1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
|
(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy and Jerome Vouillon, projet Cristal, INRIA Rocquencourt*)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(**** Typing of type definitions ****)
open Misc
open Asttypes
open Parsetree
open Primitive
open Types
open Typedtree
open Typetexp
type error =
Repeated_parameter
| Duplicate_constructor of string
| Too_many_constructors
| Duplicate_label of string
| Recursive_abbrev of string
| Definition_mismatch of type_expr
| Constraint_failed of type_expr * type_expr
| Unconsistent_constraint of (type_expr * type_expr) list
| Type_clash of (type_expr * type_expr) list
| Parameters_differ of Path.t * type_expr * type_expr
| Null_arity_external
| Missing_native_external
| Unbound_type_var
| Unbound_exception of Longident.t
| Not_an_exception of Longident.t
| Bad_variance
| Unavailable_type_constructor of Path.t
exception Error of Location.t * error
(* Enter all declared types in the environment as abstract types *)
let enter_type env (name, sdecl) id =
let decl =
{ type_params =
List.map (fun _ -> Btype.newgenvar ()) sdecl.ptype_params;
type_arity = List.length sdecl.ptype_params;
type_kind = Type_abstract;
type_manifest =
begin match sdecl.ptype_manifest with None -> None
| Some _ -> Some(Ctype.newvar ()) end;
type_variance = List.map (fun _ -> true, true, true) sdecl.ptype_params;
}
in
Env.add_type id decl env
let update_type temp_env env id loc =
let path = Path.Pident id in
let decl = Env.find_type path temp_env in
match decl.type_manifest with None -> ()
| Some ty ->
let params = List.map (fun _ -> Ctype.newvar ()) decl.type_params in
try Ctype.unify env (Ctype.newconstr path params) ty
with Ctype.Unify trace ->
raise (Error(loc, Type_clash trace))
(* Determine if a type is (an abbreviation for) the type "float" *)
let is_float env ty =
match Ctype.repr (Ctype.expand_head env ty) with
{desc = Tconstr(p, _, _)} -> Path.same p Predef.path_float
| _ -> false
(* Translate one type declaration *)
module StringSet =
Set.Make(struct
type t = string
let compare = compare
end)
let transl_declaration env (name, sdecl) id =
(* Bind type parameters *)
reset_type_variables();
Ctype.begin_def ();
let params =
try List.map (enter_type_variable true sdecl.ptype_loc) sdecl.ptype_params
with Already_bound ->
raise(Error(sdecl.ptype_loc, Repeated_parameter))
in
let cstrs = List.map
(fun (sty, sty', loc) ->
transl_simple_type env false sty,
transl_simple_type env false sty', loc)
sdecl.ptype_cstrs
in
let decl =
{ type_params = params;
type_arity = List.length params;
type_kind =
begin match sdecl.ptype_kind with
Ptype_abstract ->
Type_abstract
| Ptype_variant (cstrs, priv) ->
let all_constrs = ref StringSet.empty in
List.iter
(fun (name, args, loc) ->
if StringSet.mem name !all_constrs then
raise(Error(sdecl.ptype_loc, Duplicate_constructor name));
all_constrs := StringSet.add name !all_constrs)
cstrs;
if List.length (List.filter (fun (_, args, _) -> args <> []) cstrs)
> (Config.max_tag + 1) then
raise(Error(sdecl.ptype_loc, Too_many_constructors));
Type_variant(List.map
(fun (name, args, loc) ->
(name, List.map (transl_simple_type env true) args))
cstrs, priv)
| Ptype_record (lbls, priv) ->
let all_labels = ref StringSet.empty in
List.iter
(fun (name, mut, arg, loc) ->
if StringSet.mem name !all_labels then
raise(Error(sdecl.ptype_loc, Duplicate_label name));
all_labels := StringSet.add name !all_labels)
