summaryrefslogtreecommitdiff
path: root/testsuite/tests/lib-set/testmap.ml
blob: b41c020df05cdb1d277e8d59a674e1d738e59580 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
(* TEST
*)

module M = Map.Make(struct type t = int let compare (x:t) y = compare x y end)

let img x m = try Some(M.find x m) with Not_found -> None

let testvals = [0;1;2;3;4;5;6;7;8;9]

let check msg cond =
  if not (List.for_all cond testvals) then
    Printf.printf "Test %s FAILED\n%!" msg

let checkbool msg b =
  if not b then
    Printf.printf "Test %s FAILED\n%!" msg

let uncurry (f: 'a -> 'b -> 'c) (x, y: 'a * 'b) : 'c = f x y

let test x v s1 s2 =

  checkbool "is_empty"
    (M.is_empty s1 = List.for_all (fun i -> img i s1 = None) testvals);

  check "mem"
    (fun i -> M.mem i s1 = (img i s1 <> None));

  check "add"
    (let s = M.add x v s1 in
     fun i -> img i s = (if i = x then Some v else img i s1));

  check "singleton"
    (let s = M.singleton x v in
     fun i -> img i s = (if i = x then Some v else None));

  check "remove"
    (let s = M.remove x s1 in
     fun i -> img i s = (if i = x then None else img i s1));

  check "merge-union"
    (let f _ o1 o2 =
       match o1, o2 with
       | Some v1, Some v2 -> Some (v1 +. v2)
       | None, _ -> o2
       | _, None -> o1 in
     let s = M.merge f s1 s2 in
     fun i -> img i s = f i (img i s1) (img i s2));

  check "merge-inter"
    (let f _ o1 o2 =
       match o1, o2 with
       | Some v1, Some v2 -> Some (v1 -. v2)
       | _, _ -> None in
     let s = M.merge f s1 s2 in
     fun i -> img i s = f i (img i s1) (img i s2));

  checkbool "bindings"
    (let rec extract = function
       | [] -> []
       | hd :: tl ->
           match img hd s1 with
           | None -> extract tl
           | Some v ->(hd,  v) :: extract tl in
     M.bindings s1 = extract testvals);

  checkbool "for_all"
    (let p x y = x mod 2 = 0 in
     M.for_all p s1 = List.for_all (uncurry p) (M.bindings s1));

  checkbool "exists"
    (let p x y = x mod 3 = 0 in
     M.exists p s1 = List.exists (uncurry p) (M.bindings s1));

  checkbool "filter"
    (let p x y = x >= 3 && x <= 6 in
     M.bindings(M.filter p s1) = List.filter (uncurry p) (M.bindings s1));

  checkbool "filter_map"
    (let f x y = if x >= 3 && x <= 6 then Some (2 * x) else None in
     let f_on_pair (x, y) = Option.map (fun v -> (x, v)) (f x y) in
     M.bindings(M.filter_map f s1) = List.filter_map f_on_pair (M.bindings s1));

  checkbool "partition"
    (let p x y = x >= 3 && x <= 6 in
     let (st,sf) = M.partition p s1
     and (lt,lf) = List.partition (uncurry p) (M.bindings s1) in
     M.bindings st = lt && M.bindings sf = lf);

  checkbool "cardinal"
    (M.cardinal s1 = List.length (M.bindings s1));

  checkbool "min_binding"
    (try
       let (k,v) = M.min_binding s1 in
       img k s1 = Some v && M.for_all (fun i _ -> k <= i) s1
     with Not_found ->
       M.is_empty s1);

  checkbool "max_binding"
    (try
       let (k,v) = M.max_binding s1 in
       img k s1 = Some v && M.for_all (fun i _ -> k >= i) s1
     with Not_found ->
       M.is_empty s1);

  checkbool "choose"
    (try
       let (x,v) = M.choose s1 in img x s1 = Some v
     with Not_found ->
       M.is_empty s1);

  checkbool "find_first"
    (let (l, p, r) = M.split x s1 in
    if p = None && M.is_empty r then
      try
        let _ = M.find_first (fun k -> k >= x) s1 in
        false
      with Not_found ->
        true
    else
      let (k, v) = M.find_first (fun k -> k >= x) s1 in
      match p with
        None -> (k, v) = M.min_binding r
      | Some v1 -> (k, v) = (x, v1));

