diff options
Diffstat (limited to 'crypto/bn/rsaz_exp_x2.c')
-rw-r--r-- | crypto/bn/rsaz_exp_x2.c | 542 |
1 files changed, 542 insertions, 0 deletions
diff --git a/crypto/bn/rsaz_exp_x2.c b/crypto/bn/rsaz_exp_x2.c new file mode 100644 index 0000000000..f4c751bef0 --- /dev/null +++ b/crypto/bn/rsaz_exp_x2.c @@ -0,0 +1,542 @@ +/* + * Copyright 2020 The OpenSSL Project Authors. All Rights Reserved. + * Copyright (c) 2020, Intel Corporation. All Rights Reserved. + * + * Licensed under the Apache License 2.0 (the "License"). You may not use + * this file except in compliance with the License. You can obtain a copy + * in the file LICENSE in the source distribution or at + * https://www.openssl.org/source/license.html + * + * + * Originally written by Ilya Albrekht, Sergey Kirillov and Andrey Matyukov + * Intel Corporation + * + */ + +#include <openssl/opensslconf.h> +#include "rsaz_exp.h" + +#ifndef RSAZ_ENABLED +NON_EMPTY_TRANSLATION_UNIT +#else +# include <assert.h> +# include <string.h> + +# if defined(__GNUC__) +# define ALIGN64 __attribute__((aligned(64))) +# elif defined(_MSC_VER) +# define ALIGN64 __declspec(align(64)) +# else +# define ALIGN64 +# endif + +# define ALIGN_OF(ptr, boundary) \ + ((unsigned char *)(ptr) + (boundary - (((size_t)(ptr)) & (boundary - 1)))) + +/* Internal radix */ +# define DIGIT_SIZE (52) +/* 52-bit mask */ +# define DIGIT_MASK ((uint64_t)0xFFFFFFFFFFFFF) + +# define BITS2WORD8_SIZE(x) (((x) + 7) >> 3) +# define BITS2WORD64_SIZE(x) (((x) + 63) >> 6) + +static ossl_inline uint64_t get_digit52(const uint8_t *in, int in_len); +static ossl_inline void put_digit52(uint8_t *out, int out_len, uint64_t digit); +static void to_words52(BN_ULONG *out, int out_len, const BN_ULONG *in, + int in_bitsize); +static void from_words52(BN_ULONG *bn_out, int out_bitsize, const BN_ULONG *in); +static ossl_inline void set_bit(BN_ULONG *a, int idx); + +/* Number of |digit_size|-bit digits in |bitsize|-bit value */ +static ossl_inline int number_of_digits(int bitsize, int digit_size) +{ + return (bitsize + digit_size - 1) / digit_size; +} + +typedef void (*AMM52)(BN_ULONG *res, const BN_ULONG *base, + const BN_ULONG *exp, const BN_ULONG *m, BN_ULONG k0); +typedef void (*EXP52_x2)(BN_ULONG *res, const BN_ULONG *base, + const BN_ULONG *exp[2], const BN_ULONG *m, + const BN_ULONG *rr, const BN_ULONG k0[2]); + +/* + * For details of the methods declared below please refer to + * crypto/bn/asm/rsaz-avx512.pl + * + * Naming notes: + * amm = Almost Montgomery Multiplication + * ams = Almost Montgomery Squaring + * 52x20 - data represented as array of 20 digits in 52-bit radix + * _x1_/_x2_ - 1 or 2 independent inputs/outputs + * _256 suffix - uses 256-bit (AVX512VL) registers + */ + +/*AMM = Almost Montgomery Multiplication. */ +void RSAZ_amm52x20_x1_256(BN_ULONG *res, const BN_ULONG *base, + const BN_ULONG *exp, const BN_ULONG *m, + BN_ULONG k0); +void RSAZ_exp52x20_x2_256(BN_ULONG *res, const BN_ULONG *base, + const BN_ULONG *exp[2], const BN_ULONG *m, + const BN_ULONG *rr, const BN_ULONG k0[2]); +void RSAZ_amm52x20_x2_256(BN_ULONG *out, const BN_ULONG *a, + const BN_ULONG *b, const BN_ULONG *m, + const BN_ULONG k0[2]); +void extract_multiplier_2x20_win5(BN_ULONG *red_Y, + const BN_ULONG *red_table, + int