summaryrefslogtreecommitdiff
path: root/stdlib/scanf.ml
blob: b4d62a81259746b18e9c932d6c2666cf2d3009b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
(**************************************************************************)
(*                                                                        *)
(*                                 OCaml                                  *)
(*                                                                        *)
(*             Pierre Weis, projet Cristal, INRIA Rocquencourt            *)
(*                                                                        *)
(*   Copyright 2002 Institut National de Recherche en Informatique et     *)
(*     en Automatique.                                                    *)
(*                                                                        *)
(*   All rights reserved.  This file is distributed under the terms of    *)
(*   the GNU Lesser General Public License version 2.1, with the          *)
(*   special exception on linking described in the file LICENSE.          *)
(*                                                                        *)
(**************************************************************************)

open CamlinternalFormatBasics
open CamlinternalFormat

(* alias to avoid warning for ambiguity between
   Stdlib.format6
   and CamlinternalFormatBasics.format6

   (the former is in fact an alias for the latter,
    but the ambiguity warning doesn't care)
*)
type ('a, 'b, 'c, 'd, 'e, 'f) format6 =
  ('a, 'b, 'c, 'd, 'e, 'f) Stdlib.format6


(* The run-time library for scanners. *)

(* Scanning buffers. *)
module type SCANNING = sig

  type in_channel

  type scanbuf = in_channel

  type file_name = string

  val stdin : in_channel
  (* The scanning buffer reading from [Stdlib.stdin].
     [stdib] is equivalent to [Scanning.from_channel Stdlib.stdin]. *)

  val stdib : in_channel
  (* An alias for [Scanf.stdin], the scanning buffer reading from
     [Stdlib.stdin]. *)

  val next_char : scanbuf -> char
  (* [Scanning.next_char ib] advance the scanning buffer for
     one character.
     If no more character can be read, sets a end of file condition and
     returns '\000'. *)

  val invalidate_current_char : scanbuf -> unit
  (* [Scanning.invalidate_current_char ib] mark the current_char as already
     scanned. *)

  val peek_char : scanbuf -> char
  (* [Scanning.peek_char ib] returns the current char available in
     the buffer or reads one if necessary (when the current character is
     already scanned).
     If no character can be read, sets an end of file condition and
     returns '\000'. *)

  val checked_peek_char : scanbuf -> char
  (* Same as [Scanning.peek_char] above but always returns a valid char or
     fails: instead of returning a null char when the reading method of the
     input buffer has reached an end of file, the function raises exception
     [End_of_file]. *)

  val store_char : int -> scanbuf -> char -> int
  (* [Scanning.store_char lim ib c] adds [c] to the token buffer
     of the scanning buffer [ib]. It also advances the scanning buffer for
     one character and returns [lim - 1], indicating the new limit for the
     length of the current token. *)

  val skip_char : int -> scanbuf -> int
  (* [Scanning.skip_char lim ib] ignores the current character. *)

  val ignore_char : int -> scanbuf -> int
  (* [Scanning.ignore_char ib lim] ignores the current character and
     decrements the limit. *)

  val token : scanbuf -> string
  (* [Scanning.token ib] returns the string stored into the token
     buffer of the scanning buffer: it returns the token matched by the
     format. *)

  val reset_token : scanbuf -> unit
  (* [Scanning.reset_token ib] resets the token buffer of
     the given scanning buffer. *)

  val char_count : scanbuf -> int
  (* [Scanning.char_count ib] returns the number of characters
     read so far from the given buffer. *)

  val line_count : scanbuf -> int
  (* [Scanning.line_count ib] returns the number of new line
     characters read so far from the given buffer. *)

  val token_count : scanbuf -> int
  (* [Scanning.token_count ib] returns the number of tokens read
     so far from [ib]. *)

  val eof : scanbuf -> bool
  (* [Scanning.eof ib] returns the end of input condition
     of the given buffer. *)

  val end_of_input : scanbuf -> bool
  (* [Scanning.end_of_input ib] tests the end of input condition
     of the given buffer (if no char has ever been read, an attempt to
     read one is performed). *)

  val beginning_of_input : scanbuf -> bool
  (* [Scanning.beginning_of_input ib] tests the beginning of input
     condition of the given buffer. *)

  val name_of_input : scanbuf -> string
  (* [Scanning.name_of_input ib] returns the name of the character
     source for input buffer [ib]. *)

  val open_in : file_name -> in_channel
  val open_in_bin : file_name -> in_channel
  val from_file : file_name -> in_channel
  val from_file_bin : file_name -> in_channel
  val from_string : string -> in_channel
  val from_function : (unit -> char) -> in_channel
  val from_channel : Stdlib.in_channel -> in_channel

  val close_in : in_channel -> unit

  val memo_from_channel : Stdlib.in_channel -> in_channel
  (* Obsolete. *)

end


module Scanning : SCANNING = struct

  (* The run-time library for scanf. *)

  type file_name = string

  type in_channel_name =
    | From_channel of Stdlib.in_channel
    | From_file of file_name * Stdlib.in_channel
    | From_function
    | From_string


  type in_channel = {
    mutable ic_eof : bool;
    mutable ic_current_char : char;
    mutable ic_current_char_is_valid : bool;
    mutable ic_char_count : int;
    mutable ic_line_count : int;
    mutable ic_token_count : int;
    mutable ic_get_next_char : unit -> char;
    ic_token_buffer : Buffer.t;
    ic_input_name : in_channel_name;
  }


  type scanbuf = in_channel

  let null_char = '\000'

  (* Reads a new character from input buffer.
     Next_char never fails, even in case of end of input:
     it then simply sets the end of file condition. *)
  let next_char ib =
    try
      let c = ib.ic_get_next_char () in
      ib.ic_current_char <- c;
      ib.ic_current_char_is_valid <- true;
      ib.ic_char_count <- succ ib.ic_char_count;
      if c = '\n' then ib.ic_line_count <- succ ib.ic_line_count;
      c with
    | End_of_file ->
      let c = null_char in
      ib.ic_current_char <- c;
      ib.ic_current_char_is_valid <- false;
      ib.ic_eof <- true;
      c


  let peek_char ib =
    if ib.ic_current_char_is_valid
    then ib.ic_current_char
    else next_char ib


