG_WARN("%s(%d): Failed to set wait fd", __FILE__, __LINE__);
                close(aio->efd);
                return 0;
            }
            /* make fd non-blocking in async mode */
            if (fcntl(aio->efd, F_SETFL, O_NONBLOCK) != 0) {
                ALG_WARN("%s(%d): Failed to set event fd as NONBLOCKING",
                         __FILE__, __LINE__);
            }
        }
        aio->mode = MODE_ASYNC;
    } else {
        /* Sync mode */
        aio->efd = eventfd(0);
        if (aio->efd == -1) {
            ALG_PERR("%s(%d): Failed to get eventfd : ", __FILE__, __LINE__);
            AFALGerr(AFALG_F_AFALG_SETUP_ASYNC_EVENT_NOTIFICATION,
                     AFALG_R_EVENTFD_FAILED);
            return 0;
        }
        aio->mode = MODE_SYNC;
    }
    return 1;
}

static int afalg_init_aio(afalg_aio *aio)
{
    int r = -1;

    /* Initialise for AIO */
    aio->aio_ctx = 0;
    r = io_setup(MAX_INFLIGHTS, &aio->aio_ctx);
    if (r < 0) {
        ALG_PERR("%s(%d): io_setup error : ", __FILE__, __LINE__);
        AFALGerr(AFALG_F_AFALG_INIT_AIO, AFALG_R_IO_SETUP_FAILED);
        return 0;
    }

    memset(aio->cbt, 0, sizeof(aio->cbt));
    aio->efd = -1;
    aio->mode = MODE_UNINIT;

    return 1;
}

static int afalg_fin_cipher_aio(afalg_aio *aio, int sfd, unsigned char *buf,
                                size_t len)
{
    int r;
    int retry = 0;
    unsigned int done = 0;
    struct iocb *cb;
    struct timespec timeout;
    struct io_event events[MAX_INFLIGHTS];
    u_int64_t eval = 0;

    timeout.tv_sec = 0;
    timeout.tv_nsec = 0;

    /* if efd has not been initialised yet do it here */
    if (aio->mode == MODE_UNINIT) {
        r = afalg_setup_async_event_notification(aio);
        if (r == 0)
            return 0;
    }

    cb = &(aio->cbt[0 % MAX_INFLIGHTS]);
    memset(cb, '\0', sizeof(*cb));
    cb->aio_fildes = sfd;
    cb->aio_lio_opcode = IOCB_CMD_PREAD;
    /*
     * The pointer has to be converted to unsigned value first to avoid
     * sign extension on cast to 64 bit value in 32-bit builds
     */
    cb->aio_buf = (size_t)buf;
    cb->aio_offset = 0;
    cb->aio_data = 0;
    cb->aio_nbytes = len;
    cb->aio_flags = IOCB_FLAG_RESFD;
    cb->aio_resfd = aio->efd;

    /*
     * Perform AIO read on AFALG socket, this in turn performs an async
     * crypto operation in kernel space
     */
    r = io_read(aio->aio_ctx, 1, &cb);
    if (r < 0) {
        ALG_PWARN("%s(%d): io_read failed : ", __FILE__, __LINE__);
        return 0;
    }

    do {
        /* While AIO read is being performed pause job */
        ASYNC_pause_job();

        /* Check for completion of AIO read */
        r = read(aio->efd, &eval, sizeof(eval));
        if (r < 0) {
            if (errno == EAGAIN || errno == EWOULDBLOCK)
                continue;
            ALG_PERR("%s(%d): read failed for event fd : ", __FILE__, __LINE__);
            return 0;
        } else if (r == 0 || eval <= 0) {
            ALG_WARN("%s(%d): eventfd read %d bytes, eval = %lu\n", __FILE__,
                     __LINE__, r, eval);
        }
        if (eval > 0) {

#ifdef OSSL_SANITIZE_MEMORY
            /*
             * In a memory sanitiser build, the changes to memory made by the
             * system call aren't reliably detected.  By initialising the
             * memory here, the sanitiser is told that they are okay.
             */
            memset(events, 0, sizeof(events));
#endif