red_table_idx, int tbl_idx); + +/* + * Dual Montgomery modular exponentiation using prime moduli of the + * same bit size, optimized with AVX512 ISA. + * + * Input and output parameters for each exponentiation are independent and + * denoted here by index |i|, i = 1..2. + * + * Input and output are all in regular 2^64 radix. + * + * Each moduli shall be |factor_size| bit size. + * + * NOTE: currently only 2x1024 case is supported. + * + * [out] res|i| - result of modular exponentiation: array of qword values + * in regular (2^64) radix. Size of array shall be enough + * to hold |factor_size| bits. + * [in] base|i| - base + * [in] exp|i| - exponent + * [in] m|i| - moduli + * [in] rr|i| - Montgomery parameter RR = R^2 mod m|i| + * [in] k0_|i| - Montgomery parameter k0 = -1/m|i| mod 2^64 + * [in] factor_size - moduli bit size + * + * \return 0 in case of failure, + * 1 in case of success. + */ +int RSAZ_mod_exp_avx512_x2(BN_ULONG *res1, + const BN_ULONG *base1, + const BN_ULONG *exp1, + const BN_ULONG *m1, + const BN_ULONG *rr1, + BN_ULONG k0_1, + BN_ULONG *res2, + const BN_ULONG *base2, + const BN_ULONG *exp2, + const BN_ULONG *m2, + const BN_ULONG *rr2, + BN_ULONG k0_2, + int factor_size) +{ + int ret = 0; + + /* + * Number of word-size (BN_ULONG) digits to store exponent in redundant + * representation. + */ + int exp_digits = number_of_digits(factor_size + 2, DIGIT_SIZE); + int coeff_pow = 4 * (DIGIT_SIZE * exp_digits - factor_size); + BN_ULONG *base1_red, *m1_red, *rr1_red; + BN_ULONG *base2_red, *m2_red, *rr2_red; + BN_ULONG *coeff_red; + BN_ULONG *storage = NULL; + BN_ULONG *storage_aligned = NULL; + BN_ULONG storage_len_bytes = 7 * exp_digits * sizeof(BN_ULONG); + + /* AMM = Almost Montgomery Multiplication */ + AMM52 amm = NULL; + /* Dual (2-exps in parallel) exponentiation */ + EXP52_x2 exp_x2 = NULL; + + const BN_ULONG *exp[2] = {0}; + BN_ULONG k0[2] = {0}; + + /* Only 1024-bit factor size is supported now */ + switch (factor_size) { + case 1024: + amm = RSAZ_amm52x20_x1_256; + exp_x2 = RSAZ_exp52x20_x2_256; + break; + default: + goto err; + } + + storage = (BN_ULONG *)OPENSSL_malloc(storage_len_bytes + 64); + if (storage == NULL) + goto err; + storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64); + + /* Memory layout for red(undant) representations */ + base1_red = storage_aligned; + base2_red = storage_aligned + 1 * exp_digits; + m1_red = storage_aligned + 2 * exp_digits; + m2_red = storage_aligned + 3 * exp_digits; + rr1_red = storage_aligned + 4 * exp_digits; + rr2_red = storage_aligned + 5 * exp_digits; + coeff_red = storage_aligned + 6 * exp_digits; + + /* Convert base_i, m_i, rr_i, from regular to 52-bit radix */ + to_words52(base1_red, exp_digits, base1, factor_size); + to_words52(base2_red, exp_digits, base2, factor_size); + to_words52(m1_red, exp_digits, m1, factor_size); + to_words52(m2_red, exp_digits, m2, factor_size); + to_words52(rr1_red, exp_digits, rr1, factor_size); + to_words52(rr2_red, exp_digits, rr2, factor_size); + + /* + * Compute target domain Montgomery converters RR' for each modulus + * based on precomputed original domain's RR. + * + * RR -> RR' transformation steps: + * (1) coeff = 2^k + * (2) t = AMM(RR,RR) = RR^2 / R' mod m + * (3) RR' = AMM(t, coeff) = RR^2 * 2^k / R'^2 mod m + * where + * k = 4 * (52 * digits52 - modlen) + * R = 2^(64 * ceil(modlen/64)) mod m + * RR = R^2 mod M + * R' = 2^(52 * ceil(modlen/52)) mod m + * + * modlen = 1024: k = 64, RR = 2^2048 mod m, RR' = 2^2080 mod m + */ + memset(coeff_red, 0, exp_digits * sizeof(BN_ULONG)); + /* (1) in reduced domain representation */ + set_bit(coeff_red, 64 * (int)(coeff_pow / 52) + coeff_pow % 52); + + amm(rr1_red, rr1_red, rr1_red, m1_red, k0_1); /* (2) for m1 */ + amm(rr1_red, rr1_red, coeff_red, m1_red, k0_1); /* (3) for m1 */ + + amm(rr2_red, rr2_red, rr2_red, m2_red, k0_2); /* (2) for m2 */ + amm(rr2_red, rr2_red, coeff_red, m2_red, k0_2); /* (3) for m2 */ + + exp[0] = exp1; + exp[1] = exp2; + + k0[0] = k0_1; + k0[1] = k0_2; + + exp_x2(rr1_red, base1_red, exp, m1_red, rr1_red, k0); + + /* Convert rr_i back to regular radix */ + from_words52(res1, factor_size, rr1_red); + from_words52(res2, factor_size, rr2_red); + + ret = 1; +err: + if (storage != NULL) { + OPENSSL_cleanse(storage, storage_len_bytes); + OPENSSL_free(storage); + } + return ret; +} + +/* + * Dual 1024-bit w-ary modular exponentiation using prime moduli of the same + * bit size using Almost Montgomery Multiplication, optimized with AVX512_IFMA + * ISA. + * + * The parameter w (window size) = 5. + * + * [out] res - result of modular exponentiation: 2x20 qword + * values in 2^52 radix. + * [in] base - base (2x20 qword values in 2^52 radix) + * [in] exp - array of 2 pointers to 16 qword values in 2^64 radix. + * Exponent is not converted to redundant representation. + * [in] m - moduli (2x20 qword values in 2^52 radix) + * [in] rr - Montgomery parameter for 2 moduli: RR = 2^2080 mod m. + * (2x20 qword values in 2^52 radix) + * [in] k0 - Montgomery parameter for 2 moduli: k0 = -1/m mod 2^64 + * + * \return (void). + */ +void RSAZ_exp52x20_x2_256(BN_ULONG *out, /* [2][20] */ + const BN_ULONG *base, /* [2][20] */ + const BN_ULONG *exp[2], /* 2x16 */ + const BN_ULONG *m, /* [2][20] */ + const BN_ULONG *rr, /* [2][20] */ + const BN_ULONG k0[2]) +{ +# define BITSIZE_MODULUS (1024) +# define EXP_WIN_SIZE (5) +# define EXP_WIN_MASK ((1U << EXP_WIN_SIZE) - 1) +/* + * Number of digits (64-bit words) in redundant representation to handle + * modulus bits + */ +# define RED_DIGITS (20) +# define EXP_DIGITS (16) +# define DAMM RSAZ_amm52x20_x2_256 +/* + * Squaring is done using multiplication now. That can be a subject of + * optimization in future. + */ +# define DAMS(r,a,m,k0) \ + RSAZ_amm52x20_x2_256((r),(a),(a),(m),(k0)) + + /* Allocate stack for red(undant) result Y and multiplier X */ + ALIGN64 BN_ULONG red_Y[2][RED_DIGITS]; + ALIGN64 BN_ULONG red_X[2][RED_DIGITS]; + + /* Allocate expanded exponent */ + ALIGN64 BN_ULONG expz[2][EXP_DIGITS + 1]; + + /* Pre-computed table of base powers */ + ALIGN64 BN_ULONG red_table[1U << EXP_WIN_SIZE][2][RED_DIGITS]; + + int idx; + + memset(red_Y, 0, sizeof(red_Y)); + memset(red_table, 0, sizeof(red_table)); + memset(red_X, 0, sizeof(red_X)); + + /* + * Compute table of powers base^i, i = 0, ..., (2^EXP_WIN_SIZE) - 1 + * table[0] = mont(x^0) = mont(1) + * table[1] = mont(x^1) = mont(x) + */ + red_X[0][0] = 1; + red_X[1][0] = 1; + DAMM(red_table[0][0], (const BN_ULONG*)red_X, rr, m, k0); + DAMM(red_table[1][0], base, rr, m, k0); + + for (idx = 1; idx < (int)((1U << EXP_WIN_SIZE) / 2); idx++) { + DAMS(red_table[2 * idx + 0][0], red_table[1 * idx][0], m, k0); + DAMM(red_table[2 * idx + 1][0], red_table[2 * idx][0], red_table[1][0], m, k0); + } + + /* Copy and expand exponents */ + memcpy(expz[0], exp[0], EXP_DIGITS * sizeof(BN_ULONG)); + expz[0][EXP_DIGITS] = 0; + memcpy(expz[1], exp[1], EXP_DIGITS * sizeof(BN_ULONG)); + expz[1][EXP_DIGITS] = 0; + + /* Exponentiation */ + { + int rem = BITSIZE_MODULUS % EXP_WIN_SIZE; + int delta = rem ? rem : EXP_WIN_SIZE; + BN_ULONG table_idx_mask = EXP_WIN_MASK; + + int exp_bit_no = BITSIZE_MODULUS - delta; + int exp_chunk_no = exp_bit_no / 64; + int exp_chunk_shift = exp_bit_no % 64; + + /* Process 1-st exp window - just init result */ + BN_ULONG red_table_idx_0 = expz[0][exp_chunk_no]; + BN_ULONG red_table_idx_1 = expz[1][exp_chunk_no]; + /* + * The function operates with fixed moduli sizes divisible by 64, + * thus table index here is always in supported range [0, EXP_WIN_SIZE). + */ + red_table_idx_0 >>= exp_chunk_shift; + red_table_idx_1 >>= exp_chunk_shift; + + extract_multiplier_2x20_win5(red_Y[0], (const BN_ULONG*)red_table, (int)red_table_idx_0, 0); + extract_multiplier_2x20_win5(red_Y[1], (const BN_ULONG*)red_table, (int)red_table_idx_1, 1); + + /* Process other exp windows */ + for (exp_bit_no -= EXP_WIN_SIZE; exp_bit_no >= 0; exp_bit_no -= EXP_WIN_SIZE) { + /* Extract pre-computed multiplier from the table */ + { + BN_ULONG T; + + exp_chunk_no = exp_bit_no / 64; + exp_chunk_shift = exp_bit_no % 64; + { + red_table_idx_0 = expz[0][exp_chunk_no]; + T = expz[0][exp_chunk_no + 1]; + + red_table_idx_0 >>= exp_chunk_shift; + /* + * Get additional bits from then next quadword + * when 64-bit boundaries are crossed. + */ + if (exp_chunk_shift > 64 - EXP_WIN_SIZE) { + T <<= (64 - exp_chunk_shift); + red_table_idx_0 ^= T; + } + red_table_idx_0 &= table_idx_mask; + + extract_multiplier_2x20_win5(red_X[0], (const BN_ULONG*)red_table, (int)red_table_idx_0, 0); + } + { + red_table_idx_1 = expz[1][exp_chunk_no]; + T = expz[1][exp_chunk_no + 1]; + + red_table_idx_1 >>= exp_chunk_shift; + /* + * Get additional bits from then next quadword + * when 64-bit boundaries are crossed. + */ + if (exp_chunk_shift > 64 - EXP_WIN_SIZE) { + T <<= (64 - exp_chunk_shift); + red_table_idx_1 ^= T; + } + red_table_idx_1 &= table_idx_mask; + + extract_multiplier_2x20_win5(red_X[1], (const BN_ULONG*)red_table, (int)red_table_idx_1, 1); + } + } + + /* Series of squaring */ + DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0); + DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0); + DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0); + DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0); + DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0); + + DAMM((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0); + } + } + + /* + * + * NB: After the last AMM of exponentiation in Montgomery domain, the result + * may be 1025-bit, but the conversion out of Montgomery domain performs an + * AMM(x,1) which guarantees that the final result is less than |m|, so no + * conditional subtraction is needed here. See "Efficient Software + * Implementations of Modular Exponentiation" (by Shay Gueron) paper for