  (* Returns a valid current char for the input buffer. In particular
     no irrelevant null character (as set by [next_char] in case of end
     of input) is returned, since [End_of_file] is raised when
     [next_char] sets the end of file condition while trying to read a
     new character. *)
  let checked_peek_char ib =
    let c = peek_char ib in
    if ib.ic_eof then raise End_of_file;
    c


  let end_of_input ib =
    ignore (peek_char ib);
    ib.ic_eof


  let eof ib = ib.ic_eof

  let beginning_of_input ib = ib.ic_char_count = 0

  let name_of_input ib =
    match ib.ic_input_name with
    | From_channel _ic -> "unnamed Stdlib input channel"
    | From_file (fname, _ic) -> fname
    | From_function -> "unnamed function"
    | From_string -> "unnamed character string"


  let char_count ib =
    if ib.ic_current_char_is_valid
    then ib.ic_char_count - 1
    else ib.ic_char_count


  let line_count ib = ib.ic_line_count

  let reset_token ib = Buffer.reset ib.ic_token_buffer

  let invalidate_current_char ib = ib.ic_current_char_is_valid <- false

  let token ib =
    let token_buffer = ib.ic_token_buffer in
    let tok = Buffer.contents token_buffer in
    Buffer.clear token_buffer;
    ib.ic_token_count <- succ ib.ic_token_count;
    tok


  let token_count ib = ib.ic_token_count

  let skip_char width ib =
    invalidate_current_char ib;
    width


  let ignore_char width ib = skip_char (width - 1) ib

  let store_char width ib c =
    Buffer.add_char ib.ic_token_buffer c;
    ignore_char width ib


  let default_token_buffer_size = 1024

  let create iname next = {
    ic_eof = false;
    ic_current_char = null_char;
    ic_current_char_is_valid = false;
    ic_char_count = 0;
    ic_line_count = 0;
    ic_token_count = 0;
    ic_get_next_char = next;
    ic_token_buffer = Buffer.create default_token_buffer_size;
    ic_input_name = iname;
  }


  let from_string s =
    let i = ref 0 in
    let len = String.length s in
    let next () =
      if !i >= len then raise End_of_file else
      let c = s.[!i] in
      incr i;
      c in
    create From_string next


  let from_function = create From_function

  (* Scanning from an input channel. *)

  (* Position of the problem:

     We cannot prevent the scanning mechanism to use one lookahead character,
     if needed by the semantics of the format string specifications (e.g. a
     trailing 'skip space' specification in the format string); in this case,
     the mandatory lookahead character is indeed read from the input and not
     used to return the token read. It is thus mandatory to be able to store
     an unused lookahead character somewhere to get it as the first character
     of the next scan.

     To circumvent this problem, all the scanning functions get a low level
     input buffer argument where they store the lookahead character when
     needed; additionally, the input buffer is the only source of character of
     a scanner. The [scanbuf] input buffers are defined in module {!Scanning}.

     Now we understand that it is extremely important that related and
     successive calls to scanners indeed read from the same input buffer.
     In effect, if a scanner [scan1] is reading from [ib1] and stores an
     unused lookahead character [c1] into its input buffer [ib1], then
     another scanner [scan2] not reading from the same buffer [ib1] will miss
     the character [c1], seemingly vanished in the air from the point of view
     of [scan2].

     This mechanism works perfectly to read from strings, from files, and from
     functions, since in those cases, allocating two buffers reading from the
     same source is unnatural.

     Still, there is a difficulty in the case of scanning from an input
     channel. In effect, when scanning from an input channel [ic], this channel
     may not have been allocated from within this library. Hence, it may be
     shared (two functions of the user's program may successively read from
     [ic]). This is highly error prone since, one of the function may seek the
     input channel, while the other function has still an unused lookahead
     character in its input buffer. In conclusion, you should never mix direct
     low level reading and high level scanning from the same input channel.

  *)

  (* Perform bufferized input to improve efficiency. *)
  let file_buffer_size = ref 1024

  (* The scanner closes the input channel at end of input. *)
  let scan_close_at_end ic = Stdlib.close_in ic; raise End_of_file

  (* The scanner does not close the input channel at end of input:
     it just raises [End_of_file]. *)
  let scan_raise_at_end _ic = raise End_of_file

  let from_ic scan_close_ic iname ic =
    let len = !file_buffer_size in
    let buf = Bytes.create len in
    let i = ref 0 in
    let lim = ref 0 in
    let eof = ref false in
    let next () =
      if !i < !lim then begin let c = Bytes.get buf !i in incr i; c end else
      if !eof then raise End_of_file else begin
        lim := input ic buf 0 len;
        if !lim = 0 then begin eof := true; scan_close_ic ic end else begin
          i := 1;
          Bytes.get buf 0
        end
      end in
    create iname next


  let from_ic_close_at_end = from_ic scan_close_at_end
  let from_ic_raise_at_end = from_ic scan_raise_at_end

  (* The scanning buffer reading from [Stdlib.stdin].
     One could try to define [stdib] as a scanning buffer reading a character
     at a time (no bufferization at all), but unfortunately the top-level
     interaction would be wrong. This is due to some kind of
     'race condition' when reading from [Stdlib.stdin],
     since the interactive compiler and [Scanf.scanf] will simultaneously
     read the material they need from [Stdlib.stdin]; then, confusion
     will result from what should be read by the top-level and what should be
     read by [Scanf.scanf].
     This is even more complicated by the one character lookahead that
     [Scanf.scanf] is sometimes obliged to maintain: the lookahead character
     will be available for the next [Scanf.scanf] entry, seemingly coming from
     nowhere.
     Also no [End_of_file] is raised when reading from stdin: if not enough
     characters have been read, we simply ask to read more. *)
  let stdin =
    from_ic scan_raise_at_end
      (From_file ("-", Stdlib.stdin)) Stdlib.stdin


  let stdib = stdin

  let open_in_file open_in fname =
    match fname with
    | "-" -> stdin
    | fname ->
      let ic = open_in fname in
      from_ic_close_at_end (From_file (fname, ic)) ic


  let open_in = open_in_file Stdlib.open_in
  let open_in_bin = open_in_file Stdlib.open_in_bin

  let from_file = open_in
  let from_file_bin = open_in_bin

  let from_channel ic =
    from_ic_raise_at_end (From_channel ic) ic


  let close_in ib =
    match ib.ic_input_name with
    | From_channel ic ->
      Stdlib.close_in ic
    | From_file (_fname, ic) -> Stdlib.close_in ic
    | From_function | From_string -> ()


  (*
     Obsolete: a memo [from_channel] version to build a [Scanning.in_channel]
     scanning buffer out of a [Stdlib.in_channel].
     This function was used to try to preserve the scanning
     semantics for the (now obsolete) function [fscanf].
     Given that all scanner must read from a [Scanning.in_channel] scanning
     buffer, [fscanf] must read from one!
     More precisely, given [ic], all successive calls [fscanf ic] must read
     from the same scanning buffer.
     This obliged this library to allocated scanning buffers that were
     not properly garbage collectable, hence leading to memory leaks.
     If you need to read from a [Stdlib.in_channel] input channel
     [ic], simply define a [Scanning.in_channel] formatted input channel as in
     [let ib = Scanning.from_channel ic], then use [Scanf.bscanf ib] as usual.
  *)
  let memo_from_ic =
    let memo = ref [] in
    (fun scan_close_ic ic ->
     try List.assq ic !memo with
     | Not_found ->
       let ib =
         from_ic scan_close_ic (From_channel ic) ic in
       memo := (ic, ib) :: !memo;
       ib)


  (* Obsolete: see {!memo_from_ic} above. *)
  let memo_from_channel = memo_from_ic scan_raise_at_end

end


(* Formatted input functions. *)

type ('a, 'b, 'c, 'd) scanner =
     ('a, Scanning.in_channel, 'b, 'c, 'a -> 'd, 'd) format6 -> 'c