            /* Get results of AIO read */
            r = io_getevents(aio->aio_ctx, 1, MAX_INFLIGHTS,
                             events, &timeout);
            if (r > 0) {
                /*
                 * events.res indicates the actual status of the operation.
                 * Handle the error condition first.
                 */
                if (events[0].res < 0) {
                    /*
                     * Underlying operation cannot be completed at the time
                     * of previous submission. Resubmit for the operation.
                     */
                    if (events[0].res == -EBUSY && retry++ < 3) {
                        r = io_read(aio->aio_ctx, 1, &cb);
                        if (r < 0) {
                            ALG_PERR("%s(%d): retry %d for io_read failed : ",
                                     __FILE__, __LINE__, retry);
                            return 0;
                        }
                        continue;
                    } else {
                        char strbuf[32];
                        /*
                         * sometimes __s64 is defined as long long int
                         * but on some archs ( like mips64 or powerpc64 ) it's just long int
                         *
                         * to be able to use BIO_snprintf() with %lld without warnings
                         * copy events[0].res to an long long int variable
                         *
                         * because long long int should always be at least 64 bit this should work
                         */
                        long long int op_ret = events[0].res;

                        /*
                         * Retries exceed for -EBUSY or unrecoverable error
                         * condition for this instance of operation.
                         */
                        ALG_WARN
                            ("%s(%d): Crypto Operation failed with code %lld\n",
                             __FILE__, __LINE__, events[0].res);
                        BIO_snprintf(strbuf, sizeof(strbuf), "%lld", op_ret);
                        switch (events[0].res) {
                        case -ENOMEM:
                            AFALGerr(0, AFALG_R_KERNEL_OP_FAILED);
                            ERR_add_error_data(3, "-ENOMEM ( code ", strbuf, " )");
                            break;
                        default:
                            AFALGerr(0, AFALG_R_KERNEL_OP_FAILED);
                            ERR_add_error_data(2, "code ", strbuf);
                            break;
                        }
                        return 0;
                    }
                }
                /* Operation successful. */
                done = 1;
            } else if (r < 0) {
                ALG_PERR("%s(%d): io_getevents failed : ", __FILE__, __LINE__);
                return 0;
            } else {
                ALG_WARN("%s(%d): io_geteventd read 0 bytes\n", __FILE__,
                         __LINE__);
            }
        }
    } while (!done);

    return 1;
}

static ossl_inline void afalg_set_op_sk(struct cmsghdr *cmsg,
                                   const ALG_OP_TYPE op)
{
    cmsg->cmsg_level = SOL_ALG;
    cmsg->cmsg_type = ALG_SET_OP;
    cmsg->cmsg_len = CMSG_LEN(ALG_OP_LEN);
    memcpy(CMSG_DATA(cmsg), &op, ALG_OP_LEN);
}

static void afalg_set_iv_sk(struct cmsghdr *cmsg, const unsigned char *iv,
                            const unsigned int len)
{
    struct af_alg_iv *aiv;

    cmsg->cmsg_level = SOL_ALG;
    cmsg->cmsg_type = ALG_SET_IV;
    cmsg->cmsg_len = CMSG_LEN(ALG_IV_LEN(len));
    aiv = (struct af_alg_iv *)CMSG_DATA(cmsg);
    aiv->ivlen = len;
    memcpy(aiv->iv, iv, len);
}

static ossl_inline int afalg_set_key(afalg_ctx *actx, const unsigned char *key,
                                const int klen)
{
    int ret;
    ret = setsockopt(actx->bfd, SOL_ALG, ALG_SET_KEY, key, klen);
    if (ret < 0) {
        ALG_PERR("%s(%d): Failed to set socket option : ", __FILE__, __LINE__);
        AFALGerr(AFALG_F_AFALG_SET_KEY, AFALG_R_SOCKET_SET_KEY_FAILED);
        return 0;
    }
    return 1;
}

static int afalg_create_sk(afalg_ctx *actx, const char *ciphertype,
                                const char *ciphername)
{
    struct sockaddr_alg sa;
    int r = -1;

    actx->bfd = actx->sfd = -1;

    memset(&sa, 0, sizeof(sa));
    sa.salg_family = AF_ALG;
    OPENSSL_strlcpy((char *) sa.salg_type, ciphertype, sizeof(sa.salg_type));
    OPENSSL_strlcpy((char *) sa.salg_name, ciphername, sizeof(sa.salg_name));

