1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
|
# 2 "asmcomp/i386/proc.ml"
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Description of the Intel 386 processor *)
open Misc
open Arch
open Cmm
open Reg
open Mach
(* Which asm conventions to use *)
let masm =
match Config.ccomp_type with
| "msvc" -> true
| _ -> false
(* Registers available for register allocation *)
(* Register map:
eax 0 eax - edi: function arguments and results
ebx 1 eax: C function results
ecx 2 ebx, esi, edi, ebp: preserved by C
edx 3
esi 4
edi 5
ebp 6
tos 100 top of floating-point stack. *)
let int_reg_name =
if masm then
[| "eax"; "ebx"; "ecx"; "edx"; "esi"; "edi"; "ebp" |]
else
[| "%eax"; "%ebx"; "%ecx"; "%edx"; "%esi"; "%edi"; "%ebp" |]
let float_reg_name =
if masm then
[| "tos" |]
else
[| "%tos" |]
let num_register_classes = 2
let register_class r =
match r.typ with
| Val | Int | Addr -> 0
| Float -> 1
let num_available_registers = [| 7; 0 |]
let first_available_register = [| 0; 100 |]
let register_name r =
if r < 100 then int_reg_name.(r) else float_reg_name.(r - 100)
(* There is little scheduling, and some operations are more compact
when their argument is %eax. *)
let rotate_registers = false
(* Representation of hard registers by pseudo-registers *)
let hard_int_reg =
let v = Array.make 7 Reg.dummy in
for i = 0 to 6 do v.(i) <- Reg.at_location Int (Reg i) done;
v
let hard_float_reg = [| Reg.at_location Float (Reg 100) |]
let all_phys_regs =
Array.append hard_int_reg hard_float_reg
let phys_reg n =
if n < 100 then hard_int_reg.(n) else hard_float_reg.(n - 100)
let eax = phys_reg 0
let ecx = phys_reg 2
let edx = phys_reg 3
let stack_slot slot ty =
Reg.at_location ty (Stack slot)
let loc_spacetime_node_hole = Reg.dummy (* Spacetime unsupported *)
(* Instruction selection *)
let word_addressed = false
(* Calling conventions *)
(* To supplement the processor's meagre supply of registers, we also
use some global memory locations to pass arguments beyond the 6th.
These globals are denoted by Incoming and Outgoing stack locations
with negative offsets, starting at -64.
Unlike arguments passed on stack, arguments passed in globals
do not prevent tail-call elimination. The caller stores arguments
in these globals immediately before the call, and the first thing the
callee does is copy them to registers or stack locations.
Neither GC nor thread context switches can occur between these two
times. *)
let calling_conventions first_int last_int first_float last_float make_stack
arg =
let loc = Array.make (Array.length arg) Reg.dummy in
let int = ref first_int in
let float = ref first_float in
let ofs = ref (-64) in
for i = 0 to Array.length arg - 1 do
match arg.(i).typ with
Val | Int | Addr as ty ->
if !int <= last_int then begin
loc.(i) <- phys_reg !int;
incr int
end else begin
loc.(i) <- stack_slot (make_stack !ofs) ty;
ofs := !ofs + size_int
end
| Float ->
if !float <= last_float then begin
loc.(i) <- phys_reg !float;
incr float
end else begin
loc.(i) <- stack_slot (make_stack !ofs) Float;
ofs := !ofs + size_float
end
done;
(loc, Misc.align (max 0 !ofs) stack_alignment)
let incoming ofs = Incoming ofs
let outgoing ofs = Outgoing ofs
let not_supported _ofs = fatal_error "Proc.loc_results: cannot call"
(* Six arguments in integer registers plus eight in global memory. *)
let max_arguments_for_tailcalls = 14
let loc_arguments arg =
calling_conventions 0 5 100 99 outgoing arg
let loc_parameters arg =
let (loc, _ofs) = calling_conventions 0 5 100 99 incoming arg in loc
let loc_results res =
let (loc, _ofs) = calling_conventions 0 5 100 100 not_supported res in loc
let loc_external_arguments _arg =
fatal_error "Proc.loc_external_arguments"
let loc_external_results res =
match res with
| [|{typ=Int};{typ=Int}|] -> [|eax; edx|]
| _ ->
let (loc, _ofs) = calling_conventions 0 0 100 100 not_supported res in loc
let loc_exn_bucket = eax
(* See "System V Application Binary Interface Intel386 Architecture
Processor Supplement Version 1.0"
(https://www.uclibc.org/docs/psABI-i386.pdf) *)
let int_dwarf_reg_numbers = [| 0; 3; 1; 2; 6; 7; 5 |]
let float_dwarf_reg_numbers = [| |]
let dwarf_register_numbers ~reg_class =
match reg_class with
| 0 -> int_dwarf_reg_numbers
| 1 -> float_dwarf_reg_numbers
| _ -> Misc.fatal_errorf "Bad register class %d" reg_class
let stack_ptr_dwarf_register_number = 4
(* Volatile registers: the x87 top of FP stack is *)
let reg_is_volatile = function
| { typ = Float; loc = Reg _ } -> true
| _ -> false
let regs_are_volatile rs =
try
for i = 0 to Array.length rs - 1 do
if reg_is_volatile rs.(i) then raise Exit
done;
false
with Exit ->
true
(* Registers destroyed by operations *)
let destroyed_at_c_call = (* ebx, esi, edi, ebp preserved *)
[|eax; ecx; edx|]
let destroyed_at_oper = function
Iop(Icall_ind _ | Icall_imm _ | Iextcall { alloc = true; _}) ->
all_phys_regs
| Iop(Iextcall { alloc = false; }) -> destroyed_at_c_call
| Iop(Iintop(Idiv | Imod)) -> [| eax; edx |]
| Iop(Ialloc _ | Iintop Imulh) -> [| eax |]
| Iop(Iintop(Icomp _) | Iintop_imm(Icomp _, _)) -> [| eax |]
| Iop(Iintoffloat) -> [| eax |]
| Iifthenelse(Ifloattest _, _, _) -> [| eax |]
| _ -> [||]
let destroyed_at_raise = all_phys_regs
let destroyed_at_reloadretaddr = [| |]
(* Maximal register pressure *)
let safe_register_pressure _op = 4
let max_register_pressure = function
Iextcall _ -> [| 4; max_int |]
| Iintop(Idiv | Imod) -> [| 5; max_int |]
| Ialloc _ | Iintop(Icomp _) | Iintop_imm(Icomp _, _) |
Iintoffloat -> [| 6; max_int |]
| _ -> [|7; max_int |]
(* Pure operations (without any side effect besides updating their result
registers). *)
let op_is_pure = function
| Icall_ind _ | Icall_imm _ | Itailcall_ind _ | Itailcall_imm _
| Iextcall _ | Istackoffset _ | Istore _ | Ialloc _
| Iintop(Icheckbound _) | Iintop_imm(Icheckbound _, _) -> false
| Ispecific(Ilea _) -> true
| Ispecific _ -> false
| _ -> true
(* Layout of the stack frame *)
let num_stack_slots = [| 0; 0 |]
let contains_calls = ref false
(* Calling the assembler *)
let assemble_file infile outfile =
X86_proc.assemble_file infile outfile
let init () = ()
|