lbls;
let lbls' =
List.map
(fun (name, mut, arg, loc) ->
let ty = transl_simple_type env true arg in
name, mut, match ty.desc with Tpoly(t,[]) -> t | _ -> ty)
lbls in
let rep =
if List.for_all (fun (name, mut, arg) -> is_float env arg) lbls'
then Record_float
else Record_regular in
Type_record(lbls', rep, priv)
end;
type_manifest =
begin match sdecl.ptype_manifest with
None -> None
| Some sty ->
let ty = transl_simple_type env true sty in
if Ctype.cyclic_abbrev env id ty then
raise(Error(sdecl.ptype_loc, Recursive_abbrev name));
Some ty
end;
type_variance = List.map (fun _ -> true, true, true) params;
} in
(* Check constraints *)
List.iter
(fun (ty, ty', loc) ->
try Ctype.unify env ty ty' with Ctype.Unify tr ->
raise(Error(loc, Unconsistent_constraint tr)))
cstrs;
Ctype.end_def ();
(id, decl)
(* Generalize a type declaration *)
let generalize_decl decl =
List.iter Ctype.generalize decl.type_params;
begin match decl.type_kind with
Type_abstract ->
()
| Type_variant (v, priv) ->
List.iter (fun (_, tyl) -> List.iter Ctype.generalize tyl) v
| Type_record(r, rep, priv) ->
List.iter (fun (_, _, ty) -> Ctype.generalize ty) r
end;
begin match decl.type_manifest with
| None -> ()
| Some ty -> Ctype.generalize ty
end
(* Check that all constraints are enforced *)
module TypeSet =
Set.Make
(struct
type t = type_expr
let compare t1 t2 = t1.id - t2.id
end)
let rec check_constraints_rec env loc visited ty =
let ty = Ctype.repr ty in
if TypeSet.mem ty !visited then () else begin
visited := TypeSet.add ty !visited;
match ty.desc with
| Tconstr (path, args, _) ->
let args' = List.map (fun _ -> Ctype.newvar ()) args in
let ty' = Ctype.newconstr path args' in
begin try Ctype.enforce_constraints env ty'
with Ctype.Unify _ -> assert false
| Not_found -> raise (Error(loc, Unavailable_type_constructor path))
end;
if not (Ctype.matches env ty ty') then
raise (Error(loc, Constraint_failed (ty, ty')));
List.iter (check_constraints_rec env loc visited) args
| Tpoly (ty, tl) ->
let _, ty = Ctype.instance_poly false tl ty in
check_constraints_rec env loc visited ty
| _ ->
Btype.iter_type_expr (check_constraints_rec env loc visited) ty
end
let check_constraints env (_, sdecl) (_, decl) =
let visited = ref TypeSet.empty in
begin match decl.type_kind with
| Type_abstract -> ()
| Type_variant (l, _) ->
let rec find_pl = function
Ptype_variant(pl, _) -> pl
| Ptype_record _ | Ptype_abstract -> assert false
in
let pl = find_pl sdecl.ptype_kind in
List.iter
(fun (name, tyl) ->
let styl =
try let (_,sty,_) = List.find (fun (n,_,_) -> n = name) pl in sty
with Not_found -> assert false in
List.iter2
(fun sty ty ->
check_constraints_rec env sty.ptyp_loc visited ty)
styl tyl)
l
| Type_record (l, _, _) ->
let rec find_pl = function
Ptype_record(pl, _) -> pl
| Ptype_variant _ | Ptype_abstract -> assert false
in
let pl = find_pl sdecl.ptype_kind in
let rec get_loc name = function
[] -> assert false
| (name', _, sty, _) :: tl ->
if name = name' then sty.ptyp_loc else get_loc name tl
in
List.iter
(fun (name, _, ty) ->
check_constraints_rec env (get_loc name pl) visited ty)
l
end;
begin match decl.type_manifest with
| None -> ()
| Some ty ->
let sty =
match sdecl.ptype_manifest with Some sty -> sty | _ -> assert false
in
check_constraints_rec env sty.ptyp_loc visited ty
end
(*
If both a variant/record definition and a type equation are given,
need to check that the equation refers to a type of the same kind
with the same constructors and labels.
