summaryrefslogtreecommitdiff
path: root/crypto/bn/rsaz_exp_x2.c
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/bn/rsaz_exp_x2.c')
-rw-r--r--crypto/bn/rsaz_exp_x2.c542
1 files changed, 542 insertions, 0 deletions
diff --git a/crypto/bn/rsaz_exp_x2.c b/crypto/bn/rsaz_exp_x2.c
new file mode 100644
index 0000000000..f4c751bef0
--- /dev/null
+++ b/crypto/bn/rsaz_exp_x2.c
@@ -0,0 +1,542 @@
+/*
+ * Copyright 2020 The OpenSSL Project Authors. All Rights Reserved.
+ * Copyright (c) 2020, Intel Corporation. All Rights Reserved.
+ *
+ * Licensed under the Apache License 2.0 (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ *
+ *
+ * Originally written by Ilya Albrekht, Sergey Kirillov and Andrey Matyukov
+ * Intel Corporation
+ *
+ */
+
+#include <openssl/opensslconf.h>
+#include "rsaz_exp.h"
+
+#ifndef RSAZ_ENABLED
+NON_EMPTY_TRANSLATION_UNIT
+#else
+# include <assert.h>
+# include <string.h>
+
+# if defined(__GNUC__)
+# define ALIGN64 __attribute__((aligned(64)))
+# elif defined(_MSC_VER)
+# define ALIGN64 __declspec(align(64))
+# else
+# define ALIGN64
+# endif
+
+# define ALIGN_OF(ptr, boundary) \
+ ((unsigned char *)(ptr) + (boundary - (((size_t)(ptr)) & (boundary - 1))))
+
+/* Internal radix */
+# define DIGIT_SIZE (52)
+/* 52-bit mask */
+# define DIGIT_MASK ((uint64_t)0xFFFFFFFFFFFFF)
+
+# define BITS2WORD8_SIZE(x) (((x) + 7) >> 3)
+# define BITS2WORD64_SIZE(x) (((x) + 63) >> 6)
+
+static ossl_inline uint64_t get_digit52(const uint8_t *in, int in_len);
+static ossl_inline void put_digit52(uint8_t *out, int out_len, uint64_t digit);
+static void to_words52(BN_ULONG *out, int out_len, const BN_ULONG *in,
+ int in_bitsize);
+static void from_words52(BN_ULONG *bn_out, int out_bitsize, const BN_ULONG *in);
+static ossl_inline void set_bit(BN_ULONG *a, int idx);
+
+/* Number of |digit_size|-bit digits in |bitsize|-bit value */
+static ossl_inline int number_of_digits(int bitsize, int digit_size)
+{
+ return (bitsize + digit_size - 1) / digit_size;
+}
+
+typedef void (*AMM52)(BN_ULONG *res, const BN_ULONG *base,
+ const BN_ULONG *exp, const BN_ULONG *m, BN_ULONG k0);
+typedef void (*EXP52_x2)(BN_ULONG *res, const BN_ULONG *base,
+ const BN_ULONG *exp[2], const BN_ULONG *m,
+ const BN_ULONG *rr, const BN_ULONG k0[2]);
+
+/*
+ * For details of the methods declared below please refer to
+ * crypto/bn/asm/rsaz-avx512.pl
+ *
+ * Naming notes:
+ * amm = Almost Montgomery Multiplication
+ * ams = Almost Montgomery Squaring
+ * 52x20 - data represented as array of 20 digits in 52-bit radix
+ * _x1_/_x2_ - 1 or 2 independent inputs/outputs
+ * _256 suffix - uses 256-bit (AVX512VL) registers
+ */
+
+/*AMM = Almost Montgomery Multiplication. */
+void RSAZ_amm52x20_x1_256(BN_ULONG *res, const BN_ULONG *base,
+ const BN_ULONG *exp, const BN_ULONG *m,
+ BN_ULONG k0);
+void RSAZ_exp52x20_x2_256(BN_ULONG *res, const BN_ULONG *base,
+ const BN_ULONG *exp[2], const BN_ULONG *m,
+ const BN_ULONG *rr, const BN_ULONG k0[2]);
+void RSAZ_amm52x20_x2_256(BN_ULONG *out, const BN_ULONG *a,
+ const BN_ULONG *b, const BN_ULONG *m,
+ const BN_ULONG k0[2]);
+void extract_multiplier_2x20_win5(BN_ULONG *red_Y,
+ const BN_ULONG *red_table,
+ int red_table_idx, int tbl_idx);
+
+/*
+ * Dual Montgomery modular exponentiation using prime moduli of the
+ * same bit size, optimized with AVX512 ISA.