(* Reporting errors. *)
exception Scan_failure of string

let bad_input s = raise (Scan_failure s)

let bad_input_escape c =
  bad_input (Printf.sprintf "illegal escape character %C" c)


let bad_token_length message =
  bad_input
    (Printf.sprintf
       "scanning of %s failed: \
        the specified length was too short for token"
       message)


let bad_end_of_input message =
  bad_input
    (Printf.sprintf
       "scanning of %s failed: \
        premature end of file occurred before end of token"
       message)


let bad_float () =
  bad_input "no dot or exponent part found in float token"


let bad_hex_float () =
  bad_input "not a valid float in hexadecimal notation"


let character_mismatch_err c ci =
  Printf.sprintf "looking for %C, found %C" c ci


let character_mismatch c ci =
  bad_input (character_mismatch_err c ci)


let rec skip_whites ib =
  let c = Scanning.peek_char ib in
  if not (Scanning.eof ib) then begin
    match c with
    | ' ' | '\t' | '\n' | '\r' ->
      Scanning.invalidate_current_char ib; skip_whites ib
    | _ -> ()
  end


(* Checking that [c] is indeed in the input, then skips it.
   In this case, the character [c] has been explicitly specified in the
   format as being mandatory in the input; hence we should fail with
   [End_of_file] in case of end_of_input.
   (Remember that [Scan_failure] is raised only when (we can prove by
   evidence) that the input does not match the format string given. We must
   thus differentiate [End_of_file] as an error due to lack of input, and
   [Scan_failure] which is due to provably wrong input. I am not sure this is
   worth the burden: it is complex and somehow subliminal; should be clearer
   to fail with Scan_failure "Not enough input to complete scanning"!)

   That's why, waiting for a better solution, we use checked_peek_char here.
   We are also careful to treat "\r\n" in the input as an end of line marker:
   it always matches a '\n' specification in the input format string. *)
let rec check_char ib c =
  match c with
  | ' ' -> skip_whites ib
  | '\n' -> check_newline ib
  | c -> check_this_char ib c

and check_this_char ib c =
  let ci = Scanning.checked_peek_char ib in
  if ci = c then Scanning.invalidate_current_char ib else
  character_mismatch c ci

and check_newline ib =
  let ci = Scanning.checked_peek_char ib in
  match ci with
  | '\n' -> Scanning.invalidate_current_char ib
  | '\r' -> Scanning.invalidate_current_char ib; check_this_char ib '\n'
  | _ -> character_mismatch '\n' ci


(* Extracting tokens from the output token buffer. *)

let token_char ib = (Scanning.token ib).[0]

let token_string = Scanning.token

let token_bool ib =
  match Scanning.token ib with
  | "true" -> true
  | "false" -> false
  | s -> bad_input (Printf.sprintf "invalid boolean '%s'" s)


(* The type of integer conversions. *)
type integer_conversion =
  | B_conversion (* Unsigned binary conversion *)
  | D_conversion (* Signed decimal conversion *)
  | I_conversion (* Signed integer conversion *)
  | O_conversion (* Unsigned octal conversion *)
  | U_conversion (* Unsigned decimal conversion *)
  | X_conversion (* Unsigned hexadecimal conversion *)


let integer_conversion_of_char = function
  | 'b' -> B_conversion
  | 'd' -> D_conversion
  | 'i' -> I_conversion
  | 'o' -> O_conversion
  | 'u' -> U_conversion
  | 'x' | 'X' -> X_conversion
  | _ -> assert false


(* Extract an integer literal token.
   Since the functions Stdlib.*int*_of_string do not accept a leading +,
   we skip it if necessary. *)
let token_int_literal conv ib =
  let tok =
    match conv with
    | D_conversion | I_conversion -> Scanning.token ib
    | U_conversion -> "0u" ^ Scanning.token ib
    | O_conversion -> "0o" ^ Scanning.token ib
    | X_conversion -> "0x" ^ Scanning.token ib
    | B_conversion -> "0b" ^ Scanning.token ib in
  let l = String.length tok in
  if l = 0 || tok.[0] <> '+' then tok else String.sub tok 1 (l - 1)


(* All the functions that convert a string to a number raise the exception
   Failure when the conversion is not possible.
   This exception is then trapped in [kscanf]. *)
let token_int conv ib = int_of_string (token_int_literal conv ib)

let token_float ib = float_of_string (Scanning.token ib)

(* To scan native ints, int32 and int64 integers.
   We cannot access to conversions to/from strings for those types,
   Nativeint.of_string, Int32.of_string, and Int64.of_string,
   since those modules are not available to [Scanf].
   However, we can bind and use the corresponding primitives that are
   available in the runtime. *)
external nativeint_of_string : string -> nativeint
  = "caml_nativeint_of_string"

external int32_of_string : string -> int32
  = "caml_int32_of_string"

external int64_of_string : string -> int64
  = "caml_int64_of_string"


let token_nativeint conv ib = nativeint_of_string (token_int_literal conv ib)
let token_int32 conv ib = int32_of_string (token_int_literal conv ib)
let token_int64 conv ib = int64_of_string (token_int_literal conv ib)

(* Scanning numbers. *)

(* Digits scanning functions suppose that one character has been checked and
   is available, since they return at end of file with the currently found
   token selected.

   Put it in another way, the digits scanning functions scan for a possibly
   empty sequence of digits, (hence, a successful scanning from one of those
   functions does not imply that the token is a well-formed number: to get a
   true number, it is mandatory to check that at least one valid digit is
   available before calling one of the digit scanning functions). *)

(* The decimal case is treated especially for optimization purposes. *)
let rec scan_decimal_digit_star width ib =
  if width = 0 then width else
  let c = Scanning.peek_char ib in
  if Scanning.eof ib then width else
  match c with
  | '0' .. '9' as c ->
    let width = Scanning.store_char width ib c in
    scan_decimal_digit_star width ib
  | '_' ->
    let width = Scanning.ignore_char width ib in
    scan_decimal_digit_star width ib
  | _ -> width


let scan_decimal_digit_plus width ib =
  if width = 0 then bad_token_length "decimal digits" else
  let c = Scanning.checked_peek_char ib in
  match c with
  | '0' .. '9' ->
    let width = Scanning.store_char width ib c in
    scan_decimal_digit_star width ib
  | c ->
    bad_input (Printf.sprintf "character %C is not a decimal digit" c)


(* To scan numbers from other bases, we use a predicate argument to
   scan digits. *)
let scan_digit_star digitp width ib =
  let rec scan_digits width ib =
    if width = 0 then width else
    let c = Scanning.peek_char ib in
    if Scanning.eof ib then width else
    match c with
    | c when digitp c ->
      let width = Scanning.store_char width ib c in
      scan_digits width ib
    | '_' ->
      let width = Scanning.ignore_char width ib in
      scan_digits width ib
    | _ -> width in
  scan_digits width ib


let scan_digit_plus basis digitp width ib =
  (* Ensure we have got enough width left,
     and read at least one digit. *)
  if width = 0 then bad_token_length "digits" else
  let c = Scanning.checked_peek_char ib in
  if digitp c then
    let width = Scanning.store_char width ib c in
    scan_digit_star digitp width ib
  else
    bad_input (Printf.sprintf "character %C is not a valid %s digit" c basis)


let is_binary_digit = function
  | '0' .. '1' -> true
  | _ -> false


let scan_binary_int = scan_digit_plus "binary" is_binary_digit

let is_octal_digit = function
  | '0' .. '7' -> true
  | _ -> false


let scan_octal_int = scan_digit_plus "octal" is_octal_digit

let is_hexa_digit = function
  | '0' .. '9' | 'a' .. 'f' | 'A' .. 'F' -> true
  | _ -> false


let scan_hexadecimal_int = scan_digit_plus "hexadecimal" is_hexa_digit

(* Scan a decimal integer. *)
let scan_unsigned_decimal_int = scan_decimal_digit_plus

let scan_sign width ib =
  let c = Scanning.checked_peek_char ib in
  match c with
  | '+' -> Scanning.store_char width ib c
  | '-' -> Scanning.store_char width ib c
  | _ -> width


let scan_optionally_signed_decimal_int width ib =
  let width = scan_sign width ib in
  scan_unsigned_decimal_int width ib