*)
let check_abbrev env (_, sdecl) (id, decl) =
match decl with
{type_kind = (Type_variant _ | Type_record _); type_manifest = Some ty} ->
begin match (Ctype.repr ty).desc with
Tconstr(path, args, _) ->
begin try
let decl' = Env.find_type path env in
if List.length args = List.length decl.type_params
&& Ctype.equal env false args decl.type_params
&& Includecore.type_declarations env id
decl'
(Subst.type_declaration (Subst.add_type id path Subst.identity)
decl)
then ()
else raise(Error(sdecl.ptype_loc, Definition_mismatch ty))
with Not_found ->
raise(Error(sdecl.ptype_loc, Unavailable_type_constructor path))
end
| _ -> raise(Error(sdecl.ptype_loc, Definition_mismatch ty))
end
| _ -> ()
(* Check for ill-defined abbrevs *)
let check_recursion env loc path decl to_check =
(* to_check is true for potentially mutually recursive paths.
(path, decl) is the type declaration to be checked. *)
let visited = ref [] in
let rec check_regular cpath args prev_exp ty =
let ty = Ctype.repr ty in
if not (List.memq ty !visited) then begin
visited := ty :: !visited;
match ty.desc with
| Tconstr(path', args', _) ->
if Path.same path path' then begin
if not (Ctype.equal env false args args') then
raise (Error(loc,
Parameters_differ(cpath, ty, Ctype.newconstr path args)))
end
(* Attempt to expand a type abbreviation if:
1- [to_check path'] holds
(otherwise the expansion cannot involve [path]);
2- we haven't expanded this type constructor before
(otherwise we could loop if [path'] is itself
a non-regular abbreviation). *)
else if to_check path' && not (List.mem path' prev_exp) then begin
try
(* Attempt expansion *)
let (params0, body0) = Env.find_type_expansion path' env in
let (params, body) =
Ctype.instance_parameterized_type params0 body0 in
begin
try List.iter2 (Ctype.unify env) params args'
with Ctype.Unify _ ->
raise (Error(loc, Constraint_failed
(ty, Ctype.newconstr path' params0)));
end;
check_regular path' args (path' :: prev_exp) body
with Not_found -> ()
end;
List.iter (check_regular cpath args prev_exp) args'
| Tpoly (ty, tl) ->
let (_, ty) = Ctype.instance_poly false tl ty in
check_regular cpath args prev_exp ty
| _ ->
Btype.iter_type_expr (check_regular cpath args prev_exp) ty
end in
match decl.type_manifest with
| None -> ()
| Some body ->
(* Check that recursion is well-founded *)
begin try
Ctype.correct_abbrev env path decl.type_params body
with Ctype.Recursive_abbrev ->
raise(Error(loc, Recursive_abbrev (Path.name path)))
end;
(* Check that recursion is regular *)
if decl.type_params = [] then () else
let (args, body) =
Ctype.instance_parameterized_type decl.type_params body in
check_regular path args [] body
let check_abbrev_recursion env id_loc_list (id, decl) =
check_recursion env (List.assoc id id_loc_list) (Path.Pident id) decl
(function Path.Pident id -> List.mem_assoc id id_loc_list | _ -> false)
(* Compute variance *)
let compute_variance env tvl nega posi cntr ty =
let pvisited = ref TypeSet.empty
and nvisited = ref TypeSet.empty
and cvisited = ref TypeSet.empty in
let rec compute_variance_rec posi nega cntr ty =
let ty = Ctype.repr ty in
if (not posi || TypeSet.mem ty !pvisited)
&& (not nega || TypeSet.mem ty !nvisited)
&& (not cntr || TypeSet.mem ty !cvisited) then
()
else begin
if posi then pvisited := TypeSet.add ty !pvisited;
if nega then nvisited := TypeSet.add ty !nvisited;
if cntr then cvisited := TypeSet.add ty !cvisited;