+ *
+ * Input and output parameters for each exponentiation are independent and
+ * denoted here by index |i|, i = 1..2.
+ *
+ * Input and output are all in regular 2^64 radix.
+ *
+ * Each moduli shall be |factor_size| bit size.
+ *
+ * NOTE: currently only 2x1024 case is supported.
+ *
+ * [out] res|i| - result of modular exponentiation: array of qword values
+ * in regular (2^64) radix. Size of array shall be enough
+ * to hold |factor_size| bits.
+ * [in] base|i| - base
+ * [in] exp|i| - exponent
+ * [in] m|i| - moduli
+ * [in] rr|i| - Montgomery parameter RR = R^2 mod m|i|
+ * [in] k0_|i| - Montgomery parameter k0 = -1/m|i| mod 2^64
+ * [in] factor_size - moduli bit size
+ *
+ * \return 0 in case of failure,
+ * 1 in case of success.
+ */
+int RSAZ_mod_exp_avx512_x2(BN_ULONG *res1,
+ const BN_ULONG *base1,
+ const BN_ULONG *exp1,
+ const BN_ULONG *m1,
+ const BN_ULONG *rr1,
+ BN_ULONG k0_1,
+ BN_ULONG *res2,
+ const BN_ULONG *base2,
+ const BN_ULONG *exp2,
+ const BN_ULONG *m2,
+ const BN_ULONG *rr2,
+ BN_ULONG k0_2,
+ int factor_size)
+{
+ int ret = 0;
+
+ /*
+ * Number of word-size (BN_ULONG) digits to store exponent in redundant
+ * representation.
+ */
+ int exp_digits = number_of_digits(factor_size + 2, DIGIT_SIZE);
+ int coeff_pow = 4 * (DIGIT_SIZE * exp_digits - factor_size);
+ BN_ULONG *base1_red, *m1_red, *rr1_red;
+ BN_ULONG *base2_red, *m2_red, *rr2_red;
+ BN_ULONG *coeff_red;
+ BN_ULONG *storage = NULL;
+ BN_ULONG *storage_aligned = NULL;
+ BN_ULONG storage_len_bytes = 7 * exp_digits * sizeof(BN_ULONG);
+
+ /* AMM = Almost Montgomery Multiplication */
+ AMM52 amm = NULL;
+ /* Dual (2-exps in parallel) exponentiation */
+ EXP52_x2 exp_x2 = NULL;
+
+ const BN_ULONG *exp[2] = {0};
+ BN_ULONG k0[2] = {0};
+
+ /* Only 1024-bit factor size is supported now */
+ switch (factor_size) {
+ case 1024:
+ amm = RSAZ_amm52x20_x1_256;
+ exp_x2 = RSAZ_exp52x20_x2_256;
+ break;
+ default:
+ goto err;
+ }
+
+ storage = (BN_ULONG *)OPENSSL_malloc(storage_len_bytes + 64);
+ if (storage == NULL)
+ goto err;
+ storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64);
+
+ /* Memory layout for red(undant) representations */
+ base1_red = storage_aligned;
+ base2_red = storage_aligned + 1 * exp_digits;
+ m1_red = storage_aligned + 2 * exp_digits;
+ m2_red = storage_aligned + 3 * exp_digits;
+ rr1_red = storage_aligned + 4 * exp_digits;
+ rr2_red = storage_aligned + 5 * exp_digits;
+ coeff_red = storage_aligned + 6 * exp_digits;
+
+ /* Convert base_i, m_i, rr_i, from regular to 52-bit radix */
+ to_words52(base1_red, exp_digits, base1, factor_size);
+ to_words52(base2_red, exp_digits, base2, factor_size);
+ to_words52(m1_red, exp_digits, m1, factor_size);
+ to_words52(m2_red, exp_digits, m2, factor_size);
+ to_words52(rr1_red, exp_digits, rr1, factor_size);
+ to_words52(rr2_red, exp_digits, rr2, factor_size);
+
+ /*
+ * Compute target domain Montgomery converters RR' for each modulus
+ * based on precomputed original domain's RR.
