1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
/***********************************************************************/
/* */
/* Objective Caml */
/* */
/* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* Automatique. Distributed only by permission. */
/* */
/***********************************************************************/
/* $Id$ */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "alloc.h"
#include "fail.h"
#include "memory.h"
#include "mlvalues.h"
#include "misc.h"
#include "stacks.h"
#ifdef ARCH_ALIGN_DOUBLE
double Double_val(value val)
{
union { value v[2]; double d; } buffer;
Assert(sizeof(double) == 2 * sizeof(value));
buffer.v[0] = Field(val, 0);
buffer.v[1] = Field(val, 1);
return buffer.d;
}
void Store_double_val(value val, double dbl)
{
union { value v[2]; double d; } buffer;
Assert(sizeof(double) == 2 * sizeof(value));
buffer.d = dbl;
Field(val, 0) = buffer.v[0];
Field(val, 1) = buffer.v[1];
}
#endif
value copy_double(double d)
{
value res;
#define Setup_for_gc
#define Restore_after_gc
Alloc_small(res, Double_wosize, Double_tag);
#undef Setup_for_gc
#undef Restore_after_gc
Store_double_val(res, d);
return res;
}
value format_float(value fmt, value arg) /* ML */
{
#define MAX_DIGITS 350
/* Max number of decimal digits in a "natural" (not artificially padded)
representation of a float. Can be quite big for %f format.
Max exponent for IEEE format is 308 decimal digits.
Rounded up for good measure. */
char format_buffer[MAX_DIGITS + 20];
int prec, i;
char * p;
char * dest;
value res;
prec = MAX_DIGITS;
for (p = String_val(fmt); *p != 0; p++) {
if (*p >= '0' && *p <= '9') {
i = atoi(p) + MAX_DIGITS;
if (i > prec) prec = i;
break;
}
}
for( ; *p != 0; p++) {
if (*p == '.') {
i = atoi(p+1) + MAX_DIGITS;
if (i > prec) prec = i;
break;
}
}
if (prec <= sizeof(format_buffer)) {
dest = format_buffer;
} else {
dest = stat_alloc(prec);
}
sprintf(dest, String_val(fmt), Double_val(arg));
res = copy_string(dest);
if (dest != format_buffer) {
stat_free(dest);
}
return res;
}
value float_of_string(value s) /* ML */
{
return copy_double(atof(String_val(s)));
}
value int_of_float(value f) /* ML */
{
return Val_long((long) Double_val(f));
}
value float_of_int(value n) /* ML */
{
return copy_double((double) Long_val(n));
}
value neg_float(value f) /* ML */
{
return copy_double(- Double_val(f));
}
value abs_float(value f) /* ML */
{
return copy_double(fabs(Double_val(f)));
}
value add_float(value f, value g) /* ML */
{
return copy_double(Double_val(f) + Double_val(g));
}
value sub_float(value f, value g) /* ML */
{
return copy_double(Double_val(f) - Double_val(g));
}
value mul_float(value f, value g) /* ML */
{
return copy_double(Double_val(f) * Double_val(g));
}
value div_float(value f, value g) /* ML */
{
return copy_double(Double_val(f) / Double_val(g));
}
value exp_float(value f) /* ML */
{
return copy_double(exp(Double_val(f)));
}
value floor_float(value f) /* ML */
{
return copy_double(floor(Double_val(f)));
}
value fmod_float(value f1, value f2) /* ML */
{
return copy_double(fmod(Double_val(f1), Double_val(f2)));
}
value frexp_float(value f) /* ML */
{
int exponent;
value res;
value mantissa = copy_double(frexp (Double_val(f), &exponent));
Begin_root(mantissa);
res = alloc_tuple(2);
Field(res, 0) = mantissa;
Field(res, 1) = Val_int(exponent);
End_roots();
return res;
}
value ldexp_float(value f, value i) /* ML */
{
return copy_double(ldexp(Double_val(f), Int_val(i)));
}
value log_float(value f) /* ML */
{
return copy_double(log(Double_val(f)));
}
value log10_float(value f) /* ML */
{
return copy_double(log10(Double_val(f)));
}
value modf_float(value f) /* ML */
{
#if macintosh
_float_eval frem;
#else
double frem;
#endif
value res;
value quo = Val_unit, rem = Val_unit;
Begin_roots2(quo,rem);
quo = copy_double(modf (Double_val(f), &frem));
rem = copy_double(frem);
res = alloc_tuple(2);
Field(res, 0) = quo;
Field(res, 1) = rem;
End_roots();
return res;
}
value sqrt_float(value f) /* ML */
{
return copy_double(sqrt(Double_val(f)));
}
value power_float(value f, value g) /* ML */
{
return copy_double(pow(Double_val(f), Double_val(g)));
}
value sin_float(value f) /* ML */
{
return copy_double(sin(Double_val(f)));
}
value sinh_float(value f) /* ML */
{
return copy_double(sinh(Double_val(f)));
}
value cos_float(value f) /* ML */
{
return copy_double(cos(Double_val(f)));
}
value cosh_float(value f) /* ML */
{
return copy_double(cosh(Double_val(f)));
}
value tan_float(value f) /* ML */
{
return copy_double(tan(Double_val(f)));
}
value tanh_float(value f) /* ML */
{
return copy_double(tanh(Double_val(f)));
}
value asin_float(value f) /* ML */
{
return copy_double(asin(Double_val(f)));
}
value acos_float(value f) /* ML */
{
return copy_double(acos(Double_val(f)));
}
value atan_float(value f) /* ML */
{
return copy_double(atan(Double_val(f)));
}
value atan2_float(value f, value g) /* ML */
{
return copy_double(atan2(Double_val(f), Double_val(g)));
}
value ceil_float(value f) /* ML */
{
return copy_double(ceil(Double_val(f)));
}
value eq_float(value f, value g) /* ML */
{
return Val_bool(Double_val(f) == Double_val(g));
}
value neq_float(value f, value g) /* ML */
{
return Val_bool(Double_val(f) != Double_val(g));
}
value le_float(value f, value g) /* ML */
{
return Val_bool(Double_val(f) <= Double_val(g));
}
value lt_float(value f, value g) /* ML */
{
return Val_bool(Double_val(f) < Double_val(g));
}
value ge_float(value f, value g) /* ML */
{
return Val_bool(Double_val(f) >= Double_val(g));
}
value gt_float(value f, value g) /* ML */
{
return Val_bool(Double_val(f) > Double_val(g));
}
/* The init_ieee_float function should initialize floating-point hardware
so that it behaves as much as possible like the IEEE standard.
In particular, return special numbers like Infinity and NaN instead
of signalling exceptions. So far, only the Intel 386 under
FreeBSD is not in IEEE mode at program startup. */
#ifdef __i386__
#ifdef __FreeBSD__
#include <floatingpoint.h>
#endif
#endif
void init_ieee_floats(void)
{
#ifdef __i386__
#ifdef __FreeBSD__
fpsetmask(0);
#endif
#endif
}
|