summaryrefslogtreecommitdiff
path: root/runtime/ints.c
blob: 5c610abe666029808641a755ca10498fd969136d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
/**************************************************************************/
/*                                                                        */
/*                                 OCaml                                  */
/*                                                                        */
/*             Xavier Leroy, projet Cristal, INRIA Rocquencourt           */
/*                                                                        */
/*   Copyright 1996 Institut National de Recherche en Informatique et     */
/*     en Automatique.                                                    */
/*                                                                        */
/*   All rights reserved.  This file is distributed under the terms of    */
/*   the GNU Lesser General Public License version 2.1, with the          */
/*   special exception on linking described in the file LICENSE.          */
/*                                                                        */
/**************************************************************************/

#define CAML_INTERNALS

#include <stdio.h>
#include <string.h>
#include "caml/alloc.h"
#include "caml/custom.h"
#include "caml/fail.h"
#include "caml/intext.h"
#include "caml/memory.h"
#include "caml/misc.h"
#include "caml/mlvalues.h"

/* Comparison resulting in -1,0,1, with type intnat,
   without extra integer width conversion (GPR#2250). */
#define COMPARE_INT(v1, v2) \
  (intnat)(v1 > v2) - (intnat)(v1 < v2)

static const char * parse_sign_and_base(const char * p,
                                        /*out*/ int * base,
                                        /*out*/ int * signedness,
                                        /*out*/ int * sign)
{
  *sign = 1;
  if (*p == '-') {
    *sign = -1;
    p++;
  } else if (*p == '+')
    p++;
  *base = 10; *signedness = 1;
  if (*p == '0') {
    switch (p[1]) {
    case 'x': case 'X':
      *base = 16; *signedness = 0; p += 2; break;
    case 'o': case 'O':
      *base = 8; *signedness = 0; p += 2; break;
    case 'b': case 'B':
      *base = 2; *signedness = 0; p += 2; break;
    case 'u': case 'U':
      *signedness = 0; p += 2; break;
    }
  }
  return p;
}

static int parse_digit(char c)
{
  if (c >= '0' && c <= '9')
    return c - '0';
  else if (c >= 'A' && c <= 'F')
    return c - 'A' + 10;
  else if (c >= 'a' && c <= 'f')
    return c - 'a' + 10;
  else
    return -1;
}

#define INT_ERRMSG "int_of_string"
#define INT32_ERRMSG "Int32.of_string"
#define INT64_ERRMSG "Int64.of_string"
#define INTNAT_ERRMSG "Nativeint.of_string"

static intnat parse_intnat(value s, int nbits, const char *errmsg)
{
  const char * p;
  uintnat res, threshold;
  int sign, base, signedness, d;

  p = parse_sign_and_base(String_val(s), &base, &signedness, &sign);
  threshold = ((uintnat) -1) / base;
  d = parse_digit(*p);
  if (d < 0 || d >= base) caml_failwith(errmsg);
  for (p++, res = d; /*nothing*/; p++) {
    char c = *p;
    if (c == '_') continue;
    d = parse_digit(c);
    if (d < 0 || d >= base) break;
    /* Detect overflow in multiplication base * res */
    if (res > threshold) caml_failwith(errmsg);
    res = base * res + d;
    /* Detect overflow in addition (base * res) + d */
    if (res < (uintnat) d) caml_failwith(errmsg);
  }
  if (p != String_val(s) + caml_string_length(s)){
    caml_failwith(errmsg);
  }
  if (signedness) {
    /* Signed representation expected, allow -2^(nbits-1) to 2^(nbits-1) - 1 */
    if (sign >= 0) {
      if (res >= (uintnat)1 << (nbits - 1)) caml_failwith(errmsg);
    } else {
      if (res >  (uintnat)1 << (nbits - 1)) caml_failwith(errmsg);
    }
  } else {
    /* Unsigned representation expected, allow 0 to 2^nbits - 1
       and tolerate -(2^nbits - 1) to 0 */
    if (nbits < sizeof(uintnat) * 8 && res >= (uintnat)1 << nbits)
      caml_failwith(errmsg);
  }
  return sign < 0 ? -((intnat) res) : (intnat) res;
}

value caml_bswap16_direct(value x)
{
  return ((((x & 0x00FF) << 8) |
           ((x & 0xFF00) >> 8)));
}