(* Scan an unsigned integer that could be given in any (common) basis.
   If digits are prefixed by one of 0x, 0X, 0o, or 0b, the number is
   assumed to be written respectively in hexadecimal, hexadecimal,
   octal, or binary. *)
let scan_unsigned_int width ib =
  match Scanning.checked_peek_char ib with
  | '0' as c ->
    let width = Scanning.store_char width ib c in
    if width = 0 then width else
    let c = Scanning.peek_char ib in
    if Scanning.eof ib then width else
    begin match c with
    | 'x' | 'X' -> scan_hexadecimal_int (Scanning.store_char width ib c) ib
    | 'o' -> scan_octal_int (Scanning.store_char width ib c) ib
    | 'b' -> scan_binary_int (Scanning.store_char width ib c) ib
    | _ -> scan_decimal_digit_star width ib end
  | _ -> scan_unsigned_decimal_int width ib


let scan_optionally_signed_int width ib =
  let width = scan_sign width ib in
  scan_unsigned_int width ib


let scan_int_conversion conv width ib =
  match conv with
  | B_conversion -> scan_binary_int width ib
  | D_conversion -> scan_optionally_signed_decimal_int width ib
  | I_conversion -> scan_optionally_signed_int width ib
  | O_conversion -> scan_octal_int width ib
  | U_conversion -> scan_unsigned_decimal_int width ib
  | X_conversion -> scan_hexadecimal_int width ib


(* Scanning floating point numbers. *)

(* Fractional part is optional and can be reduced to 0 digits. *)
let scan_fractional_part width ib =
  if width = 0 then width else
  let c = Scanning.peek_char ib in
  if Scanning.eof ib then width else
  match c with
  | '0' .. '9' as c ->
    scan_decimal_digit_star (Scanning.store_char width ib c) ib
  | _ -> width


(* Exp part is optional and can be reduced to 0 digits. *)
let scan_exponent_part width ib =
  if width = 0 then width else
  let c = Scanning.peek_char ib in
  if Scanning.eof ib then width else
  match c with
  | 'e' | 'E' as c ->
    scan_optionally_signed_decimal_int (Scanning.store_char width ib c) ib
  | _ -> width


(* Scan the integer part of a floating point number, (not using the
   OCaml lexical convention since the integer part can be empty):
   an optional sign, followed by a possibly empty sequence of decimal
   digits (e.g. -.1). *)
let scan_integer_part width ib =
  let width = scan_sign width ib in
  scan_decimal_digit_star width ib


(*
   For the time being we have (as found in scanf.mli):
   the field width is composed of an optional integer literal
   indicating the maximal width of the token to read.
   Unfortunately, the type-checker let the user write an optional precision,
   since this is valid for printf format strings.

   Thus, the next step for Scanf is to support a full width and precision
   indication, more or less similar to the one for printf, possibly extended
   to the specification of a [max, min] range for the width of the token read
   for strings. Something like the following spec for scanf.mli:

   The optional [width] is an integer indicating the maximal
   width of the token read. For instance, [%6d] reads an integer,
   having at most 6 characters.

   The optional [precision] is a dot [.] followed by an integer:

   - in the floating point number conversions ([%f], [%e], [%g], [%F], [%E],
   and [%F] conversions, the [precision] indicates the maximum number of
   digits that may follow the decimal point. For instance, [%.4f] reads a
   [float] with at most 4 fractional digits,

   - in the string conversions ([%s], [%S], [%\[ range \]]), and in the
   integer number conversions ([%i], [%d], [%u], [%x], [%o], and their
   [int32], [int64], and [native_int] correspondent), the [precision]
   indicates the required minimum width of the token read,

   - on all other conversions, the width and precision specify the [max, min]
   range for the width of the token read.
*)
let scan_float width precision ib =
  let width = scan_integer_part width ib in
  if width = 0 then width, precision else
  let c = Scanning.peek_char ib in
  if Scanning.eof ib then width, precision else
  match c with
  | '.' ->
    let width = Scanning.store_char width ib c in
    let precision = min width precision in
    let width = width - (precision - scan_fractional_part precision ib) in
    scan_exponent_part width ib, precision
  | _ ->
    scan_exponent_part width ib, precision


let check_case_insensitive_string width ib error str =
  let lowercase c =
    match c with
    | 'A' .. 'Z' ->
      char_of_int (int_of_char c - int_of_char 'A' + int_of_char 'a')
    | _ -> c in
  let len = String.length str in
  let width = ref width in
  for i = 0 to len - 1 do
    let c = Scanning.peek_char ib in
    if lowercase c <> lowercase str.[i] then error ();
    if !width = 0 then error ();
    width := Scanning.store_char !width ib c;
  done;
  !width


let scan_hex_float width precision ib =
  if width = 0 || Scanning.end_of_input ib then bad_hex_float ();
  let width = scan_sign width ib in
  if width = 0 || Scanning.end_of_input ib then bad_hex_float ();
  match Scanning.peek_char ib with
  | '0' as c -> (
    let width = Scanning.store_char width ib c in
    if width = 0 || Scanning.end_of_input ib then bad_hex_float ();
    let width = check_case_insensitive_string width ib bad_hex_float "x" in
    if width = 0 || Scanning.end_of_input ib then width else
      let width = match Scanning.peek_char ib with
        | '.' | 'p' | 'P' -> width
        | _ -> scan_hexadecimal_int width ib in
      if width = 0 || Scanning.end_of_input ib then width else
        let width = match Scanning.peek_char ib with
          | '.' as c -> (
            let width = Scanning.store_char width ib c in
            if width = 0 || Scanning.end_of_input ib then width else
              match Scanning.peek_char ib with
              | 'p' | 'P' -> width
              | _ ->
                let precision = min width precision in
                width - (precision - scan_hexadecimal_int precision ib)
          )
          | _ -> width in
        if width = 0 || Scanning.end_of_input ib then width else
          match Scanning.peek_char ib with
          | 'p' | 'P' as c ->
            let width = Scanning.store_char width ib c in
            if width = 0 || Scanning.end_of_input ib then bad_hex_float ();
            scan_optionally_signed_decimal_int width ib
          | _ -> width
  )
  | 'n' | 'N' as c ->
    let width = Scanning.store_char width ib c in
    if width = 0 || Scanning.end_of_input ib then bad_hex_float ();
    check_case_insensitive_string width ib bad_hex_float "an"
  | 'i' | 'I' as c ->
    let width = Scanning.store_char width ib c in
    if width = 0 || Scanning.end_of_input ib then bad_hex_float ();
    check_case_insensitive_string width ib bad_hex_float "nfinity"
  | _ -> bad_hex_float ()


