summaryrefslogtreecommitdiff
path: root/crypto/bn/rsa_sup_mul.c
blob: 3b57161b4589d61d80cf8ab993253e9d25266ab4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
#include <openssl/e_os2.h>
#include <stddef.h>
#include <sys/types.h>
#include <string.h>
#include <openssl/bn.h>
#include <openssl/err.h>
#include <openssl/rsaerr.h>
#include "internal/endian.h"
#include "internal/numbers.h"
#include "internal/constant_time.h"
#include "bn_local.h"

# if BN_BYTES == 8
typedef uint64_t limb_t;
#  if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__ == 16
typedef uint128_t limb2_t;
#   define HAVE_LIMB2_T
#  endif
#  define LIMB_BIT_SIZE 64
#  define LIMB_BYTE_SIZE 8
# elif BN_BYTES == 4
typedef uint32_t limb_t;
typedef uint64_t limb2_t;
#  define LIMB_BIT_SIZE 32
#  define LIMB_BYTE_SIZE 4
#  define HAVE_LIMB2_T
# else
#  error "Not supported"
# endif

/*
 * For multiplication we're using schoolbook multiplication,
 * so if we have two numbers, each with 6 "digits" (words)
 * the multiplication is calculated as follows:
 *                        A B C D E F
 *                     x  I J K L M N
 *                     --------------
 *                                N*F
 *                              N*E
 *                            N*D
 *                          N*C
 *                        N*B
 *                      N*A
 *                              M*F
 *                            M*E
 *                          M*D
 *                        M*C
 *                      M*B
 *                    M*A
 *                            L*F
 *                          L*E
 *                        L*D
 *                      L*C
 *                    L*B
 *                  L*A
 *                          K*F
 *                        K*E
 *                      K*D
 *                    K*C
 *                  K*B
 *                K*A
 *                        J*F
 *                      J*E
 *                    J*D
 *                  J*C
 *                J*B
 *              J*A
 *                      I*F
 *                    I*E
 *                  I*D
 *                I*C
 *              I*B
 *         +  I*A
 *         ==========================
 *                        N*B N*D N*F
 *                    + N*A N*C N*E
 *                    + M*B M*D M*F
 *                  + M*A M*C M*E
 *                  + L*B L*D L*F
 *                + L*A L*C L*E
 *                + K*B K*D K*F
 *              + K*A K*C K*E
 *              + J*B J*D J*F
 *            + J*A J*C J*E
 *            + I*B I*D I*F
 *          + I*A I*C I*E
 *
 *                1+1 1+3 1+5
 *              1+0 1+2 1+4
 *              0+1 0+3 0+5
 *            0+0 0+2 0+4
 *
 *            0 1 2 3 4 5 6
 * which requires n^2 multiplications and 2n full length additions
 * as we can keep every other result of limb multiplication in two separate
 * limbs
 */

#if defined HAVE_LIMB2_T
static ossl_inline void _mul_limb(limb_t *hi, limb_t *lo, limb_t a, limb_t b)
{
    limb2_t t;
    /*
     * this is idiomatic code to tell compiler to use the native mul
     * those three lines will actually compile to single instruction
     */

    t = (limb2_t)a * b;
    *hi = t >> LIMB_BIT_SIZE;
    *lo = (limb_t)t;
}
#elif (BN_BYTES == 8) && (defined _MSC_VER)
# if defined(_M_X64)
/*
 * on x86_64 (x64) we can use the _umul128 intrinsic to get one `mul`
 * instruction to get both high and low 64 bits of the multiplication.
 * https://learn.microsoft.com/en-us/cpp/intrinsics/umul128?view=msvc-140
 */
#include <intrin.h>
#pragma intrinsic(_umul128)
static ossl_inline void _mul_limb(limb_t *hi, limb_t *lo, limb_t a, limb_t b)
{
    *lo = _umul128(a, b, hi);
}
# elif defined(_M_ARM64) || defined (_M_IA64)
/*
 * We can't use the __umulh() on x86_64 as then msvc generates two `mul`
 * instructions; so use this more portable intrinsic on platforms that
 * don't support _umul128 (like aarch64 (ARM64) or ia64)
 * https://learn.microsoft.com/en-us/cpp/intrinsics/umulh?view=msvc-140
 */
#include <intrin.h>
static ossl_inline void _mul_limb(limb_t *hi, limb_t *lo, limb_t a, limb_t b)
{
    *lo = a * b;
    *hi = __umulh(a, b);
}
# else
# error Only x64, ARM64 and IA64 supported.
# endif /* defined(_M_X64) */
#else
/*
 * if the compiler doesn't have either a 128bit data type nor a "return
 * high 64 bits of multiplication"
 */
static ossl_inline void _mul_limb(limb_t *hi, limb_t *lo, limb_t a, limb_t b)
{
    limb_t a_low = (limb_t)(uint32_t)a;
    limb_t a_hi = a >> 32;
    limb_t b_low = (limb_t)(uint32_t)b;
    limb_t b_hi = b >> 32;