CAMLprim value caml_bswap16(value v)
{
  intnat x = Int_val(v);
  return (Val_int ((((x & 0x00FF) << 8) |
                    ((x & 0xFF00) >> 8))));
}

/* Tagged integers */

CAMLprim value caml_int_compare(value v1, value v2)
{
  return Val_long(COMPARE_INT(v1, v2));
}

CAMLprim value caml_int_of_string(value s)
{
    return Val_long(parse_intnat(s, 8 * sizeof(value) - 1, INT_ERRMSG));
}

#define FORMAT_BUFFER_SIZE 32

static char parse_format(value fmt,
                         char * suffix,
                         char format_string[FORMAT_BUFFER_SIZE])
{
  char * p;
  char lastletter;
  mlsize_t len, len_suffix;

  /* Copy OCaml format fmt to format_string,
     adding the suffix before the last letter of the format */
  len = caml_string_length(fmt);
  len_suffix = strlen(suffix);
  if (len + len_suffix + 1 >= FORMAT_BUFFER_SIZE)
    caml_invalid_argument("format_int: format too long");
  memmove(format_string, String_val(fmt), len);
  p = format_string + len - 1;
  lastletter = *p;
  /* Compress two-letter formats, ignoring the [lnL] annotation */
  if (p[-1] == 'l' || p[-1] == 'n' || p[-1] == 'L') p--;
  memmove(p, suffix, len_suffix);  p += len_suffix;
  *p++ = lastletter;
  *p = 0;
  /* Return the conversion type (last letter) */
  return lastletter;
}

CAMLprim value caml_format_int(value fmt, value arg)
{
  char format_string[FORMAT_BUFFER_SIZE];
  char conv;
  value res;

  conv = parse_format(fmt, ARCH_INTNAT_PRINTF_FORMAT, format_string);
  switch (conv) {
  case 'u': case 'x': case 'X': case 'o':
    res = caml_alloc_sprintf(format_string, Unsigned_long_val(arg));
    break;
  default:
    res = caml_alloc_sprintf(format_string, Long_val(arg));
    break;
  }
  return res;
}

/* 32-bit integers */

static int int32_cmp(value v1, value v2)
{
  int32_t i1 = Int32_val(v1);
  int32_t i2 = Int32_val(v2);
  return (i1 > i2) - (i1 < i2);
}

static intnat int32_hash(value v)
{
  return Int32_val(v);
}

static void int32_serialize(value v, uintnat * bsize_32,
                            uintnat * bsize_64)
{
  caml_serialize_int_4(Int32_val(v));
  *bsize_32 = *bsize_64 = 4;
}

static uintnat int32_deserialize(void * dst)
{
  *((int32_t *) dst) = caml_deserialize_sint_4();
  return 4;
}

static const struct custom_fixed_length int32_length = { 4, 4 };

CAMLexport const struct custom_operations caml_int32_ops = {
  "_i",
  custom_finalize_default,
  int32_cmp,
  int32_hash,
  int32_serialize,
  int32_deserialize,
  custom_compare_ext_default,
  &int32_length
};

CAMLexport value caml_copy_int32(int32_t i)
{
  value res = caml_alloc_custom(&caml_int32_ops, 4, 0, 1);
  Int32_val(res) = i;
  return res;
}

CAMLprim value caml_int32_neg(value v)
{ return caml_copy_int32(- Int32_val(v)); }

CAMLprim value caml_int32_add(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) + Int32_val(v2)); }

CAMLprim value caml_int32_sub(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) - Int32_val(v2)); }

CAMLprim value caml_int32_mul(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) * Int32_val(v2)); }

CAMLprim value caml_int32_div(value v1, value v2)
{
  int32_t dividend = Int32_val(v1);
  int32_t divisor = Int32_val(v2);
  if (divisor == 0) caml_raise_zero_divide();
  /* PR#4740: on some processors, division crashes on overflow.
     Implement the same behavior as for type "int". */
  if (dividend == (1<<31) && divisor == -1) return v1;
  return caml_copy_int32(dividend / divisor);
}