let scan_caml_float_rest width precision ib =
  if width = 0 || Scanning.end_of_input ib then bad_float ();
  let width = scan_decimal_digit_star width ib in
  if width = 0 || Scanning.end_of_input ib then bad_float ();
  let c = Scanning.peek_char ib in
  match c with
  | '.' ->
    let width = Scanning.store_char width ib c in
    (* The effective width available for scanning the fractional part is
       the minimum of declared precision and width left. *)
    let precision = min width precision in
    (* After scanning the fractional part with [precision] provisional width,
       [width_precision] is left. *)
    let width_precision = scan_fractional_part precision ib in
    (* Hence, scanning the fractional part took exactly
       [precision - width_precision] chars. *)
    let frac_width = precision - width_precision in
    (* And new provisional width is [width - width_precision. *)
    let width = width - frac_width in
    scan_exponent_part width ib
  | 'e' | 'E' ->
    scan_exponent_part width ib
  | _ -> bad_float ()


let scan_caml_float width precision ib =
  if width = 0 || Scanning.end_of_input ib then bad_float ();
  let width = scan_sign width ib in
  if width = 0 || Scanning.end_of_input ib then bad_float ();
  match Scanning.peek_char ib with
  | '0' as c -> (
    let width = Scanning.store_char width ib c in
    if width = 0 || Scanning.end_of_input ib then bad_float ();
    match Scanning.peek_char ib with
    | 'x' | 'X' as c -> (
      let width = Scanning.store_char width ib c in
      if width = 0 || Scanning.end_of_input ib then bad_float ();
      let width = scan_hexadecimal_int width ib in
      if width = 0 || Scanning.end_of_input ib then bad_float ();
      let width = match Scanning.peek_char ib with
        | '.' as c -> (
          let width = Scanning.store_char width ib c in
          if width = 0 || Scanning.end_of_input ib then width else
            match Scanning.peek_char ib with
            | 'p' | 'P' -> width
            | _ ->
              let precision = min width precision in
              width - (precision - scan_hexadecimal_int precision ib)
        )
        | 'p' | 'P' -> width
        | _ -> bad_float () in
      if width = 0 || Scanning.end_of_input ib then width else
        match Scanning.peek_char ib with
        | 'p' | 'P' as c ->
          let width = Scanning.store_char width ib c in
          if width = 0 || Scanning.end_of_input ib then bad_hex_float ();
          scan_optionally_signed_decimal_int width ib
        | _ -> width
    )
    | _ ->
      scan_caml_float_rest width precision ib
  )
  | '1' .. '9' as c ->
    let width = Scanning.store_char width ib c in
    if width = 0 || Scanning.end_of_input ib then bad_float ();
    scan_caml_float_rest width precision ib
(* Special case of nan and infinity:
  | 'i' ->
  | 'n' ->
*)
  | _ -> bad_float ()


(* Scan a regular string:
   stops when encountering a space, if no scanning indication has been given;
   otherwise, stops when encountering the characters in the scanning
   indication [stp].
   It also stops at end of file or when the maximum number of characters has
   been read. *)
let scan_string stp width ib =
  let rec loop width =
    if width = 0 then width else
    let c = Scanning.peek_char ib in
    if Scanning.eof ib then width else
      match stp with
      | Some c' when c = c' -> Scanning.skip_char width ib
      | Some _ -> loop (Scanning.store_char width ib c)
      | None ->
        match c with
        | ' ' | '\t' | '\n' | '\r' -> width
        | _ -> loop (Scanning.store_char width ib c) in
  loop width


(* Scan a char: peek strictly one character in the input, whatsoever. *)
let scan_char width ib =
  (* The case width = 0 could not happen here, since it is tested before
     calling scan_char, in the main scanning function.
    if width = 0 then bad_token_length "a character" else *)
  Scanning.store_char width ib (Scanning.checked_peek_char ib)


let char_for_backslash = function
  | 'n' -> '\010'
  | 'r' -> '\013'
  | 'b' -> '\008'
  | 't' -> '\009'
  | c -> c


(* The integer value corresponding to the facial value of a valid
   decimal digit character. *)
let decimal_value_of_char c = int_of_char c - int_of_char '0'

let char_for_decimal_code c0 c1 c2 =
  let c =
    100 * decimal_value_of_char c0 +
     10 * decimal_value_of_char c1 +
          decimal_value_of_char c2 in
  if c < 0 || c > 255 then
    bad_input
      (Printf.sprintf
         "bad character decimal encoding \\%c%c%c" c0 c1 c2) else
  char_of_int c


(* The integer value corresponding to the facial value of a valid
   hexadecimal digit character. *)
let hexadecimal_value_of_char c =
  let d = int_of_char c in
  (* Could also be:
    if d <= int_of_char '9' then d - int_of_char '0' else
    if d <= int_of_char 'F' then 10 + d - int_of_char 'A' else
    if d <= int_of_char 'f' then 10 + d - int_of_char 'a' else assert false
  *)
  if d >= int_of_char 'a' then
    d - 87 (* 10 + int_of_char c - int_of_char 'a' *) else
  if d >= int_of_char 'A' then
    d - 55  (* 10 + int_of_char c - int_of_char 'A' *) else
    d - int_of_char '0'


let char_for_hexadecimal_code c1 c2 =
  let c =
    16 * hexadecimal_value_of_char c1 +
         hexadecimal_value_of_char c2 in
  if c < 0 || c > 255 then
    bad_input
      (Printf.sprintf "bad character hexadecimal encoding \\%c%c" c1 c2) else
  char_of_int c


(* Called in particular when encountering '\\' as starter of a char.
   Stops before the corresponding '\''. *)
let check_next_char message width ib =
  if width = 0 then bad_token_length message else
  let c = Scanning.peek_char ib in
  if Scanning.eof ib then bad_end_of_input message else
  c


let check_next_char_for_char = check_next_char "a Char"
let check_next_char_for_string = check_next_char "a String"

let scan_backslash_char width ib =
  match check_next_char_for_char width ib with
  | '\\' | '\'' | '\"' | 'n' | 't' | 'b' | 'r' as c ->
    Scanning.store_char width ib (char_for_backslash c)
  | '0' .. '9' as c ->
    let get_digit () =
      let c = Scanning.next_char ib in
      match c with
      | '0' .. '9' as c -> c
      | c -> bad_input_escape c in
    let c0 = c in
    let c1 = get_digit () in
    let c2 = get_digit () in
    Scanning.store_char (width - 2) ib (char_for_decimal_code c0 c1 c2)
  | 'x' ->
    let get_digit () =
      let c = Scanning.next_char ib in
      match c with
      | '0' .. '9' | 'A' .. 'F' | 'a' .. 'f' as c -> c
      | c -> bad_input_escape c in
    let c1 = get_digit () in
    let c2 = get_digit () in
    Scanning.store_char (width - 2) ib (char_for_hexadecimal_code c1 c2)
  | c ->
    bad_input_escape c