+ *
+ * RR -> RR' transformation steps:
+ * (1) coeff = 2^k
+ * (2) t = AMM(RR,RR) = RR^2 / R' mod m
+ * (3) RR' = AMM(t, coeff) = RR^2 * 2^k / R'^2 mod m
+ * where
+ * k = 4 * (52 * digits52 - modlen)
+ * R = 2^(64 * ceil(modlen/64)) mod m
+ * RR = R^2 mod M
+ * R' = 2^(52 * ceil(modlen/52)) mod m
+ *
+ * modlen = 1024: k = 64, RR = 2^2048 mod m, RR' = 2^2080 mod m
+ */
+ memset(coeff_red, 0, exp_digits * sizeof(BN_ULONG));
+ /* (1) in reduced domain representation */
+ set_bit(coeff_red, 64 * (int)(coeff_pow / 52) + coeff_pow % 52);
+
+ amm(rr1_red, rr1_red, rr1_red, m1_red, k0_1); /* (2) for m1 */
+ amm(rr1_red, rr1_red, coeff_red, m1_red, k0_1); /* (3) for m1 */
+
+ amm(rr2_red, rr2_red, rr2_red, m2_red, k0_2); /* (2) for m2 */
+ amm(rr2_red, rr2_red, coeff_red, m2_red, k0_2); /* (3) for m2 */
+
+ exp[0] = exp1;
+ exp[1] = exp2;
+
+ k0[0] = k0_1;
+ k0[1] = k0_2;
+
+ exp_x2(rr1_red, base1_red, exp, m1_red, rr1_red, k0);
+
+ /* Convert rr_i back to regular radix */
+ from_words52(res1, factor_size, rr1_red);
+ from_words52(res2, factor_size, rr2_red);
+
+ ret = 1;
+err:
+ if (storage != NULL) {
+ OPENSSL_cleanse(storage, storage_len_bytes);
+ OPENSSL_free(storage);
+ }
+ return ret;
+}
+
+/*
+ * Dual 1024-bit w-ary modular exponentiation using prime moduli of the same
+ * bit size using Almost Montgomery Multiplication, optimized with AVX512_IFMA
+ * ISA.
+ *
+ * The parameter w (window size) = 5.
+ *
+ * [out] res - result of modular exponentiation: 2x20 qword
+ * values in 2^52 radix.
+ * [in] base - base (2x20 qword values in 2^52 radix)
+ * [in] exp - array of 2 pointers to 16 qword values in 2^64 radix.
+ * Exponent is not converted to redundant representation.
+ * [in] m - moduli (2x20 qword values in 2^52 radix)
+ * [in] rr - Montgomery parameter for 2 moduli: RR = 2^2080 mod m.
+ * (2x20 qword values in 2^52 radix)
+ * [in] k0 - Montgomery parameter for 2 moduli: k0 = -1/m mod 2^64
+ *
+ * \return (void).
+ */
+void RSAZ_exp52x20_x2_256(BN_ULONG *out, /* [2][20] */
+ const BN_ULONG *base, /* [2][20] */
+ const BN_ULONG *exp[2], /* 2x16 */
+ const BN_ULONG *m, /* [2][20] */
+ const BN_ULONG *rr, /* [2][20] */
+ const BN_ULONG k0[2])
+{
+# define BITSIZE_MODULUS (1024)
+# define EXP_WIN_SIZE (5)
+# define EXP_WIN_MASK ((1U << EXP_WIN_SIZE) - 1)
+/*
+ * Number of digits (64-bit words) in redundant representation to handle
+ * modulus bits
+ */
+# define RED_DIGITS (20)
+# define EXP_DIGITS (16)
+# define DAMM RSAZ_amm52x20_x2_256
+/*
+ * Squaring is done using multiplication now. That can be a subject of
+ * optimization in future.