CAMLprim value caml_int32_mod(value v1, value v2)
{
  int32_t dividend = Int32_val(v1);
  int32_t divisor = Int32_val(v2);
  if (divisor == 0) caml_raise_zero_divide();
  /* PR#4740: on some processors, modulus crashes if division overflows.
     Implement the same behavior as for type "int". */
  if (dividend == (1<<31) && divisor == -1) return caml_copy_int32(0);
  return caml_copy_int32(dividend % divisor);
}

CAMLprim value caml_int32_and(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) & Int32_val(v2)); }

CAMLprim value caml_int32_or(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) | Int32_val(v2)); }

CAMLprim value caml_int32_xor(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) ^ Int32_val(v2)); }

CAMLprim value caml_int32_shift_left(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) << Int_val(v2)); }

CAMLprim value caml_int32_shift_right(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) >> Int_val(v2)); }

CAMLprim value caml_int32_shift_right_unsigned(value v1, value v2)
{ return caml_copy_int32((uint32_t)Int32_val(v1) >> Int_val(v2)); }

static int32_t caml_swap32(int32_t x)
{
  return (((x & 0x000000FF) << 24) |
          ((x & 0x0000FF00) << 8) |
          ((x & 0x00FF0000) >> 8) |
          ((x & 0xFF000000) >> 24));
}

value caml_int32_direct_bswap(value v)
{ return caml_swap32((int32_t) v); }

CAMLprim value caml_int32_bswap(value v)
{ return caml_copy_int32(caml_swap32(Int32_val(v))); }

CAMLprim value caml_int32_of_int(value v)
{ return caml_copy_int32((int32_t) Long_val(v)); }

CAMLprim value caml_int32_to_int(value v)
{ return Val_long(Int32_val(v)); }

int32_t caml_int32_of_float_unboxed(double x)
{ return (int32_t) x; }

CAMLprim value caml_int32_of_float(value v)
{ return caml_copy_int32((int32_t)(Double_val(v))); }

double caml_int32_to_float_unboxed(int32_t x)
{ return (double) x; }

CAMLprim value caml_int32_to_float(value v)
{ return caml_copy_double((double)(Int32_val(v))); }

intnat caml_int32_compare_unboxed(int32_t i1, int32_t i2)
{
  return COMPARE_INT(i1, i2);
}

CAMLprim value caml_int32_compare(value v1, value v2)
{
  return Val_int(caml_int32_compare_unboxed(Int32_val(v1),Int32_val(v2)));
}

CAMLprim value caml_int32_format(value fmt, value arg)
{
  char format_string[FORMAT_BUFFER_SIZE];

  parse_format(fmt, ARCH_INT32_PRINTF_FORMAT, format_string);
  return caml_alloc_sprintf(format_string, Int32_val(arg));
}

CAMLprim value caml_int32_of_string(value s)
{
  return caml_copy_int32((int32_t) parse_intnat(s, 32, INT32_ERRMSG));
}

int32_t caml_int32_bits_of_float_unboxed(double d)
{
  union { float f; int32_t i; } u;
  u.f = (float) d;
  return u.i;
}

double caml_int32_float_of_bits_unboxed(int32_t i)
{
  union { float f; int32_t i; } u;
  u.i = i;
  return (double) u.f;
}

CAMLprim value caml_int32_bits_of_float(value vd)
{
  return caml_copy_int32(caml_int32_bits_of_float_unboxed(Double_val(vd)));
}

CAMLprim value caml_int32_float_of_bits(value vi)
{
  return caml_copy_double(caml_int32_float_of_bits_unboxed(Int32_val(vi)));
}

/* 64-bit integers */

#ifdef ARCH_ALIGN_INT64

CAMLexport int64_t caml_Int64_val(value v)
{
  union { int32_t i[2]; int64_t j; } buffer;
  buffer.i[0] = ((int32_t *) Data_custom_val(v))[0];
  buffer.i[1] = ((int32_t *) Data_custom_val(v))[1];
  return buffer.j;
}