(* Scan a character (an OCaml token). *)
let scan_caml_char width ib =

  let rec find_start width =
    match Scanning.checked_peek_char ib with
    | '\'' -> find_char (Scanning.ignore_char width ib)
    | c -> character_mismatch '\'' c

  and find_char width =
    match check_next_char_for_char width ib with
    | '\\' ->
      find_stop (scan_backslash_char (Scanning.ignore_char width ib) ib)
    | c ->
      find_stop (Scanning.store_char width ib c)

  and find_stop width =
    match check_next_char_for_char width ib with
    | '\'' -> Scanning.ignore_char width ib
    | c -> character_mismatch '\'' c in

  find_start width


(* Scan a delimited string (an OCaml token). *)
let scan_caml_string width ib =

  let rec find_start width =
    match Scanning.checked_peek_char ib with
    | '\"' -> find_stop (Scanning.ignore_char width ib)
    | c -> character_mismatch '\"' c

  and find_stop width =
    match check_next_char_for_string width ib with
    | '\"' -> Scanning.ignore_char width ib
    | '\\' -> scan_backslash (Scanning.ignore_char width ib)
    | c -> find_stop (Scanning.store_char width ib c)

  and scan_backslash width =
    match check_next_char_for_string width ib with
    | '\r' -> skip_newline (Scanning.ignore_char width ib)
    | '\n' -> skip_spaces (Scanning.ignore_char width ib)
    | _ -> find_stop (scan_backslash_char width ib)

  and skip_newline width =
    match check_next_char_for_string width ib with
    | '\n' -> skip_spaces (Scanning.ignore_char width ib)
    | _ -> find_stop (Scanning.store_char width ib '\r')

  and skip_spaces width =
    match check_next_char_for_string width ib with
    | ' ' -> skip_spaces (Scanning.ignore_char width ib)
    | _ -> find_stop width in

  find_start width


(* Scan a boolean (an OCaml token). *)
let scan_bool ib =
  let c = Scanning.checked_peek_char ib in
  let m =
    match c with
    | 't' -> 4
    | 'f' -> 5
    | c ->
      bad_input
        (Printf.sprintf "the character %C cannot start a boolean" c) in
  scan_string None m ib


(* Scan a string containing elements in char_set and terminated by scan_indic
   if provided. *)
let scan_chars_in_char_set char_set scan_indic width ib =
  let rec scan_chars i stp =
    let c = Scanning.peek_char ib in
    if i > 0 && not (Scanning.eof ib) &&
       is_in_char_set char_set c &&
       int_of_char c <> stp then
      let _ = Scanning.store_char max_int ib c in
      scan_chars (i - 1) stp in
  match scan_indic with
  | None -> scan_chars width (-1);
  | Some c ->
    scan_chars width (int_of_char c);
    if not (Scanning.eof ib) then
      let ci = Scanning.peek_char ib in
      if c = ci
      then Scanning.invalidate_current_char ib
      else character_mismatch c ci


(* The global error report function for [Scanf]. *)
let scanf_bad_input ib = function
  | Scan_failure s | Failure s ->
    let i = Scanning.char_count ib in
    bad_input (Printf.sprintf "scanf: bad input at char number %i: %s" i s)
  | x -> raise x


(* Get the content of a counter from an input buffer. *)
let get_counter ib counter =
  match counter with
  | Line_counter -> Scanning.line_count ib
  | Char_counter -> Scanning.char_count ib
  | Token_counter -> Scanning.token_count ib


(* Compute the width of a padding option (see "%42{" and "%123("). *)
let width_of_pad_opt pad_opt = match pad_opt with
  | None -> max_int
  | Some width -> width


let stopper_of_formatting_lit fmting =
  if fmting = Escaped_percent then '%', "" else
    let str = string_of_formatting_lit fmting in
    let stp = str.[1] in
    let sub_str = String.sub str 2 (String.length str - 2) in
    stp, sub_str


(******************************************************************************)
                           (* Reader management *)

(* A call to take_format_readers on a format is evaluated into functions
   taking readers as arguments and aggregate them into an heterogeneous list *)
(* When all readers are taken, finally pass the list of the readers to the
   continuation k. *)
let rec take_format_readers : type a c d e f .
    ((d, e) heter_list -> e) -> (a, Scanning.in_channel, c, d, e, f) fmt ->
    d =
fun k fmt -> match fmt with
  | Reader fmt_rest ->
    fun reader ->
      let new_k readers_rest = k (Cons (reader, readers_rest)) in
      take_format_readers new_k fmt_rest
  | Char rest                        -> take_format_readers k rest
  | Caml_char rest                   -> take_format_readers k rest
  | String (_, rest)                 -> take_format_readers k rest
  | Caml_string (_, rest)            -> take_format_readers k rest
  | Int (_, _, _, rest)              -> take_format_readers k rest
  | Int32 (_, _, _, rest)            -> take_format_readers k rest
  | Nativeint (_, _, _, rest)        -> take_format_readers k rest
  | Int64 (_, _, _, rest)            -> take_format_readers k rest
  | Float (_, _, _, rest)            -> take_format_readers k rest
  | Bool (_, rest)                   -> take_format_readers k rest
  | Alpha rest                       -> take_format_readers k rest
  | Theta rest                       -> take_format_readers k rest
  | Flush rest                       -> take_format_readers k rest
  | String_literal (_, rest)         -> take_format_readers k rest
  | Char_literal (_, rest)           -> take_format_readers k rest
  | Custom (_, _, rest)              -> take_format_readers k rest

  | Scan_char_set (_, _, rest)       -> take_format_readers k rest
  | Scan_get_counter (_, rest)       -> take_format_readers k rest
  | Scan_next_char rest              -> take_format_readers k rest

  | Formatting_lit (_, rest)         -> take_format_readers k rest
  | Formatting_gen (Open_tag (Format (fmt, _)), rest) ->
      take_format_readers k (concat_fmt fmt rest)
  | Formatting_gen (Open_box (Format (fmt, _)), rest) ->
      take_format_readers k (concat_fmt fmt rest)

  | Format_arg (_, _, rest)          -> take_format_readers k rest
  | Format_subst (_, fmtty, rest)    ->
     take_fmtty_format_readers k (erase_rel (symm fmtty)) rest
  | Ignored_param (ign, rest)        -> take_ignored_format_readers k ign rest

  | End_of_format                    -> k Nil

(* Take readers associated to an fmtty coming from a Format_subst "%(...%)". *)
and take_fmtty_format_readers : type x y a c d e f .
    ((d, e) heter_list -> e) -> (a, Scanning.in_channel, c, d, x, y) fmtty ->
      (y, Scanning.in_channel, c, x, e, f) fmt -> d =
fun k fmtty fmt -> match fmtty with
  | Reader_ty fmt_rest ->
    fun reader ->
      let new_k readers_rest = k (Cons (reader, readers_rest)) in
      take_fmtty_format_readers new_k fmt_rest fmt
  | Ignored_reader_ty fmt_rest ->
    fun reader ->
      let new_k readers_rest = k (Cons (reader, readers_rest)) in
      take_fmtty_format_readers new_k fmt_rest fmt
  | Char_ty rest                -> take_fmtty_format_readers k rest fmt
  | String_ty rest              -> take_fmtty_format_readers k rest fmt
  | Int_ty rest                 -> take_fmtty_format_readers k rest fmt
  | Int32_ty rest               -> take_fmtty_format_readers k rest fmt
  | Nativeint_ty rest           -> take_fmtty_format_readers k rest fmt
  | Int64_ty rest               -> take_fmtty_format_readers k rest fmt
  | Float_ty rest               -> take_fmtty_format_readers k rest fmt
  | Bool_ty rest                -> take_fmtty_format_readers k rest fmt
  | Alpha_ty rest               -> take_fmtty_format_readers k rest fmt
  | Theta_ty rest               -> take_fmtty_format_readers k rest fmt
  | Any_ty rest                 -> take_fmtty_format_readers k rest fmt
  | Format_arg_ty (_, rest)     -> take_fmtty_format_readers k rest fmt
  | End_of_fmtty                -> take_format_readers k fmt
  | Format_subst_ty (ty1, ty2, rest) ->
    let ty = trans (symm ty1) ty2 in
    take_fmtty_format_readers k (concat_fmtty ty rest) fmt