    actx->bfd = socket(AF_ALG, SOCK_SEQPACKET, 0);
    if (actx->bfd == -1) {
        ALG_PERR("%s(%d): Failed to open socket : ", __FILE__, __LINE__);
        AFALGerr(AFALG_F_AFALG_CREATE_SK, AFALG_R_SOCKET_CREATE_FAILED);
        goto err;
    }

    r = bind(actx->bfd, (struct sockaddr *)&sa, sizeof(sa));
    if (r < 0) {
        ALG_PERR("%s(%d): Failed to bind socket : ", __FILE__, __LINE__);
        AFALGerr(AFALG_F_AFALG_CREATE_SK, AFALG_R_SOCKET_BIND_FAILED);
        goto err;
    }

    actx->sfd = accept(actx->bfd, NULL, 0);
    if (actx->sfd < 0) {
        ALG_PERR("%s(%d): Socket Accept Failed : ", __FILE__, __LINE__);
        AFALGerr(AFALG_F_AFALG_CREATE_SK, AFALG_R_SOCKET_ACCEPT_FAILED);
        goto err;
    }

    return 1;

 err:
    if (actx->bfd >= 0)
        close(actx->bfd);
    if (actx->sfd >= 0)
        close(actx->sfd);
    actx->bfd = actx->sfd = -1;
    return 0;
}

static int afalg_start_cipher_sk(afalg_ctx *actx, const unsigned char *in,
                                 size_t inl, const unsigned char *iv,
                                 unsigned int enc)
{
    struct msghdr msg;
    struct cmsghdr *cmsg;
    struct iovec iov;
    ssize_t sbytes;
# ifdef ALG_ZERO_COPY
    int ret;
# endif
    char cbuf[CMSG_SPACE(ALG_IV_LEN(ALG_AES_IV_LEN)) + CMSG_SPACE(ALG_OP_LEN)];

    memset(&msg, 0, sizeof(msg));
    memset(cbuf, 0, sizeof(cbuf));
    msg.msg_control = cbuf;
    msg.msg_controllen = sizeof(cbuf);

    /*
     * cipher direction (i.e. encrypt or decrypt) and iv are sent to the
     * kernel as part of sendmsg()'s ancillary data
     */
    cmsg = CMSG_FIRSTHDR(&msg);
    afalg_set_op_sk(cmsg, enc);
    cmsg = CMSG_NXTHDR(&msg, cmsg);
    afalg_set_iv_sk(cmsg, iv, ALG_AES_IV_LEN);

    /* iov that describes input data */
    iov.iov_base = (unsigned char *)in;
    iov.iov_len = inl;

    msg.msg_flags = MSG_MORE;

# ifdef ALG_ZERO_COPY
    /*
     * ZERO_COPY mode
     * Works best when buffer is 4k aligned
     * OPENS: out of place processing (i.e. out != in)
     */

    /* Input data is not sent as part of call to sendmsg() */
    msg.msg_iovlen = 0;
    msg.msg_iov = NULL;

    /* Sendmsg() sends iv and cipher direction to the kernel */
    sbytes = sendmsg(actx->sfd, &msg, 0);
    if (sbytes < 0) {
        ALG_PERR("%s(%d): sendmsg failed for zero copy cipher operation : ",
                 __FILE__, __LINE__);
        return 0;
    }

    /*
     * vmsplice and splice are used to pin the user space input buffer for
     * kernel space processing avoiding copies from user to kernel space
     */
    ret = vmsplice(actx->zc_pipe[1], &iov, 1, SPLICE_F_GIFT);
    if (ret < 0) {
        ALG_PERR("%s(%d): vmsplice failed : ", __FILE__, __LINE__);
        return 0;
    }

    ret = splice(actx->zc_pipe[0], NULL, actx->sfd, NULL, inl, 0);
    if (ret < 0) {
        ALG_PERR("%s(%d): splice failed : ", __FILE__, __LINE__);
        return 0;
    }
# else
    msg.msg_iovlen = 1;
    msg.msg_iov = &iov;