#endif

static int int64_cmp(value v1, value v2)
{
  int64_t i1 = Int64_val(v1);
  int64_t i2 = Int64_val(v2);
  return (i1 > i2) - (i1 < i2);
}

static intnat int64_hash(value v)
{
  int64_t x = Int64_val(v);
  uint32_t lo = (uint32_t) x, hi = (uint32_t) (x >> 32);
  return hi ^ lo;
}

static void int64_serialize(value v, uintnat * bsize_32,
                            uintnat * bsize_64)
{
  caml_serialize_int_8(Int64_val(v));
  *bsize_32 = *bsize_64 = 8;
}

static uintnat int64_deserialize(void * dst)
{
#ifndef ARCH_ALIGN_INT64
  *((int64_t *) dst) = caml_deserialize_sint_8();
#else
  union { int32_t i[2]; int64_t j; } buffer;
  buffer.j = caml_deserialize_sint_8();
  ((int32_t *) dst)[0] = buffer.i[0];
  ((int32_t *) dst)[1] = buffer.i[1];
#endif
  return 8;
}

static const struct custom_fixed_length int64_length = { 8, 8 };

CAMLexport const struct custom_operations caml_int64_ops = {
  "_j",
  custom_finalize_default,
  int64_cmp,
  int64_hash,
  int64_serialize,
  int64_deserialize,
  custom_compare_ext_default,
  &int64_length
};

CAMLexport value caml_copy_int64(int64_t i)
{
  value res = caml_alloc_custom(&caml_int64_ops, 8, 0, 1);
#ifndef ARCH_ALIGN_INT64
  Int64_val(res) = i;
#else
  union { int32_t i[2]; int64_t j; } buffer;
  buffer.j = i;
  ((int32_t *) Data_custom_val(res))[0] = buffer.i[0];
  ((int32_t *) Data_custom_val(res))[1] = buffer.i[1];
#endif
  return res;
}

#define CAMLprim_int64_1(name)                                          \
  CAMLprim int64_t caml_int64_##name##_native(int64_t);                 \
                                                                        \
  CAMLprim value caml_int64_##name(value v)                             \
  { return caml_copy_int64(caml_int64_##name##_native(Int64_val(v))); } \
                                                                        \
  CAMLprim int64_t caml_int64_##name##_native

#define CAMLprim_int64_2(name)                                          \
  CAMLprim int64_t caml_int64_##name##_native(int64_t, int64_t);        \
                                                                        \
  CAMLprim value caml_int64_##name(value v1, value v2)                  \
  { return caml_copy_int64(caml_int64_##name##_native(Int64_val(v1),    \
                                                      Int64_val(v2))); } \
                                                                        \
  CAMLprim int64_t caml_int64_##name##_native

CAMLprim_int64_1(neg)(int64_t i)
{ return -i; }

CAMLprim_int64_2(add)(int64_t i1, int64_t i2)
{ return i1 + i2; }

CAMLprim_int64_2(sub)(int64_t i1, int64_t i2)
{ return i1 - i2; }

CAMLprim_int64_2(mul)(int64_t i1, int64_t i2)
{ return i1 * i2; }

CAMLprim_int64_2(div)(int64_t dividend, int64_t divisor)
{
  if (divisor == 0) caml_raise_zero_divide();
  /* PR#4740: on some processors, division crashes on overflow.
     Implement the same behavior as for type "int". */
  if (dividend == ((int64_t)1 << 63) && divisor == -1) return dividend;
  return dividend / divisor;
}

CAMLprim_int64_2(mod)(int64_t dividend, int64_t divisor)
{
  if (divisor == 0) caml_raise_zero_divide();
  /* PR#4740: on some processors, division crashes on overflow.
     Implement the same behavior as for type "int". */
  if (dividend == ((int64_t)1 << 63) && divisor == -1) return 0;
  return dividend % divisor;
}

CAMLprim_int64_2(and)(int64_t i1, int64_t i2)
{ return i1 & i2; }

CAMLprim_int64_2(or)(int64_t i1, int64_t i2)
{ return i1 | i2; }

CAMLprim_int64_2(xor)(int64_t i1, int64_t i2)
{ return i1 ^ i2; }

CAMLprim value caml_int64_shift_left(value v1, value v2)
{ return caml_copy_int64(Int64_val(v1) << Int_val(v2)); }