    limb_t p0 = a_low * b_low;
    limb_t p1 = a_low * b_hi;
    limb_t p2 = a_hi * b_low;
    limb_t p3 = a_hi * b_hi;

    uint32_t cy = (uint32_t)(((p0 >> 32) + (uint32_t)p1 + (uint32_t)p2) >> 32);

    *lo = p0 + (p1 << 32) + (p2 << 32);
    *hi = p3 + (p1 >> 32) + (p2 >> 32) + cy;
}
#endif

/* add two limbs with carry in, return carry out */
static ossl_inline limb_t _add_limb(limb_t *ret, limb_t a, limb_t b, limb_t carry)
{
    limb_t carry1, carry2, t;
    /*
     * `c = a + b; if (c < a)` is idiomatic code that makes compilers
     * use add with carry on assembly level
     */

    *ret = a + carry;
    if (*ret < a)
        carry1 = 1;
    else
        carry1 = 0;

    t = *ret;
    *ret = t + b;
    if (*ret < t)
        carry2 = 1;
    else
        carry2 = 0;

    return carry1 + carry2;
}

/*
 * add two numbers of the same size, return overflow
 *
 * add a to b, place result in ret; all arrays need to be n limbs long
 * return overflow from addition (0 or 1)
 */
static ossl_inline limb_t add(limb_t *ret, limb_t *a, limb_t *b, size_t n)
{
    limb_t c = 0;
    ossl_ssize_t i;

    for(i = n - 1; i > -1; i--)
        c = _add_limb(&ret[i], a[i], b[i], c);

    return c;
}

/*
 * return number of limbs necessary for temporary values
 * when multiplying numbers n limbs large
 */
static ossl_inline size_t mul_limb_numb(size_t n)
{
    return  2 * n * 2;
}

/*
 * multiply two numbers of the same size
 *
 * multiply a by b, place result in ret; a and b need to be n limbs long
 * ret needs to be 2*n limbs long, tmp needs to be mul_limb_numb(n) limbs
 * long
 */
static void limb_mul(limb_t *ret, limb_t *a, limb_t *b, size_t n, limb_t *tmp)
{
    limb_t *r_odd, *r_even;
    size_t i, j, k;

    r_odd = tmp;
    r_even = &tmp[2 * n];

    memset(ret, 0, 2 * n * sizeof(limb_t));

    for (i = 0; i < n; i++) {
        for (k = 0; k < i + n + 1; k++) {
            r_even[k] = 0;
            r_odd[k] = 0;
        }
        for (j = 0; j < n; j++) {
            /*
             * place results from even and odd limbs in separate arrays so that
             * we don't have to calculate overflow every time we get individual
             * limb multiplication result
             */
            if (j % 2 == 0)
                _mul_limb(&r_even[i + j], &r_even[i + j + 1], a[i], b[j]);
            else
                _mul_limb(&r_odd[i + j], &r_odd[i + j + 1], a[i], b[j]);
        }
        /*
         * skip the least significant limbs when adding multiples of
         * more significant limbs (they're zero anyway)
         */
        add(ret, ret, r_even, n + i + 1);
        add(ret, ret, r_odd, n + i + 1);
    }
}

/* modifies the value in place by performing a right shift by one bit */
static ossl_inline void rshift1(limb_t *val, size_t n)
{
    limb_t shift_in = 0, shift_out = 0;
    size_t i;

    for (i = 0; i < n; i++) {
        shift_out = val[i] & 1;
        val[i] = shift_in << (LIMB_BIT_SIZE - 1) | (val[i] >> 1);
        shift_in = shift_out;
    }
}

/* extend the LSB of flag to all bits of limb */
static ossl_inline limb_t mk_mask(limb_t flag)
{
    flag |= flag << 1;
    flag |= flag << 2;
    flag |= flag << 4;
    flag |= flag << 8;
    flag |= flag << 16;
#if (LIMB_BYTE_SIZE == 8)
    flag |= flag << 32;
#endif
    return flag;
}