    /* Sendmsg() sends iv, cipher direction and input data to the kernel */
    sbytes = sendmsg(actx->sfd, &msg, 0);
    if (sbytes < 0) {
        ALG_PERR("%s(%d): sendmsg failed for cipher operation : ", __FILE__,
                 __LINE__);
        return 0;
    }

    if (sbytes != (ssize_t) inl) {
        ALG_WARN("Cipher operation send bytes %zd != inlen %zd\n", sbytes,
                inl);
        return 0;
    }
# endif

    return 1;
}

static int afalg_cipher_init(EVP_CIPHER_CTX *ctx, const unsigned char *key,
                             const unsigned char *iv, int enc)
{
    int ciphertype;
    int ret, len;
    afalg_ctx *actx;
    const char *ciphername;

    if (ctx == NULL || key == NULL) {
        ALG_WARN("%s(%d): Null Parameter\n", __FILE__, __LINE__);
        return 0;
    }

    if (EVP_CIPHER_CTX_get0_cipher(ctx) == NULL) {
        ALG_WARN("%s(%d): Cipher object NULL\n", __FILE__, __LINE__);
        return 0;
    }

    actx = EVP_CIPHER_CTX_get_cipher_data(ctx);
    if (actx == NULL) {
        ALG_WARN("%s(%d): Cipher data NULL\n", __FILE__, __LINE__);
        return 0;
    }

    ciphertype = EVP_CIPHER_CTX_get_nid(ctx);
    switch (ciphertype) {
    case NID_aes_128_cbc:
    case NID_aes_192_cbc:
    case NID_aes_256_cbc:
        ciphername = "cbc(aes)";
        break;
    default:
        ALG_WARN("%s(%d): Unsupported Cipher type %d\n", __FILE__, __LINE__,
                 ciphertype);
        return 0;
    }

    if (ALG_AES_IV_LEN != EVP_CIPHER_CTX_get_iv_length(ctx)) {
        ALG_WARN("%s(%d): Unsupported IV length :%d\n", __FILE__, __LINE__,
                 EVP_CIPHER_CTX_get_iv_length(ctx));
        return 0;
    }

    /* Setup AFALG socket for crypto processing */
    ret = afalg_create_sk(actx, "skcipher", ciphername);
    if (ret < 1)
        return 0;

    if ((len = EVP_CIPHER_CTX_get_key_length(ctx)) <= 0)
        goto err;
    ret = afalg_set_key(actx, key, len);
    if (ret < 1)
        goto err;

    /* Setup AIO ctx to allow async AFALG crypto processing */
    if (afalg_init_aio(&actx->aio) == 0)
        goto err;

# ifdef ALG_ZERO_COPY
    pipe(actx->zc_pipe);
# endif

    actx->init_done = MAGIC_INIT_NUM;

    return 1;

err:
    close(actx->sfd);
    close(actx->bfd);
    return 0;
}

static int afalg_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
                           const unsigned char *in, size_t inl)
{
    afalg_ctx *actx;
    int ret;
    char nxtiv[ALG_AES_IV_LEN] = { 0 };

    if (ctx == NULL || out == NULL || in == NULL) {
        ALG_WARN("NULL parameter passed to function %s(%d)\n", __FILE__,
                 __LINE__);
        return 0;
    }

    actx = (afalg_ctx *) EVP_CIPHER_CTX_get_cipher_data(ctx);
    if (actx == NULL || actx->init_done != MAGIC_INIT_NUM) {
        ALG_WARN("%s afalg ctx passed\n",
                 ctx == NULL ? "NULL" : "Uninitialised");
        return 0;
    }

    /*
     * set iv now for decrypt operation as the input buffer can be
     * overwritten for inplace operation where in = out.
     */
    if (EVP_CIPHER_CTX_is_encrypting(ctx) == 0) {
        memcpy(nxtiv, in + (inl - ALG_AES_IV_LEN), ALG_AES_IV_LEN);
    }

    /* Send input data to kernel space */
    ret = afalg_start_cipher_sk(actx, (unsigned char *)in, inl,
                                EVP_CIPHER_CTX_iv(ctx),
                                EVP_CIPHER_CTX_is_encrypting(ctx));
    if (ret < 1) {
        return 0;
    }