CAMLprim value caml_int64_shift_right(value v1, value v2)
{ return caml_copy_int64(Int64_val(v1) >> Int_val(v2)); }

CAMLprim value caml_int64_shift_right_unsigned(value v1, value v2)
{ return caml_copy_int64((uint64_t) (Int64_val(v1)) >>  Int_val(v2)); }

#ifdef ARCH_SIXTYFOUR
static value caml_swap64(value x)
{
  return (((((x) & 0x00000000000000FF) << 56) |
           (((x) & 0x000000000000FF00) << 40) |
           (((x) & 0x0000000000FF0000) << 24) |
           (((x) & 0x00000000FF000000) << 8) |
           (((x) & 0x000000FF00000000) >> 8) |
           (((x) & 0x0000FF0000000000) >> 24) |
           (((x) & 0x00FF000000000000) >> 40) |
           (((x) & 0xFF00000000000000) >> 56)));
}

value caml_int64_direct_bswap(value v)
{ return caml_swap64(v); }
#endif

CAMLprim value caml_int64_bswap(value v)
{
  int64_t x = Int64_val(v);
  return caml_copy_int64
    (((x & 0x00000000000000FFULL) << 56) |
     ((x & 0x000000000000FF00ULL) << 40) |
     ((x & 0x0000000000FF0000ULL) << 24) |
     ((x & 0x00000000FF000000ULL) << 8) |
     ((x & 0x000000FF00000000ULL) >> 8) |
     ((x & 0x0000FF0000000000ULL) >> 24) |
     ((x & 0x00FF000000000000ULL) >> 40) |
     ((x & 0xFF00000000000000ULL) >> 56));
}

CAMLprim value caml_int64_of_int(value v)
{ return caml_copy_int64((int64_t) (Long_val(v))); }

CAMLprim value caml_int64_to_int(value v)
{ return Val_long((intnat) (Int64_val(v))); }

int64_t caml_int64_of_float_unboxed(double x)
{ return (int64_t) x; }

CAMLprim value caml_int64_of_float(value v)
{ return caml_copy_int64((int64_t) (Double_val(v))); }

double caml_int64_to_float_unboxed(int64_t x)
{ return (double) x; }

CAMLprim value caml_int64_to_float(value v)
{ return caml_copy_double((double) (Int64_val(v))); }

CAMLprim value caml_int64_of_int32(value v)
{ return caml_copy_int64((int64_t) (Int32_val(v))); }

CAMLprim value caml_int64_to_int32(value v)
{ return caml_copy_int32((int32_t) (Int64_val(v))); }

CAMLprim value caml_int64_of_nativeint(value v)
{ return caml_copy_int64((int64_t) (Nativeint_val(v))); }

CAMLprim value caml_int64_to_nativeint(value v)
{ return caml_copy_nativeint((intnat) (Int64_val(v))); }

intnat caml_int64_compare_unboxed(int64_t i1, int64_t i2)
{
  return COMPARE_INT(i1, i2);
}

CAMLprim value caml_int64_compare(value v1, value v2)
{
  return Val_int(caml_int64_compare_unboxed(Int64_val(v1),Int64_val(v2)));
}

CAMLprim value caml_int64_format(value fmt, value arg)
{
  char format_string[FORMAT_BUFFER_SIZE];

  parse_format(fmt, ARCH_INT64_PRINTF_FORMAT, format_string);
  return caml_alloc_sprintf(format_string, Int64_val(arg));
}

CAMLprim value caml_int64_of_string(value s)
{
  const char * p;
  uint64_t res, threshold;
  int sign, base, signedness, d;

  p = parse_sign_and_base(String_val(s), &base, &signedness, &sign);
  threshold = ((uint64_t) -1) / base;
  d = parse_digit(*p);
  if (d < 0 || d >= base) caml_failwith(INT64_ERRMSG);
  res = d;
  for (p++; /*nothing*/; p++) {
    char c = *p;
    if (c == '_') continue;
    d = parse_digit(c);
    if (d < 0 || d >= base) break;
    /* Detect overflow in multiplication base * res */
    if (res > threshold) caml_failwith(INT64_ERRMSG);
    res = base * res + d;
    /* Detect overflow in addition (base * res) + d */
    if (res < (uint64_t) d) caml_failwith(INT64_ERRMSG);
  }
  if (p != String_val(s) + caml_string_length(s)){
    caml_failwith(INT64_ERRMSG);
  }
  if (signedness) {
    /* Signed representation expected, allow -2^63 to 2^63 - 1 only */
    if (sign >= 0) {
      if (res >= (uint64_t)1 << 63) caml_failwith(INT64_ERRMSG);
    } else {
      if (res >  (uint64_t)1 << 63) caml_failwith(INT64_ERRMSG);
    }
  }
  if (sign < 0) res = - res;
  return caml_copy_int64(res);
}