(* Take readers associated to an ignored parameter. *)
and take_ignored_format_readers : type x y a c d e f .
    ((d, e) heter_list -> e) -> (a, Scanning.in_channel, c, d, x, y) ignored ->
      (y, Scanning.in_channel, c, x, e, f) fmt -> d =
fun k ign fmt -> match ign with
  | Ignored_reader ->
    fun reader ->
      let new_k readers_rest = k (Cons (reader, readers_rest)) in
      take_format_readers new_k fmt
  | Ignored_char                    -> take_format_readers k fmt
  | Ignored_caml_char               -> take_format_readers k fmt
  | Ignored_string _                -> take_format_readers k fmt
  | Ignored_caml_string _           -> take_format_readers k fmt
  | Ignored_int (_, _)              -> take_format_readers k fmt
  | Ignored_int32 (_, _)            -> take_format_readers k fmt
  | Ignored_nativeint (_, _)        -> take_format_readers k fmt
  | Ignored_int64 (_, _)            -> take_format_readers k fmt
  | Ignored_float (_, _)            -> take_format_readers k fmt
  | Ignored_bool _                  -> take_format_readers k fmt
  | Ignored_format_arg _            -> take_format_readers k fmt
  | Ignored_format_subst (_, fmtty) -> take_fmtty_format_readers k fmtty fmt
  | Ignored_scan_char_set _         -> take_format_readers k fmt
  | Ignored_scan_get_counter _      -> take_format_readers k fmt
  | Ignored_scan_next_char          -> take_format_readers k fmt

(******************************************************************************)
                          (* Generic scanning *)

(* Make a generic scanning function. *)
(* Scan a stream according to a format and readers obtained by
   take_format_readers, and aggregate scanned values into an
   heterogeneous list. *)
(* Return the heterogeneous list of scanned values. *)
let rec make_scanf : type a c d e f.
    Scanning.in_channel -> (a, Scanning.in_channel, c, d, e, f) fmt ->
      (d, e) heter_list -> (a, f) heter_list =
fun ib fmt readers -> match fmt with
  | Char rest ->
    let _ = scan_char 0 ib in
    let c = token_char ib in
    Cons (c, make_scanf ib rest readers)
  | Caml_char rest ->
    let _ = scan_caml_char 0 ib in
    let c = token_char ib in
    Cons (c, make_scanf ib rest readers)

  | String (pad, Formatting_lit (fmting_lit, rest)) ->
    let stp, str = stopper_of_formatting_lit fmting_lit in
    let scan width _ ib = scan_string (Some stp) width ib in
    let str_rest = String_literal (str, rest) in
    pad_prec_scanf ib str_rest readers pad No_precision scan token_string
  | String (pad, Formatting_gen (Open_tag (Format (fmt', _)), rest)) ->
    let scan width _ ib = scan_string (Some '{') width ib in
    pad_prec_scanf ib (concat_fmt fmt' rest) readers pad No_precision scan
                   token_string
  | String (pad, Formatting_gen (Open_box (Format (fmt', _)), rest)) ->
    let scan width _ ib = scan_string (Some '[') width ib in
    pad_prec_scanf ib (concat_fmt fmt' rest) readers pad No_precision scan
                   token_string
  | String (pad, rest) ->
    let scan width _ ib = scan_string None width ib in
    pad_prec_scanf ib rest readers pad No_precision scan token_string

  | Caml_string (pad, rest) ->
    let scan width _ ib = scan_caml_string width ib in
    pad_prec_scanf ib rest readers pad No_precision scan token_string
  | Int (iconv, pad, prec, rest) ->
    let c = integer_conversion_of_char (char_of_iconv iconv) in
    let scan width _ ib = scan_int_conversion c width ib in
    pad_prec_scanf ib rest readers pad prec scan (token_int c)
  | Int32 (iconv, pad, prec, rest) ->
    let c = integer_conversion_of_char (char_of_iconv iconv) in
    let scan width _ ib = scan_int_conversion c width ib in
    pad_prec_scanf ib rest readers pad prec scan (token_int32 c)
  | Nativeint (iconv, pad, prec, rest) ->
    let c = integer_conversion_of_char (char_of_iconv iconv) in
    let scan width _ ib = scan_int_conversion c width ib in
    pad_prec_scanf ib rest readers pad prec scan (token_nativeint c)
  | Int64 (iconv, pad, prec, rest) ->
    let c = integer_conversion_of_char (char_of_iconv iconv) in
    let scan width _ ib = scan_int_conversion c width ib in
    pad_prec_scanf ib rest readers pad prec scan (token_int64 c)
  | Float (Float_F, pad, prec, rest) ->
    pad_prec_scanf ib rest readers pad prec scan_caml_float token_float
  | Float ((Float_f | Float_pf | Float_sf | Float_e | Float_pe | Float_se
               | Float_E | Float_pE | Float_sE | Float_g | Float_pg | Float_sg
               | Float_G | Float_pG | Float_sG), pad, prec, rest) ->
    pad_prec_scanf ib rest readers pad prec scan_float token_float
  | Float ((Float_h | Float_ph | Float_sh | Float_H | Float_pH | Float_sH),
           pad, prec, rest) ->
    pad_prec_scanf ib rest readers pad prec scan_hex_float token_float
  | Bool (pad, rest) ->
    let scan _ _ ib = scan_bool ib in
    pad_prec_scanf ib rest readers pad No_precision scan token_bool
  | Alpha _ ->
    invalid_arg "scanf: bad conversion \"%a\""
  | Theta _ ->
    invalid_arg "scanf: bad conversion \"%t\""
  | Custom _ ->
    invalid_arg "scanf: bad conversion \"%?\" (custom converter)"
  | Reader fmt_rest ->
    begin match readers with
    | Cons (reader, readers_rest) ->
        let x = reader ib in
        Cons (x, make_scanf ib fmt_rest readers_rest)
    | Nil ->
        invalid_arg "scanf: missing reader"
    end
  | Flush rest ->
    if Scanning.end_of_input ib then make_scanf ib rest readers
    else bad_input "end of input not found"

  | String_literal (str, rest) ->
    String.iter (check_char ib) str;
    make_scanf ib rest readers
  | Char_literal (chr, rest) ->
    check_char ib chr;
    make_scanf ib rest readers

  | Format_arg (pad_opt, fmtty, rest) ->
    let _ = scan_caml_string (width_of_pad_opt pad_opt) ib in
    let s = token_string ib in
    let fmt =
      try format_of_string_fmtty s fmtty
      with Failure msg -> bad_input msg
    in
    Cons (fmt, make_scanf ib rest readers)
  | Format_subst (pad_opt, fmtty, rest) ->
    let _ = scan_caml_string (width_of_pad_opt pad_opt) ib in
    let s = token_string ib in
    let fmt, fmt' =
      try
        let Fmt_EBB fmt = fmt_ebb_of_string s in
        let Fmt_EBB fmt' = fmt_ebb_of_string s in
        (* TODO: find a way to avoid reparsing twice *)

        (* TODO: these type-checks below *can* fail because of type
           ambiguity in presence of ignored-readers: "%_r%d" and "%d%_r"
           are typed in the same way.