    /* Perform async crypto operation in kernel space */
    ret = afalg_fin_cipher_aio(&actx->aio, actx->sfd, out, inl);
    if (ret < 1)
        return 0;

    if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
        memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), out + (inl - ALG_AES_IV_LEN),
               ALG_AES_IV_LEN);
    } else {
        memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), nxtiv, ALG_AES_IV_LEN);
    }

    return 1;
}

static int afalg_cipher_cleanup(EVP_CIPHER_CTX *ctx)
{
    afalg_ctx *actx;

    if (ctx == NULL) {
        ALG_WARN("NULL parameter passed to function %s(%d)\n", __FILE__,
                 __LINE__);
        return 0;
    }

    actx = (afalg_ctx *) EVP_CIPHER_CTX_get_cipher_data(ctx);
    if (actx == NULL || actx->init_done != MAGIC_INIT_NUM)
        return 1;

    close(actx->sfd);
    close(actx->bfd);
# ifdef ALG_ZERO_COPY
    close(actx->zc_pipe[0]);
    close(actx->zc_pipe[1]);
# endif
    /* close efd in sync mode, async mode is closed in afalg_waitfd_cleanup() */
    if (actx->aio.mode == MODE_SYNC)
        close(actx->aio.efd);
    io_destroy(actx->aio.aio_ctx);

    return 1;
}

static cbc_handles *get_cipher_handle(int nid)
{
    switch (nid) {
    case NID_aes_128_cbc:
        return &cbc_handle[AES_CBC_128];
    case NID_aes_192_cbc:
        return &cbc_handle[AES_CBC_192];
    case NID_aes_256_cbc:
        return &cbc_handle[AES_CBC_256];
    default:
        return NULL;
    }
}

static const EVP_CIPHER *afalg_aes_cbc(int nid)
{
    cbc_handles *cipher_handle = get_cipher_handle(nid);

    if (cipher_handle == NULL)
            return NULL;
    if (cipher_handle->_hidden == NULL
        && ((cipher_handle->_hidden =
         EVP_CIPHER_meth_new(nid,
                             AES_BLOCK_SIZE,
                             cipher_handle->key_size)) == NULL
        || !EVP_CIPHER_meth_set_iv_length(cipher_handle->_hidden,
                                          AES_IV_LEN)
        || !EVP_CIPHER_meth_set_flags(cipher_handle->_hidden,
                                      EVP_CIPH_CBC_MODE |
                                      EVP_CIPH_FLAG_DEFAULT_ASN1)
        || !EVP_CIPHER_meth_set_init(cipher_handle->_hidden,
                                     afalg_cipher_init)
        || !EVP_CIPHER_meth_set_do_cipher(cipher_handle->_hidden,
                                          afalg_do_cipher)
        || !EVP_CIPHER_meth_set_cleanup(cipher_handle->_hidden,
                                        afalg_cipher_cleanup)
        || !EVP_CIPHER_meth_set_impl_ctx_size(cipher_handle->_hidden,
                                              sizeof(afalg_ctx)))) {
        EVP_CIPHER_meth_free(cipher_handle->_hidden);
        cipher_handle->_hidden= NULL;
    }
    return cipher_handle->_hidden;
}

static int afalg_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
                         const int **nids, int nid)
{
    int r = 1;

    if (cipher == NULL) {
        *nids = afalg_cipher_nids;
        return (sizeof(afalg_cipher_nids) / sizeof(afalg_cipher_nids[0]));
    }

    switch (nid) {
    case NID_aes_128_cbc:
    case NID_aes_192_cbc:
    case NID_aes_256_cbc:
        *cipher = afalg_aes_cbc(nid);
        break;
    default:
        *cipher = NULL;
        r = 0;
    }
    return r;
}

static int bind_afalg(ENGINE *e)
{
    /* Ensure the afalg error handling is set up */
    unsigned short i;
    ERR_load_AFALG_strings();

    if (!ENGINE_set_id(e, engine_afalg_id)
        || !ENGINE_set_name(e, engine_afalg_name)
        || !ENGINE_set_destroy_function(e, afalg_destroy)
        || !ENGINE_set_init_function(e, afalg_init)
        || !ENGINE_set_finish_function(e, afalg_finish)) {
        AFALGerr(AFALG_F_BIND_AFALG, AFALG_R_INIT_FAILED);
        return 0;
    }