int64_t caml_int64_bits_of_float_unboxed(double d)
{
  union { double d; int64_t i; int32_t h[2]; } u;
  u.d = d;
#if defined(__arm__) && !defined(__ARM_EABI__)
  { int32_t t = u.h[0]; u.h[0] = u.h[1]; u.h[1] = t; }
#endif
  return u.i;
}

double caml_int64_float_of_bits_unboxed(int64_t i)
{
  union { double d; int64_t i; int32_t h[2]; } u;
  u.i = i;
#if defined(__arm__) && !defined(__ARM_EABI__)
  { int32_t t = u.h[0]; u.h[0] = u.h[1]; u.h[1] = t; }
#endif
  return u.d;
}

CAMLprim value caml_int64_bits_of_float(value vd)
{
  return caml_copy_int64(caml_int64_bits_of_float_unboxed(Double_val(vd)));
}

CAMLprim value caml_int64_float_of_bits(value vi)
{
  return caml_copy_double(caml_int64_float_of_bits_unboxed(Int64_val(vi)));
}

/* Native integers */

static int nativeint_cmp(value v1, value v2)
{
  intnat i1 = Nativeint_val(v1);
  intnat i2 = Nativeint_val(v2);
  return (i1 > i2) - (i1 < i2);
}

static intnat nativeint_hash(value v)
{
  intnat n = Nativeint_val(v);
#ifdef ARCH_SIXTYFOUR
  /* 32/64 bits compatibility trick.  See explanations in file "hash.c",
     function caml_hash_mix_intnat. */
  return (n >> 32) ^ (n >> 63) ^ n;
#else
  return n;
#endif
}

static void nativeint_serialize(value v, uintnat * bsize_32,
                                uintnat * bsize_64)
{
  intnat l = Nativeint_val(v);
#ifdef ARCH_SIXTYFOUR
  if (l >= -((intnat)1 << 31) && l < ((intnat)1 << 31)) {
    caml_serialize_int_1(1);
    caml_serialize_int_4((int32_t) l);
  } else {
    caml_serialize_int_1(2);
    caml_serialize_int_8(l);
  }
#else
  caml_serialize_int_1(1);
  caml_serialize_int_4(l);
#endif
  *bsize_32 = 4;
  *bsize_64 = 8;
}

static uintnat nativeint_deserialize(void * dst)
{
  switch (caml_deserialize_uint_1()) {
  case 1:
    *((intnat *) dst) = caml_deserialize_sint_4();
    break;
  case 2:
#ifdef ARCH_SIXTYFOUR
    *((intnat *) dst) = caml_deserialize_sint_8();
#else
    caml_deserialize_error("input_value: native integer value too large");
#endif
    break;
  default:
    caml_deserialize_error("input_value: ill-formed native integer");
  }
  return sizeof(intnat);
}

static const struct custom_fixed_length nativeint_length = { 4, 8 };
CAMLexport const struct custom_operations caml_nativeint_ops = {
  "_n",
  custom_finalize_default,
  nativeint_cmp,
  nativeint_hash,
  nativeint_serialize,
  nativeint_deserialize,
  custom_compare_ext_default,
  &nativeint_length
};

CAMLexport value caml_copy_nativeint(intnat i)
{
  value res = caml_alloc_custom(&caml_nativeint_ops, sizeof(intnat), 0, 1);
  Nativeint_val(res) = i;
  return res;
}

CAMLprim value caml_nativeint_neg(value v)
{ return caml_copy_nativeint(- Nativeint_val(v)); }