  checkbool "find_first_opt"
    (let (l, p, r) = M.split x s1 in
    let find_first_opt_result = M.find_first_opt (fun k -> k >= x) s1 in
    if p = None && M.is_empty r then
      match find_first_opt_result with
        None -> true
      | _ -> false
    else
      match find_first_opt_result with
        | None -> false
        | Some (k, v) ->
          (match p with
          | None -> (k, v) = M.min_binding r
          | Some v1 -> (k, v) = (x, v1)));

  checkbool "find_last"
    (let (l, p, r) = M.split x s1 in
    if p = None && M.is_empty l then
      try
        let _ = M.find_last (fun k -> k <= x) s1 in
        false
      with Not_found ->
        true
    else
      let (k, v) = M.find_last (fun k -> k <= x) s1 in
      match p with
        None -> (k, v) = M.max_binding l
      | Some v1 -> (k, v) = (x, v1));

  checkbool "find_last_opt"
    (let (l, p, r) = M.split x s1 in
    let find_last_opt_result = M.find_last_opt (fun k -> k <= x) s1 in
    if p = None && M.is_empty l then
      match find_last_opt_result with
        None -> true
      | _ -> false
    else
      (match find_last_opt_result with
      | None -> false
      | Some (k, v) ->
        (match p with
        | None -> (k, v) = M.max_binding l
        | Some v1 -> (k, v) = (x, v1))));

  check "split"
    (let (l, p, r) = M.split x s1 in
     fun i ->
       if i < x then img i l = img i s1
       else if i > x then img i r = img i s1
       else p = img i s1);

  checkbool "to_seq_of_seq"
    (M.equal (=) s1 (M.of_seq @@ M.to_seq s1));

  checkbool "to_rev_seq_of_seq"
    (M.equal (=) s1 (M.of_seq @@ M.to_rev_seq s1));

  checkbool "to_seq_from"
    (let seq = M.to_seq_from x s1 in
     let ok1 = List.of_seq seq |> List.for_all (fun (y,_) -> y >= x) in
     let ok2 =
       (M.to_seq s1 |> List.of_seq |> List.filter (fun (y,_) -> y >= x))
       =
       (List.of_seq seq)
     in
     ok1 && ok2);

  checkbool "to_seq_increasing"
    (let seq = M.to_seq s1 in
     let last = ref min_int in
     Seq.iter (fun (x, _) -> assert (!last <= x); last := x) seq;
     true);

  checkbool "to_rev_seq_decreasing"
    (let seq = M.to_rev_seq s1 in
     let last = ref max_int in
     Seq.iter (fun (x, _) -> assert (x <= !last); last := x) seq;
     true);

  ()

let rkey() = Random.int 10

let rdata() = Random.float 1.0

let rmap() =
  let s = ref M.empty in
  for i = 1 to Random.int 10 do s := M.add (rkey()) (rdata()) !s done;
  !s

let _ =
  Random.init 42;
  for i = 1 to 10000 do test (rkey()) (rdata()) (rmap()) (rmap()) done

let () =
  (* check that removing a binding from a map that is not present in this map
     (1) doesn't allocate and (2) return the original map *)
  let m1 = ref M.empty in
  for i = 1 to 10 do m1 := M.add i (float i) !m1 done;
  let m2 = ref !m1 in

  let a0 = Gc.allocated_bytes () in
  let a1 = Gc.allocated_bytes () in
  for i = 11 to 30 do m2 := M.remove i !m2 done;
  let a2 = Gc.allocated_bytes () in

  assert (!m2 == !m1);
  assert(a2 -. a1 = a1 -. a0)

let () =
  (* check that filtering a map where all bindings are satisfied by
     the given predicate returns the original map *)
  let m1 = ref M.empty in
  for i = 1 to 10 do m1 := M.add i (float i) !m1 done;
  let m2 = M.filter (fun e _ -> e >= 0) !m1 in
  assert (m2 == !m1)

let () =
  (* check that adding a binding "x -> y" to a map that already
     contains it doesn't allocate and return the original map. *)
  let m1 = ref M.empty in
  let tmp = ref None in
  for i = 1 to 10 do
    tmp := Some (float i);
    m1 := M.add i !tmp !m1
  done;
  let m2 = ref !m1 in

  let a0 = Gc.allocated_bytes () in
  let a1 = Gc.allocated_bytes () in

  (* 10 |-> !tmp is already present in !m2 *)
  m2 := M.add 10 !tmp !m2;

  let a2 = Gc.allocated_bytes () in

  assert (!m2 == !m1);
  assert(a2 -. a1 = a1 -. a0);

  (* 4 |-> Some 84. is not present in !m2 *)
  m2 := M.add 4 (Some 84.) !m2;

  assert (not (!m2 == !m1));