/*
 * copy from either a or b to ret based on flag
 * when flag == 0, then copies from b
 * when flag == 1, then copies from a
 */
static ossl_inline void cselect(limb_t flag, limb_t *ret, limb_t *a, limb_t *b, size_t n)
{
    /*
     * would be more efficient with non volatile mask, but then gcc
     * generates code with jumps
     */
    volatile limb_t mask;
    size_t i;

    mask = mk_mask(flag);
    for (i = 0; i < n; i++) {
#if (LIMB_BYTE_SIZE == 8)
        ret[i] = constant_time_select_64(mask, a[i], b[i]);
#else
        ret[i] = constant_time_select_32(mask, a[i], b[i]);
#endif
    }
}

static limb_t _sub_limb(limb_t *ret, limb_t a, limb_t b, limb_t borrow)
{
    limb_t borrow1, borrow2, t;
    /*
     * while it doesn't look constant-time, this is idiomatic code
     * to tell compilers to use the carry bit from subtraction
     */

    *ret = a - borrow;
    if (*ret > a)
        borrow1 = 1;
    else
        borrow1 = 0;

    t = *ret;
    *ret = t - b;
    if (*ret > t)
        borrow2 = 1;
    else
        borrow2 = 0;

    return borrow1 + borrow2;
}

/*
 * place the result of a - b into ret, return the borrow bit.
 * All arrays need to be n limbs long
 */
static limb_t sub(limb_t *ret, limb_t *a, limb_t *b, size_t n)
{
    limb_t borrow = 0;
    ossl_ssize_t i;

    for (i = n - 1; i > -1; i--)
        borrow = _sub_limb(&ret[i], a[i], b[i], borrow);

    return borrow;
}

/* return the number of limbs necessary to allocate for the mod() tmp operand */
static ossl_inline size_t mod_limb_numb(size_t anum, size_t modnum)
{
    return (anum + modnum) * 3;
}

/*
 * calculate a % mod, place the result in ret
 * size of a is defined by anum, size of ret and mod is modnum,
 * size of tmp is returned by mod_limb_numb()
 */
static void mod(limb_t *ret, limb_t *a, size_t anum, limb_t *mod,
               size_t modnum, limb_t *tmp)
{
    limb_t *atmp, *modtmp, *rettmp;
    limb_t res;
    size_t i;

    memset(tmp, 0, mod_limb_numb(anum, modnum) * LIMB_BYTE_SIZE);

    atmp = tmp;
    modtmp = &tmp[anum + modnum];
    rettmp = &tmp[(anum + modnum) * 2];

    for (i = modnum; i <modnum + anum; i++)
        atmp[i] = a[i-modnum];

    for (i = 0; i < modnum; i++)
        modtmp[i] = mod[i];

    for (i = 0; i < anum * LIMB_BIT_SIZE; i++) {
        rshift1(modtmp, anum + modnum);
        res = sub(rettmp, atmp, modtmp, anum+modnum);
        cselect(res, atmp, atmp, rettmp, anum+modnum);
    }

    memcpy(ret, &atmp[anum], sizeof(limb_t) * modnum);
}

/* necessary size of tmp for a _mul_add_limb() call with provided anum */
static ossl_inline size_t _mul_add_limb_numb(size_t anum)
{
    return 2 * (anum + 1);
}

/* multiply a by m, add to ret, return carry */
static limb_t _mul_add_limb(limb_t *ret, limb_t *a, size_t anum,
                           limb_t m, limb_t *tmp)
{
    limb_t carry = 0;
    limb_t *r_odd, *r_even;
    size_t i;

    memset(tmp, 0, sizeof(limb_t) * (anum + 1) * 2);

    r_odd = tmp;
    r_even = &tmp[anum + 1];

    for (i = 0; i < anum; i++) {
        /*
         * place the results from even and odd limbs in separate arrays
         * so that we have to worry about carry just once
         */
        if (i % 2 == 0)
            _mul_limb(&r_even[i], &r_even[i + 1], a[i], m);
        else
            _mul_limb(&r_odd[i], &r_odd[i + 1], a[i], m);
    }
    /* assert: add() carry here will be equal zero */
    add(r_even, r_even, r_odd, anum + 1);
    /*
     * while here it will not overflow as the max value from multiplication
     * is -2 while max overflow from addition is 1, so the max value of
     * carry is -1 (i.e. max int)
     */
    carry = add(ret, ret, &r_even[1], anum) + r_even[0];

    return carry;
}

static ossl_inline size_t mod_montgomery_limb_numb(size_t modnum)
{
    return modnum * 2 + _mul_add_limb_numb(modnum);
}