    /*
     * Create _hidden_aes_xxx_cbc by calling afalg_aes_xxx_cbc
     * now, as bind_aflag can only be called by one thread at a
     * time.
     */
    for (i = 0; i < OSSL_NELEM(afalg_cipher_nids); i++) {
        if (afalg_aes_cbc(afalg_cipher_nids[i]) == NULL) {
            AFALGerr(AFALG_F_BIND_AFALG, AFALG_R_INIT_FAILED);
            return 0;
        }
    }

    if (!ENGINE_set_ciphers(e, afalg_ciphers)) {
        AFALGerr(AFALG_F_BIND_AFALG, AFALG_R_INIT_FAILED);
        return 0;
    }

    return 1;
}

# ifndef OPENSSL_NO_DYNAMIC_ENGINE
static int bind_helper(ENGINE *e, const char *id)
{
    if (id && (strcmp(id, engine_afalg_id) != 0))
        return 0;

    if (!afalg_chk_platform())
        return 0;

    if (!bind_afalg(e))
        return 0;
    return 1;
}

IMPLEMENT_DYNAMIC_CHECK_FN()
    IMPLEMENT_DYNAMIC_BIND_FN(bind_helper)
# endif

static int afalg_chk_platform(void)
{
    int ret;
    int i;
    int kver[3] = { -1, -1, -1 };
    int sock;
    char *str;
    struct utsname ut;

    ret = uname(&ut);
    if (ret != 0) {
        AFALGerr(AFALG_F_AFALG_CHK_PLATFORM,
                 AFALG_R_FAILED_TO_GET_PLATFORM_INFO);
        return 0;
    }

    str = strtok(ut.release, ".");
    for (i = 0; i < 3 && str != NULL; i++) {
        kver[i] = atoi(str);
        str = strtok(NULL, ".");
    }

    if (KERNEL_VERSION(kver[0], kver[1], kver[2])
        < KERNEL_VERSION(K_MAJ, K_MIN1, K_MIN2)) {
        ALG_ERR("ASYNC AFALG not supported this kernel(%d.%d.%d)\n",
                 kver[0], kver[1], kver[2]);
        ALG_ERR("ASYNC AFALG requires kernel version %d.%d.%d or later\n",
                 K_MAJ, K_MIN1, K_MIN2);
        AFALGerr(AFALG_F_AFALG_CHK_PLATFORM,
                 AFALG_R_KERNEL_DOES_NOT_SUPPORT_ASYNC_AFALG);
        return 0;
    }

    /* Test if we can actually create an AF_ALG socket */
    sock = socket(AF_ALG, SOCK_SEQPACKET, 0);
    if (sock == -1) {
        AFALGerr(AFALG_F_AFALG_CHK_PLATFORM, AFALG_R_SOCKET_CREATE_FAILED);
        return 0;
    }
    close(sock);

    return 1;
}

# ifdef OPENSSL_NO_DYNAMIC_ENGINE
static ENGINE *engine_afalg(void)
{
    ENGINE *ret = ENGINE_new();
    if (ret == NULL)
        return NULL;
    if (!bind_afalg(ret)) {
        ENGINE_free(ret);
        return NULL;
    }
    return ret;
}

void engine_load_afalg_int(void)
{
    ENGINE *toadd;

    if (!afalg_chk_platform())
        return;

    toadd = engine_afalg();
    if (toadd == NULL)
        return;
    ERR_set_mark();
    ENGINE_add(toadd);
    /*
     * If the "add" worked, it gets a structural reference. So either way, we
     * release our just-created reference.
     */
    ENGINE_free(toadd);
    /*
     * If the "add" didn't work, it was probably a conflict because it was
     * already added (eg. someone calling ENGINE_load_blah then calling
     * ENGINE_load_builtin_engines() perhaps).
     */
    ERR_pop_to_mark();
}
# endif

static int afalg_init(ENGINE *e)
{
    return 1;
}

static int afalg_finish(ENGINE *e)
{
    return 1;
}

static int free_cbc(void)
{
    short unsigned int i;
    for (i = 0; i < OSSL_NELEM(afalg_cipher_nids); i++) {
        EVP_CIPHER_meth_free(cbc_handle[i]._hidden);
        cbc_handle[i]._hidden = NULL;
    }
    return 1;
}

static int afalg_destroy(ENGINE *e)
{
    ERR_unload_AFALG_strings();
    free_cbc();
    return 1;
}

#endif                          /* KERNEL VERSION */