details. + */ + + /* Convert result back in regular 2^52 domain */ + memset(red_X, 0, sizeof(red_X)); + red_X[0][0] = 1; + red_X[1][0] = 1; + DAMM(out, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0); + + /* Clear exponents */ + OPENSSL_cleanse(expz, sizeof(expz)); + OPENSSL_cleanse(red_Y, sizeof(red_Y)); + +# undef DAMS +# undef DAMM +# undef EXP_DIGITS +# undef RED_DIGITS +# undef EXP_WIN_MASK +# undef EXP_WIN_SIZE +# undef BITSIZE_MODULUS +} + +static ossl_inline uint64_t get_digit52(const uint8_t *in, int in_len) +{ + uint64_t digit = 0; + + assert(in != NULL); + + for (; in_len > 0; in_len--) { + digit <<= 8; + digit += (uint64_t)(in[in_len - 1]); + } + return digit; +} + +/* + * Convert array of words in regular (base=2^64) representation to array of + * words in redundant (base=2^52) one. + */ +static void to_words52(BN_ULONG *out, int out_len, + const BN_ULONG *in, int in_bitsize) +{ + uint8_t *in_str = NULL; + + assert(out != NULL); + assert(in != NULL); + /* Check destination buffer capacity */ + assert(out_len >= number_of_digits(in_bitsize, DIGIT_SIZE)); + + in_str = (uint8_t *)in; + + for (; in_bitsize >= (2 * DIGIT_SIZE); in_bitsize -= (2 * DIGIT_SIZE), out += 2) { + out[0] = (*(uint64_t *)in_str) & DIGIT_MASK; + in_str += 6; + out[1] = ((*(uint64_t *)in_str) >> 4) & DIGIT_MASK; + in_str += 7; + out_len -= 2; + } + + if (in_bitsize > DIGIT_SIZE) { + uint64_t digit = get_digit52(in_str, 7); + + out[0] = digit & DIGIT_MASK; + in_str += 6; + in_bitsize -= DIGIT_SIZE; + digit = get_digit52(in_str, BITS2WORD8_SIZE(in_bitsize)); + out[1] = digit >> 4; + out += 2; + out_len -= 2; + } else if (in_bitsize > 0) { + out[0] = get_digit52(in_str, BITS2WORD8_SIZE(in_bitsize)); + out++; + out_len--; + } + + while (out_len > 0) { + *out = 0; + out_len--; + out++; + } +} + +static ossl_inline void put_digit52(uint8_t *pStr, int strLen, uint64_t digit) +{ + assert(pStr != NULL); + + for (; strLen > 0; strLen--) { + *pStr++ = (uint8_t)(digit & 0xFF); + digit >>= 8; + } +} + +/* + * Convert array of words in redundant (base=2^52) representation to array of + * words in regular (base=2^64) one. + */ +static void from_words52(BN_ULONG *out, int out_bitsize, const BN_ULONG *in) +{ + int i; + int out_len = BITS2WORD64_SIZE(out_bitsize); + + assert(out != NULL); + assert(in != NULL); + + for (i = 0; i < out_len; i++) + out[i] = 0; + + { + uint8_t *out_str = (uint8_t *)out; + + for (; out_bitsize >= (2 * DIGIT_SIZE); out_bitsize -= (2 * DIGIT_SIZE), in += 2) { + (*(uint64_t *)out_str) = in[0]; + out_str += 6; + (*(uint64_t *)out_str) ^= in[1] << 4; + out_str += 7; + } + + if (out_bitsize > DIGIT_SIZE) { + put_digit52(out_str, 7, in[0]); + out_str += 6; + out_bitsize -= DIGIT_SIZE; + put_digit52(out_str, BITS2WORD8_SIZE(out_bitsize), + (in[1] << 4 | in[0] >> 48)); + } else if (out_bitsize) { + put_digit52(out_str, BITS2WORD8_SIZE(out_bitsize), in[0]); + } + } +} + +/* + * Set bit at index |idx| in the words array |a|. + * It does not do any boundaries checks, make sure the index is valid before + * calling the function. + */ +static ossl_inline void set_bit(BN_ULONG *a, int idx) +{ + assert(a != NULL); + + { + int i, j; + + i = idx / BN_BITS2; + j = idx % BN_BITS2; + a[i] |= (((BN_ULONG)1) << j); + } +} + +#endif |