/*
 * calculate a % mod, place result in ret
 * assumes that a is in Montgomery form with the R (Montgomery modulus) being
 * smallest power of two big enough to fit mod and that's also a power
 * of the count of number of bits in limb_t (B).
 * For calculation, we also need n', such that mod * n' == -1 mod B.
 * anum must be <= 2 * modnum
 * ret needs to be modnum words long
 * tmp needs to be mod_montgomery_limb_numb(modnum) limbs long
 */
static void mod_montgomery(limb_t *ret, limb_t *a, size_t anum, limb_t *mod,
                          size_t modnum, limb_t ni0, limb_t *tmp)
{
    limb_t carry, v;
    limb_t *res, *rp, *tmp2;
    ossl_ssize_t i;

    res = tmp;
    /*
     * for intermediate result we need an integer twice as long as modulus
     * but keep the input in the least significant limbs
     */
    memset(res, 0, sizeof(limb_t) * (modnum * 2));
    memcpy(&res[modnum * 2 - anum], a, sizeof(limb_t) * anum);
    rp = &res[modnum];
    tmp2 = &res[modnum * 2];

    carry = 0;

    /* add multiples of the modulus to the value until R divides it cleanly */
    for (i = modnum; i > 0; i--, rp--) {
        v = _mul_add_limb(rp, mod, modnum, rp[modnum-1] * ni0, tmp2);
        v = v + carry + rp[-1];
        carry |= (v != rp[-1]);
        carry &= (v <= rp[-1]);
        rp[-1] = v;
    }

    /* perform the final reduction by mod... */
    carry -= sub(ret, rp, mod, modnum);

    /* ...conditionally */
    cselect(carry, ret, rp, ret, modnum);
}

/* allocated buffer should be freed afterwards */
static void BN_to_limb(const BIGNUM *bn, limb_t *buf, size_t limbs)
{
    int i;
    int real_limbs = (BN_num_bytes(bn) + LIMB_BYTE_SIZE - 1) / LIMB_BYTE_SIZE;
    limb_t *ptr = buf + (limbs - real_limbs);

    for (i = 0; i < real_limbs; i++)
         ptr[i] = bn->d[real_limbs - i - 1];
}

#if LIMB_BYTE_SIZE == 8
static ossl_inline uint64_t be64(uint64_t host)
{
    uint64_t big = 0;
    DECLARE_IS_ENDIAN;

    if (!IS_LITTLE_ENDIAN)
        return host;

    big |= (host & 0xff00000000000000) >> 56;
    big |= (host & 0x00ff000000000000) >> 40;
    big |= (host & 0x0000ff0000000000) >> 24;
    big |= (host & 0x000000ff00000000) >>  8;
    big |= (host & 0x00000000ff000000) <<  8;
    big |= (host & 0x0000000000ff0000) << 24;
    big |= (host & 0x000000000000ff00) << 40;
    big |= (host & 0x00000000000000ff) << 56;
    return big;
}

#else
/* Not all platforms have htobe32(). */
static ossl_inline uint32_t be32(uint32_t host)
{
    uint32_t big = 0;
    DECLARE_IS_ENDIAN;

    if (!IS_LITTLE_ENDIAN)
        return host;

    big |= (host & 0xff000000) >> 24;
    big |= (host & 0x00ff0000) >> 8;
    big |= (host & 0x0000ff00) << 8;
    big |= (host & 0x000000ff) << 24;
    return big;
}
#endif