+ */
+# define DAMS(r,a,m,k0) \
+ RSAZ_amm52x20_x2_256((r),(a),(a),(m),(k0))
+
+ /* Allocate stack for red(undant) result Y and multiplier X */
+ ALIGN64 BN_ULONG red_Y[2][RED_DIGITS];
+ ALIGN64 BN_ULONG red_X[2][RED_DIGITS];
+
+ /* Allocate expanded exponent */
+ ALIGN64 BN_ULONG expz[2][EXP_DIGITS + 1];
+
+ /* Pre-computed table of base powers */
+ ALIGN64 BN_ULONG red_table[1U << EXP_WIN_SIZE][2][RED_DIGITS];
+
+ int idx;
+
+ memset(red_Y, 0, sizeof(red_Y));
+ memset(red_table, 0, sizeof(red_table));
+ memset(red_X, 0, sizeof(red_X));
+
+ /*
+ * Compute table of powers base^i, i = 0, ..., (2^EXP_WIN_SIZE) - 1
+ * table[0] = mont(x^0) = mont(1)
+ * table[1] = mont(x^1) = mont(x)
+ */
+ red_X[0][0] = 1;
+ red_X[1][0] = 1;
+ DAMM(red_table[0][0], (const BN_ULONG*)red_X, rr, m, k0);
+ DAMM(red_table[1][0], base, rr, m, k0);
+
+ for (idx = 1; idx < (int)((1U << EXP_WIN_SIZE) / 2); idx++) {
+ DAMS(red_table[2 * idx + 0][0], red_table[1 * idx][0], m, k0);
+ DAMM(red_table[2 * idx + 1][0], red_table[2 * idx][0], red_table[1][0], m, k0);
+ }
+
+ /* Copy and expand exponents */
+ memcpy(expz[0], exp[0], EXP_DIGITS * sizeof(BN_ULONG));
+ expz[0][EXP_DIGITS] = 0;
+ memcpy(expz[1], exp[1], EXP_DIGITS * sizeof(BN_ULONG));
+ expz[1][EXP_DIGITS] = 0;
+
+ /* Exponentiation */
+ {
+ int rem = BITSIZE_MODULUS % EXP_WIN_SIZE;
+ int delta = rem ? rem : EXP_WIN_SIZE;
+ BN_ULONG table_idx_mask = EXP_WIN_MASK;
+
+ int exp_bit_no = BITSIZE_MODULUS - delta;
+ int exp_chunk_no = exp_bit_no / 64;
+ int exp_chunk_shift = exp_bit_no % 64;
+
+ /* Process 1-st exp window - just init result */
+ BN_ULONG red_table_idx_0 = expz[0][exp_chunk_no];
+ BN_ULONG red_table_idx_1 = expz[1][exp_chunk_no];
+ /*
+ * The function operates with fixed moduli sizes divisible by 64,
+ * thus table index here is always in supported range [0, EXP_WIN_SIZE).
+ */
+ red_table_idx_0 >>= exp_chunk_shift;
+ red_table_idx_1 >>= exp_chunk_shift;
+
+ extract_multiplier_2x20_win5(red_Y[0], (const BN_ULONG*)red_table, (int)red_table_idx_0, 0);
+ extract_multiplier_2x20_win5(red_Y[1], (const BN_ULONG*)red_table, (int)red_table_idx_1, 1);
+
+ /* Process other exp windows */
+ for (exp_bit_no -= EXP_WIN_SIZE; exp_bit_no >= 0; exp_bit_no -= EXP_WIN_SIZE) {
+ /* Extract pre-computed multiplier from the table */
+ {
+ BN_ULONG T;
+
+ exp_chunk_no = exp_bit_no / 64;
+ exp_chunk_shift = exp_bit_no % 64;
+ {
+ red_table_idx_0 = expz[0][exp_chunk_no];
+ T = expz[0][exp_chunk_no + 1];
+
+ red_table_idx_0 >>= exp_chunk_shift;
+ /*
+ * Get additional bits from then next quadword
+ * when 64-bit boundaries are crossed.
+ */
+ if (exp_chunk_shift > 64 - EXP_WIN_SIZE) {
+ T <<= (64 - exp_chunk_shift);
+ red_table_idx_0 ^= T;
+ }
+ red_table_idx_0 &= table_idx_mask;
+
+ extract_multiplier_2x20_win5(red_X[0], (const BN_ULONG*)red_table, (int)red_table_idx_0, 0);
+ }
+ {
+ red_table_idx_1 = expz[1][exp_chunk_no];
+ T = expz[1][exp_chunk_no + 1];
+
+ red_table_idx_1 >>= exp_chunk_shift;
+ /*
+ * Get additional bits from then next quadword
+ * when 64-bit boundaries are crossed.
+ */
+ if (exp_chunk_shift > 64 - EXP_WIN_SIZE) {
+ T <<= (64 - exp_chunk_shift);
+ red_table_idx_1 ^= T;
+ }
+ red_table_idx_1 &= table_idx_mask;
+
+ extract_multiplier_2x20_win5(red_X[1], (const BN_ULONG*)red_table, (int)red_table_idx_1, 1);
+ }
+ }
+
+ /* Series of squaring */
+ DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
+ DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
+ DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
+ DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
+ DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
+
+ DAMM((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
+ }
+ }
+
+ /*
+ *
+ * NB: After the last AMM of exponentiation in Montgomery domain, the result
+ * may be 1025-bit, but the conversion out of Montgomery domain performs an
+ * AMM(x,1) which guarantees that the final result is less than |m|, so no
+ * conditional subtraction is needed here. See "Efficient Software
+ * Implementations of Modular Exponentiation" (by Shay Gueron) paper for details.