let compute_same = compute_variance_rec posi nega cntr in
match ty.desc with
Tarrow (_, ty1, ty2, _) ->
compute_variance_rec nega posi true ty1;
compute_same ty2
| Ttuple tl ->
List.iter compute_same tl
| Tconstr (path, tl, _) ->
if tl = [] then () else begin
try
let decl = Env.find_type path env in
List.iter2
(fun ty (co,cn,ct) ->
compute_variance_rec
(posi && co || nega && cn)
(posi && cn || nega && co)
(cntr || ct)
ty)
tl decl.type_variance
with Not_found ->
List.iter (compute_variance_rec true true true) tl
end
| Tobject (ty, _) ->
compute_same ty
| Tfield (_, _, ty1, ty2) ->
compute_same ty1;
compute_same ty2
| Tsubst ty ->
compute_same ty
| Tvariant row ->
List.iter
(fun (_,f) ->
match Btype.row_field_repr f with
Rpresent (Some ty) ->
compute_same ty
| Reither (_, tyl, _, _) ->
List.iter compute_same tyl
| _ -> ())
(Btype.row_repr row).row_fields
| Tpoly (ty, _) ->
compute_same ty
| Tvar | Tnil | Tlink _ | Tunivar -> ()
end
in
compute_variance_rec nega posi cntr ty;
List.iter
(fun (ty, covar, convar, ctvar) ->
if TypeSet.mem ty !pvisited then covar := true;
if TypeSet.mem ty !nvisited then convar := true;
if TypeSet.mem ty !cvisited then ctvar := true)
tvl
let compute_variance_decl env decl (required, loc) =
if decl.type_kind = Type_abstract && decl.type_manifest = None then
List.map (fun (c, n) -> if c || n then (c, n, n) else (true, true, true))
required
else
let tvl =
List.map (fun ty -> (Btype.repr ty, ref false, ref false, ref false))
decl.type_params in
begin match decl.type_kind with
Type_abstract ->
begin match decl.type_manifest with
None -> assert false
| Some ty -> compute_variance env tvl true false false ty
end
| Type_variant (tll, _) ->
List.iter
(fun (_,tl) ->
List.iter (compute_variance env tvl true false false) tl)
tll
| Type_record (ftl, _, _) ->
List.iter
(fun (_, mut, ty) ->
let cn = (mut = Mutable) in
compute_variance env tvl true cn cn ty)
ftl
end;
List.map2
(fun (_, co, cn, ct) (c, n) ->
if c && !cn || n && !co then raise (Error(loc, Bad_variance));
let ct = if decl.type_kind = Type_abstract then ct else cn in
(!co, !cn, !ct))
tvl required
let rec compute_variance_fixpoint env decls required variances =
let new_decls =
List.map2
(fun (id, decl) variance -> id, {decl with type_variance = variance})
decls variances
in
let new_env =
List.fold_right (fun (id, decl) env -> Env.add_type id decl env)
new_decls env
in
let new_variances =
List.map2 (fun (_, decl) -> compute_variance_decl new_env decl)
new_decls required
in
let new_variances =
List.map2
(List.map2 (fun (c1,n1,t1) (c2,n2,t2) -> c1||c2, n1||n2, t1||t2))
new_variances variances in
if new_variances = variances then
new_decls, new_env
else
compute_variance_fixpoint env decls required new_variances
(* for typeclass.ml *)
let compute_variance_decls env decls =
let decls, required = List.split decls in
let variances =
List.map (fun (l,_) -> List.map (fun _ -> false, false, false) l) required
in
fst (compute_variance_fixpoint env decls required variances)
(* Translate a set of mutually recursive type declarations *)
let transl_type_decl env name_sdecl_list =
(* Create identifiers. *)
let id_list =
List.map (fun (name, _) -> Ident.create name) name_sdecl_list
in
(*
Since we've introduced fresh idents, make sure the definition
level is at least the binding time of these events. Otherwise,
passing one of the recursively-defined type constrs as argument
to an abbreviation may fail.