/*
 * We assume that intermediate, possible_arg2, blinding, and ctx are used
 * similar to BN_BLINDING_invert_ex() arguments.
 * to_mod is RSA modulus.
 * buf and num is the serialization buffer and its length.
 *
 * Here we use classic/Montgomery multiplication and modulo. After the calculation finished
 * we serialize the new structure instead of BIGNUMs taking endianness into account.
 */
int ossl_bn_rsa_do_unblind(const BIGNUM *intermediate,
                           const BN_BLINDING *blinding,
                           const BIGNUM *possible_arg2,
                           const BIGNUM *to_mod, BN_CTX *ctx,
                           unsigned char *buf, int num)
{
    limb_t *l_im = NULL, *l_mul = NULL, *l_mod = NULL;
    limb_t *l_ret = NULL, *l_tmp = NULL, l_buf;
    size_t l_im_count = 0, l_mul_count = 0, l_size = 0, l_mod_count = 0;
    size_t l_tmp_count = 0;
    int ret = 0;
    size_t i;
    unsigned char *tmp;
    const BIGNUM *arg1 = intermediate;
    const BIGNUM *arg2 = (possible_arg2 == NULL) ? blinding->Ai : possible_arg2;

    l_im_count  = (BN_num_bytes(arg1)   + LIMB_BYTE_SIZE - 1) / LIMB_BYTE_SIZE;
    l_mul_count = (BN_num_bytes(arg2)   + LIMB_BYTE_SIZE - 1) / LIMB_BYTE_SIZE;
    l_mod_count = (BN_num_bytes(to_mod) + LIMB_BYTE_SIZE - 1) / LIMB_BYTE_SIZE;

    l_size = l_im_count > l_mul_count ? l_im_count : l_mul_count;
    l_im  = OPENSSL_zalloc(l_size * LIMB_BYTE_SIZE);
    l_mul = OPENSSL_zalloc(l_size * LIMB_BYTE_SIZE);
    l_mod = OPENSSL_zalloc(l_mod_count * LIMB_BYTE_SIZE);

    if ((l_im == NULL) || (l_mul == NULL) || (l_mod == NULL))
        goto err;

    BN_to_limb(arg1,   l_im,  l_size);
    BN_to_limb(arg2,   l_mul, l_size);
    BN_to_limb(to_mod, l_mod, l_mod_count);

    l_ret = OPENSSL_malloc(2 * l_size * LIMB_BYTE_SIZE);

    if (blinding->m_ctx != NULL) {
        l_tmp_count = mul_limb_numb(l_size) > mod_montgomery_limb_numb(l_mod_count) ?
                      mul_limb_numb(l_size) : mod_montgomery_limb_numb(l_mod_count);
        l_tmp = OPENSSL_malloc(l_tmp_count * LIMB_BYTE_SIZE);
    } else {
        l_tmp_count = mul_limb_numb(l_size) > mod_limb_numb(2 * l_size, l_mod_count) ?
                      mul_limb_numb(l_size) : mod_limb_numb(2 * l_size, l_mod_count);
        l_tmp = OPENSSL_malloc(l_tmp_count * LIMB_BYTE_SIZE);
    }

    if ((l_ret == NULL) || (l_tmp == NULL))
        goto err;

    if (blinding->m_ctx != NULL) {
        limb_mul(l_ret, l_im, l_mul, l_size, l_tmp);
        mod_montgomery(l_ret, l_ret, 2 * l_size, l_mod, l_mod_count,
                       blinding->m_ctx->n0[0], l_tmp);
    } else {
        limb_mul(l_ret, l_im, l_mul, l_size, l_tmp);
        mod(l_ret, l_ret, 2 * l_size, l_mod, l_mod_count, l_tmp);
    }

    /* modulus size in bytes can be equal to num but after limbs conversion it becomes bigger */
    if (num < BN_num_bytes(to_mod)) {
        ERR_raise(ERR_LIB_BN, ERR_R_PASSED_INVALID_ARGUMENT);
        goto err;
    }

    memset(buf, 0, num);
    tmp = buf + num - BN_num_bytes(to_mod);
    for (i = 0; i < l_mod_count; i++) {
#if LIMB_BYTE_SIZE == 8
        l_buf = be64(l_ret[i]);
#else
        l_buf = be32(l_ret[i]);
#endif
        if (i == 0) {
            int delta = LIMB_BYTE_SIZE - ((l_mod_count * LIMB_BYTE_SIZE) - num);

            memcpy(tmp, ((char *)&l_buf) + LIMB_BYTE_SIZE - delta, delta);
            tmp += delta;
        } else {
            memcpy(tmp, &l_buf, LIMB_BYTE_SIZE);
            tmp += LIMB_BYTE_SIZE;
        }
    }
    ret = num;

 err:
    OPENSSL_free(l_im);
    OPENSSL_free(l_mul);
    OPENSSL_free(l_mod);
    OPENSSL_free(l_tmp);
    OPENSSL_free(l_ret);

    return ret;
}