+ */
+
+ /* Convert result back in regular 2^52 domain */
+ memset(red_X, 0, sizeof(red_X));
+ red_X[0][0] = 1;
+ red_X[1][0] = 1;
+ DAMM(out, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
+
+ /* Clear exponents */
+ OPENSSL_cleanse(expz, sizeof(expz));
+ OPENSSL_cleanse(red_Y, sizeof(red_Y));
+
+# undef DAMS
+# undef DAMM
+# undef EXP_DIGITS
+# undef RED_DIGITS
+# undef EXP_WIN_MASK
+# undef EXP_WIN_SIZE
+# undef BITSIZE_MODULUS
+}
+
+static ossl_inline uint64_t get_digit52(const uint8_t *in, int in_len)
+{
+ uint64_t digit = 0;
+
+ assert(in != NULL);
+
+ for (; in_len > 0; in_len--) {
+ digit <<= 8;
+ digit += (uint64_t)(in[in_len - 1]);
+ }
+ return digit;
+}
+
+/*
+ * Convert array of words in regular (base=2^64) representation to array of
+ * words in redundant (base=2^52) one.
+ */
+static void to_words52(BN_ULONG *out, int out_len,
+ const BN_ULONG *in, int in_bitsize)
+{
+ uint8_t *in_str = NULL;
+
+ assert(out != NULL);
+ assert(in != NULL);
+ /* Check destination buffer capacity */
+ assert(out_len >= number_of_digits(in_bitsize, DIGIT_SIZE));
+
+ in_str = (uint8_t *)in;
+
+ for (; in_bitsize >= (2 * DIGIT_SIZE); in_bitsize -= (2 * DIGIT_SIZE), out += 2) {
+ out[0] = (*(uint64_t *)in_str) & DIGIT_MASK;
+ in_str += 6;
+ out[1] = ((*(uint64_t *)in_str) >> 4) & DIGIT_MASK;
+ in_str += 7;
+ out_len -= 2;
+ }
+
+ if (in_bitsize > DIGIT_SIZE) {
+ uint64_t digit = get_digit52(in_str, 7);
+
+ out[0] = digit & DIGIT_MASK;
+ in_str += 6;
+ in_bitsize -= DIGIT_SIZE;
+ digit = get_digit52(in_str, BITS2WORD8_SIZE(in_bitsize));
+ out[1] = digit >> 4;
+ out += 2;
+ out_len -= 2;
+ } else if (in_bitsize > 0) {
+ out[0] = get_digit52(in_str, BITS2WORD8_SIZE(in_bitsize));
+ out++;
+ out_len--;
+ }
+
+ while (out_len > 0) {
+ *out = 0;
+ out_len--;
+ out++;
+ }
+}
+
+static ossl_inline void put_digit52(uint8_t *pStr, int strLen, uint64_t digit)
+{
+ assert(pStr != NULL);
+
+ for (; strLen > 0; strLen--) {
+ *pStr++ = (uint8_t)(digit & 0xFF);
+ digit >>= 8;
+ }
+}
+
+/*
+ * Convert array of words in redundant (base=2^52) representation to array of
+ * words in regular (base=2^64) one.
+ */
+static void from_words52(BN_ULONG *out, int out_bitsize, const BN_ULONG *in)
+{
+ int i;
+ int out_len = BITS2WORD64_SIZE(out_bitsize);
+
+ assert(out != NULL);
+ assert(in != NULL);
+
+ for (i = 0; i < out_len; i++)
+ out[i] = 0;
+
+ {
+ uint8_t *out_str = (uint8_t *)out;
+
+ for (; out_bitsize >= (2 * DIGIT_SIZE); out_bitsize -= (2 * DIGIT_SIZE), in += 2) {
+ (*(uint64_t *)out_str) = in[0];
+ out_str += 6;
+ (*(uint64_t *)out_str) ^= in[1] << 4;
+ out_str += 7;
+ }
+
+ if (out_bitsize > DIGIT_SIZE) {
+ put_digit52(out_str, 7, in[0]);
+ out_str += 6;
+ out_bitsize -= DIGIT_SIZE;
+ put_digit52(out_str, BITS2WORD8_SIZE(out_bitsize),
+ (in[1] << 4 | in[0] >> 48));
+ } else if (out_bitsize) {
+ put_digit52(out_str, BITS2WORD8_SIZE(out_bitsize), in[0]);
+ }
+ }
+}
+
+/*
+ * Set bit at index |idx| in the words array |a|.
+ * It does not do any boundaries checks, make sure the index is valid before
+ * calling the function.
+ */
+static ossl_inline void set_bit(BN_ULONG *a, int idx)
+{
+ assert(a != NULL);
+
+ {
+ int i, j;
+
+ i = idx / BN_BITS2;
+ j = idx % BN_BITS2;
+ a[i] |= (((BN_ULONG)1) << j);
+ }
+}
+
+#endif