CAMLprim value caml_nativeint_add(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) + Nativeint_val(v2)); }

CAMLprim value caml_nativeint_sub(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) - Nativeint_val(v2)); }

CAMLprim value caml_nativeint_mul(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) * Nativeint_val(v2)); }

#define Nativeint_min_int ((intnat) 1 << (sizeof(intnat) * 8 - 1))

CAMLprim value caml_nativeint_div(value v1, value v2)
{
  intnat dividend = Nativeint_val(v1);
  intnat divisor = Nativeint_val(v2);
  if (divisor == 0) caml_raise_zero_divide();
  /* PR#4740: on some processors, modulus crashes if division overflows.
     Implement the same behavior as for type "int". */
  if (dividend == Nativeint_min_int && divisor == -1) return v1;
  return caml_copy_nativeint(dividend / divisor);
}

CAMLprim value caml_nativeint_mod(value v1, value v2)
{
  intnat dividend = Nativeint_val(v1);
  intnat divisor = Nativeint_val(v2);
  if (divisor == 0) caml_raise_zero_divide();
  /* PR#4740: on some processors, modulus crashes if division overflows.
     Implement the same behavior as for type "int". */
  if (dividend == Nativeint_min_int && divisor == -1){
    return caml_copy_nativeint(0);
  }
  return caml_copy_nativeint(dividend % divisor);
}

CAMLprim value caml_nativeint_and(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) & Nativeint_val(v2)); }

CAMLprim value caml_nativeint_or(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) | Nativeint_val(v2)); }

CAMLprim value caml_nativeint_xor(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) ^ Nativeint_val(v2)); }

CAMLprim value caml_nativeint_shift_left(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) << Int_val(v2)); }

CAMLprim value caml_nativeint_shift_right(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) >> Int_val(v2)); }

CAMLprim value caml_nativeint_shift_right_unsigned(value v1, value v2)
{ return caml_copy_nativeint((uintnat)Nativeint_val(v1) >> Int_val(v2)); }

value caml_nativeint_direct_bswap(value v)
{
#ifdef ARCH_SIXTYFOUR
  return caml_swap64(v);
#else
  return caml_swap32(v);
#endif
}

CAMLprim value caml_nativeint_bswap(value v)
{
#ifdef ARCH_SIXTYFOUR
  return caml_copy_nativeint(caml_swap64(Nativeint_val(v)));
#else
  return caml_copy_nativeint(caml_swap32(Nativeint_val(v)));
#endif
}

CAMLprim value caml_nativeint_of_int(value v)
{ return caml_copy_nativeint(Long_val(v)); }

CAMLprim value caml_nativeint_to_int(value v)
{ return Val_long(Nativeint_val(v)); }

intnat caml_nativeint_of_float_unboxed(double x)
{ return (intnat) x; }

CAMLprim value caml_nativeint_of_float(value v)
{ return caml_copy_nativeint((intnat)(Double_val(v))); }

double caml_nativeint_to_float_unboxed(intnat x)
{ return (double) x; }

CAMLprim value caml_nativeint_to_float(value v)
{ return caml_copy_double((double)(Nativeint_val(v))); }

CAMLprim value caml_nativeint_of_int32(value v)
{ return caml_copy_nativeint(Int32_val(v)); }

CAMLprim value caml_nativeint_to_int32(value v)
{ return caml_copy_int32((int32_t) Nativeint_val(v)); }

intnat caml_nativeint_compare_unboxed(intnat i1, intnat i2)
{
  return COMPARE_INT(i1, i2);
}

CAMLprim value caml_nativeint_compare(value v1, value v2)
{
  return Val_int(caml_nativeint_compare_unboxed(Nativeint_val(v1),
                                                Nativeint_val(v2)));
}

CAMLprim value caml_nativeint_format(value fmt, value arg)
{
  char format_string[FORMAT_BUFFER_SIZE];

  parse_format(fmt, ARCH_INTNAT_PRINTF_FORMAT, format_string);
  return caml_alloc_sprintf(format_string, Nativeint_val(arg));
}

CAMLprim value caml_nativeint_of_string(value s)
{
  return caml_copy_nativeint(parse_intnat(s, 8 * sizeof(value), INTNAT_ERRMSG));
}