*)
Ctype.init_def(Ident.current_time());
Ctype.begin_def();
(* Enter types. *)
let temp_env = List.fold_left2 enter_type env name_sdecl_list id_list in
(* Translate each declaration. *)
let decls =
List.map2 (transl_declaration temp_env) name_sdecl_list id_list in
(* Build the final env. *)
let newenv =
List.fold_right
(fun (id, decl) env -> Env.add_type id decl env)
decls env
in
(* Update stubs *)
List.iter2
(fun id (_, sdecl) -> update_type temp_env newenv id sdecl.ptype_loc)
id_list name_sdecl_list;
(* Generalize type declarations. *)
Ctype.end_def();
List.iter (fun (_, decl) -> generalize_decl decl) decls;
(* Check for ill-formed abbrevs *)
let id_loc_list =
List.map2 (fun id (_,sdecl) -> (id, sdecl.ptype_loc))
id_list name_sdecl_list
in
List.iter (check_abbrev_recursion newenv id_loc_list) decls;
(* Check that all type variable are closed *)
List.iter2
(fun (_, sdecl) (id, decl) ->
match Ctype.closed_type_decl decl with
Some _ -> raise(Error(sdecl.ptype_loc, Unbound_type_var))
| None -> ())
name_sdecl_list decls;
(* Check re-exportation *)
List.iter2 (check_abbrev newenv) name_sdecl_list decls;
(* Check that constraints are enforced *)
List.iter2 (check_constraints newenv) name_sdecl_list decls;
(* Add variances to the environment *)
let required =
List.map (fun (_, sdecl) -> sdecl.ptype_variance, sdecl.ptype_loc)
name_sdecl_list
in
let final_decls, final_env =
compute_variance_fixpoint env decls required
(List.map
(fun (_,decl) -> List.map (fun _ -> (false, false, false))
decl.type_params)
decls) in
(* Done *)
(final_decls, final_env)
(* Translate an exception declaration *)
let transl_exception env excdecl =
reset_type_variables();
Ctype.begin_def();
let types = List.map (transl_simple_type env true) excdecl in
Ctype.end_def();
List.iter Ctype.generalize types;
types
(* Translate an exception rebinding *)
let transl_exn_rebind env loc lid =
let cdescr =
try
Env.lookup_constructor lid env
with Not_found ->
raise(Error(loc, Unbound_exception lid)) in
match cdescr.cstr_tag with
Cstr_exception path -> (path, cdescr.cstr_args)
| _ -> raise(Error(loc, Not_an_exception lid))
(* Translate a value declaration *)
let transl_value_decl env valdecl =
let ty = Typetexp.transl_type_scheme env valdecl.pval_type in
match valdecl.pval_prim with
[] ->
{ val_type = ty; val_kind = Val_reg }
| decl ->
let arity = Ctype.arity ty in
if arity = 0 then
raise(Error(valdecl.pval_type.ptyp_loc, Null_arity_external));
let prim = Primitive.parse_declaration arity decl in
if !Clflags.native_code
&& prim.prim_arity > 5
&& prim.prim_native_name = ""
then raise(Error(valdecl.pval_type.ptyp_loc, Missing_native_external));
{ val_type = ty; val_kind = Val_prim prim }
(* Translate a "with" constraint -- much simplified version of
transl_type_decl. *)
let transl_with_constraint env sdecl =
reset_type_variables();
Ctype.begin_def();
let params =
try
List.map (enter_type_variable true sdecl.ptype_loc) sdecl.ptype_params
with Already_bound ->
raise(Error(sdecl.ptype_loc, Repeated_parameter)) in
List.iter
(function (ty, ty', loc) ->
try
Ctype.unify env (transl_simple_type env false ty)
(transl_simple_type env false ty')
with Ctype.Unify tr ->
raise(Error(loc, Unconsistent_constraint tr)))
sdecl.ptype_cstrs;
let decl =
{ type_params = params;
type_arity = List.length params;
type_kind = Type_abstract;
type_manifest =
begin match sdecl.ptype_manifest with
None -> None
| Some sty -> Some(transl_simple_type env true sty)
end;
type_variance = [];
}
in
if Ctype.closed_type_decl decl <> None then