           # Scanf.sscanf "\"%_r%d\"3" "%(%d%_r%)" ignore
             (fun fmt n -> string_of_format fmt, n)
           Exception: CamlinternalFormat.Type_mismatch.

           We should properly catch this exception.
        *)
        type_format fmt (erase_rel fmtty),
        type_format fmt' (erase_rel (symm fmtty))
      with Failure msg -> bad_input msg
    in
    Cons (Format (fmt, s),
          make_scanf ib (concat_fmt fmt' rest) readers)

  | Scan_char_set (width_opt, char_set, Formatting_lit (fmting_lit, rest)) ->
    let stp, str = stopper_of_formatting_lit fmting_lit in
    let width = width_of_pad_opt width_opt in
    scan_chars_in_char_set char_set (Some stp) width ib;
    let s = token_string ib in
    let str_rest = String_literal (str, rest) in
    Cons (s, make_scanf ib str_rest readers)
  | Scan_char_set (width_opt, char_set, rest) ->
    let width = width_of_pad_opt width_opt in
    scan_chars_in_char_set char_set None width ib;
    let s = token_string ib in
    Cons (s, make_scanf ib rest readers)
  | Scan_get_counter (counter, rest) ->
    let count = get_counter ib counter in
    Cons (count, make_scanf ib rest readers)
  | Scan_next_char rest ->
    let c = Scanning.checked_peek_char ib in
    Cons (c, make_scanf ib rest readers)

  | Formatting_lit (formatting_lit, rest) ->
    String.iter (check_char ib) (string_of_formatting_lit formatting_lit);
    make_scanf ib rest readers
  | Formatting_gen (Open_tag (Format (fmt', _)), rest) ->
    check_char ib '@'; check_char ib '{';
    make_scanf ib (concat_fmt fmt' rest) readers
  | Formatting_gen (Open_box (Format (fmt', _)), rest) ->
    check_char ib '@'; check_char ib '[';
    make_scanf ib (concat_fmt fmt' rest) readers

  | Ignored_param (ign, rest) ->
    let Param_format_EBB fmt' = param_format_of_ignored_format ign rest in
    begin match make_scanf ib fmt' readers with
    | Cons (_, arg_rest) -> arg_rest
    | Nil -> assert false
    end

  | End_of_format ->
    Nil

(* Case analysis on padding and precision. *)
(* Reject formats containing "%*" or "%.*". *)
(* Pass padding and precision to the generic scanner `scan'. *)
and pad_prec_scanf : type a c d e f x y z t .
    Scanning.in_channel -> (a, Scanning.in_channel, c, d, e, f) fmt ->
      (d, e) heter_list -> (x, y) padding -> (y, z -> a) precision ->
      (int -> int -> Scanning.in_channel -> t) ->
      (Scanning.in_channel -> z) ->
      (x, f) heter_list =
fun ib fmt readers pad prec scan token -> match pad, prec with
  | No_padding, No_precision ->
    let _ = scan max_int max_int ib in
    let x = token ib in
    Cons (x, make_scanf ib fmt readers)
  | No_padding, Lit_precision p ->
    let _ = scan max_int p ib in
    let x = token ib in
    Cons (x, make_scanf ib fmt readers)
  | Lit_padding ((Right | Zeros), w), No_precision ->
    let _ = scan w max_int ib in
    let x = token ib in
    Cons (x, make_scanf ib fmt readers)
  | Lit_padding ((Right | Zeros), w), Lit_precision p ->
    let _ = scan w p ib in
    let x = token ib in
    Cons (x, make_scanf ib fmt readers)
  | Lit_padding (Left, _), _ ->
    invalid_arg "scanf: bad conversion \"%-\""
  | Lit_padding ((Right | Zeros), _), Arg_precision ->
    invalid_arg "scanf: bad conversion \"%*\""
  | Arg_padding _, _ ->
    invalid_arg "scanf: bad conversion \"%*\""
  | No_padding, Arg_precision ->
    invalid_arg "scanf: bad conversion \"%*\""

(******************************************************************************)
            (* Defining [scanf] and various flavors of [scanf] *)

type 'a kscanf_result = Args of 'a | Exc of exn

let kscanf ib ef (Format (fmt, str)) =
  let rec apply : type a b . a -> (a, b) heter_list -> b =
    fun f args -> match args with
    | Cons (x, r) -> apply (f x) r
    | Nil -> f
  in
  let k readers f =
    Scanning.reset_token ib;
    match try Args (make_scanf ib fmt readers) with
      | (Scan_failure _ | Failure _ | End_of_file) as exc -> Exc exc
      | Invalid_argument msg ->
        invalid_arg (msg ^ " in format \"" ^ String.escaped str ^ "\"")
    with
      | Args args -> apply f args
      | Exc exc -> ef ib exc
  in
  take_format_readers k fmt

(***)

let kbscanf = kscanf
let bscanf ib fmt = kbscanf ib scanf_bad_input fmt

let ksscanf s ef fmt = kbscanf (Scanning.from_string s) ef fmt
let sscanf s fmt = kbscanf (Scanning.from_string s) scanf_bad_input fmt

let scanf fmt = kscanf Scanning.stdib scanf_bad_input fmt

(***)

(* Scanning format strings. *)
let bscanf_format :
  Scanning.in_channel -> ('a, 'b, 'c, 'd, 'e, 'f) format6 ->
  (('a, 'b, 'c, 'd, 'e, 'f) format6 -> 'g) -> 'g =
  fun ib format f ->
    let _ = scan_caml_string max_int ib in
    let str = token_string ib in
    let fmt' =
      try format_of_string_format str format
      with Failure msg -> bad_input msg in
    f fmt'


let sscanf_format :
  string -> ('a, 'b, 'c, 'd, 'e, 'f) format6 ->
  (('a, 'b, 'c, 'd, 'e, 'f) format6 -> 'g) -> 'g =
  fun s format f -> bscanf_format (Scanning.from_string s) format f


let format_from_string s fmt =
  sscanf_format ("\"" ^ String.escaped s ^ "\"") fmt (fun x -> x)


let unescaped s =
  sscanf ("\"" ^ s ^ "\"") "%S%!" (fun x -> x)


(* Deprecated *)
let kfscanf ic ef fmt = kbscanf (Scanning.memo_from_channel ic) ef fmt
let fscanf ic fmt = kscanf (Scanning.memo_from_channel ic) scanf_bad_input fmt