raise(Error(sdecl.ptype_loc, Unbound_type_var));
let decl =
{decl with type_variance =
compute_variance_decl env decl (sdecl.ptype_variance, sdecl.ptype_loc)} in
Ctype.end_def();
generalize_decl decl;
decl
(* Approximate a type declaration: just make all types abstract *)
let abstract_type_decl arity =
let rec make_params n =
if n <= 0 then [] else Ctype.newvar() :: make_params (n-1) in
Ctype.begin_def();
let decl =
{ type_params = make_params arity;
type_arity = arity;
type_kind = Type_abstract;
type_manifest = None;
type_variance = replicate_list (true, true, true) arity } in
Ctype.end_def();
generalize_decl decl;
decl
let approx_type_decl env name_sdecl_list =
List.map
(fun (name, sdecl) ->
(Ident.create name,
abstract_type_decl (List.length sdecl.ptype_params)))
name_sdecl_list
(* Variant of check_abbrev_recursion to check the well-formedness
conditions on type abbreviations defined within recursive modules. *)
let check_recmod_typedecl env loc recmod_ids path decl =
(* recmod_ids is the list of recursively-defined module idents.
(path, decl) is the type declaration to be checked. *)
check_recursion env loc path decl
(fun path -> List.mem (Path.head path) recmod_ids)
(**** Error report ****)
open Format
let report_error ppf = function
| Repeated_parameter ->
fprintf ppf "A type parameter occurs several times"
| Duplicate_constructor s ->
fprintf ppf "Two constructors are named %s" s
| Too_many_constructors ->
fprintf ppf "Too many non-constant constructors -- \
maximum is %i non-constant constructors"
(Config.max_tag + 1)
| Duplicate_label s ->
fprintf ppf "Two labels are named %s" s
| Recursive_abbrev s ->
fprintf ppf "The type abbreviation %s is cyclic" s
| Definition_mismatch ty ->
Printtyp.reset_and_mark_loops ty;
fprintf ppf
"The variant or record definition does not match that of type@ %a"
Printtyp.type_expr ty
| Constraint_failed (ty, ty') ->
fprintf ppf "Constraints are not satisfied in this type.@.";
Printtyp.reset_and_mark_loops ty;
Printtyp.mark_loops ty';
fprintf ppf "@[<hv>Type@ %a@ should be an instance of@ %a@]"
Printtyp.type_expr ty Printtyp.type_expr ty'
| Parameters_differ (path, ty, ty') ->
Printtyp.reset_and_mark_loops ty;
Printtyp.mark_loops ty';
fprintf ppf
"@[<hv>In the definition of %s, type@ %a@ should be@ %a@]"
(Path.name path) Printtyp.type_expr ty Printtyp.type_expr ty'
| Unconsistent_constraint trace ->
fprintf ppf "The type constraints are not consistent.@.";
Printtyp.report_unification_error ppf trace
(fun ppf -> fprintf ppf "Type")
(fun ppf -> fprintf ppf "is not compatible with type")
| Type_clash trace ->
Printtyp.report_unification_error ppf trace
(function ppf ->
fprintf ppf "This type constructor expands to type")
(function ppf ->
fprintf ppf "but is here used with type")
| Null_arity_external ->
fprintf ppf "External identifiers must be functions"
| Missing_native_external ->
fprintf ppf "@[<hv>An external function with more than 5 arguments \
requires second stub function@ \
for native-code compilation@]"
| Unbound_type_var ->
fprintf ppf "A type variable is unbound in this type declaration"
| Unbound_exception lid ->
fprintf ppf "Unbound exception constructor@ %a" Printtyp.longident lid
| Not_an_exception lid ->
fprintf ppf "The constructor@ %a@ is not an exception"
Printtyp.longident lid
| Bad_variance ->
fprintf ppf
"In this definition, expected parameter variances are not satisfied"
| Unavailable_type_constructor p ->
fprintf ppf "The definition of type %a@ is unavailable" Printtyp.path p
|