1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
|
(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Register allocation by coloring of the interference graph *)
open Reg
(* Preallocation of spilled registers in the stack. *)
let allocate_spilled reg =
if reg.spill then begin
let cl = Proc.register_class reg in
let nslots = Proc.num_stack_slots.(cl) in
let conflict = Array.create nslots false in
List.iter
(fun r ->
match r.loc with
Stack(Local n) ->
if Proc.register_class r = cl then conflict.(n) <- true
| _ -> ())
reg.interf;
let slot = ref 0 in
while !slot < nslots && conflict.(!slot) do incr slot done;
reg.loc <- Stack(Local !slot);
if !slot >= nslots then Proc.num_stack_slots.(cl) <- !slot + 1
end
(* Compute the degree (= number of neighbours of the same type)
of each register, and split them in two sets:
unconstrained (degree < number of available registers)
and constrained (degree >= number of available registers).
Spilled registers are ignored in the process. *)
let unconstrained = ref Reg.Set.empty
let constrained = ref Reg.Set.empty
let find_degree reg =
if reg.spill then () else begin
let cl = Proc.register_class reg in
let avail_regs = Proc.num_available_registers.(cl) in
if avail_regs = 0 then
(* Don't bother computing the degree if there are no regs
in this class *)
unconstrained := Reg.Set.add reg !unconstrained
else begin
let deg = ref 0 in
List.iter
(fun r -> if not r.spill && Proc.register_class r = cl then incr deg)
reg.interf;
reg.degree <- !deg;
if !deg >= avail_regs
then constrained := Reg.Set.add reg !constrained
else unconstrained := Reg.Set.add reg !unconstrained
end
end
(* Remove a register from the interference graph *)
let remove_reg reg =
reg.degree <- 0; (* 0 means r is no longer part of the graph *)
let cl = Proc.register_class reg in
List.iter
(fun r ->
if Proc.register_class r = cl && r.degree > 0 then begin
let olddeg = r.degree in
r.degree <- olddeg - 1;
if olddeg = Proc.num_available_registers.(cl) then begin
(* r was constrained and becomes unconstrained *)
constrained := Reg.Set.remove r !constrained;
unconstrained := Reg.Set.add r !unconstrained
end
end)
reg.interf
(* Remove all registers one by one, unconstrained if possible, otherwise
constrained with lowest spill cost. Return the list of registers removed
in reverse order.
The spill cost measure is [r.spill_cost / r.degree].
[r.spill_cost] estimates the number of accesses to this register. *)
let rec remove_all_regs stack =
if not (Reg.Set.is_empty !unconstrained) then begin
(* Pick any unconstrained register *)
let r = Reg.Set.choose !unconstrained in
unconstrained := Reg.Set.remove r !unconstrained;
remove_all_regs (r :: stack)
end else
if not (Reg.Set.is_empty !constrained) then begin
(* Find a constrained reg with minimal cost *)
let r = ref Reg.dummy in
let min_degree = ref 0 and min_spill_cost = ref 1 in
(* initially !min_spill_cost / !min_degree is +infty *)
Reg.Set.iter
(fun r2 ->
(* if r2.spill_cost / r2.degree < !min_spill_cost / !min_degree *)
if r2.spill_cost * !min_degree < !min_spill_cost * r2.degree
then begin
r := r2; min_degree := r2.degree; min_spill_cost := r2.spill_cost
end)
!constrained;
constrained := Reg.Set.remove !r !constrained;
remove_all_regs (!r :: stack)
end else
stack (* All regs have been removed *)
(* Iterate over all registers preferred by the given register (transitively) *)
let iter_preferred f reg =
let rec walk r w =
if not r.visited then begin
f r w;
begin match r.prefer with
[] -> ()
| p -> r.visited <- true;
List.iter (fun (r1, w1) -> walk r1 (min w w1)) p;
r.visited <- false
end
end in
reg.visited <- true;
List.iter (fun (r, w) -> walk r w) reg.prefer;
reg.visited <- false
(* Where to start the search for a suitable register.
Used to introduce some "randomness" in the choice between registers
with equal scores. This offers more opportunities for scheduling. *)
let start_register = Array.create Proc.num_register_classes 0
(* Assign a location to a register, the best we can *)
let assign_location reg =
let cl = Proc.register_class reg in
let first_reg = Proc.first_available_register.(cl) in
let num_regs = Proc.num_available_registers.(cl) in
let last_reg = first_reg + num_regs in
let score = Array.create num_regs 0 in
let best_score = ref (-1000000) and best_reg = ref (-1) in
let start = start_register.(cl) in
if num_regs > 0 then begin
(* Favor the registers that have been assigned to pseudoregs for which
we have a preference. If these pseudoregs have not been assigned
already, avoid the registers with which they conflict. *)
iter_preferred
(fun r w ->
match r.loc with
Reg n -> if n >= first_reg && n < last_reg then
score.(n - first_reg) <- score.(n - first_reg) + w
| Unknown ->
List.iter
(fun neighbour ->
match neighbour.loc with
Reg n -> if n >= first_reg && n < last_reg then
score.(n - first_reg) <- score.(n - first_reg) - w
| _ -> ())
r.interf
| _ -> ())
reg;
List.iter
(fun neighbour ->
(* Prohibit the registers that have been assigned
to our neighbours *)
begin match neighbour.loc with
Reg n -> if n >= first_reg && n < last_reg then
score.(n - first_reg) <- (-1000000)
| _ -> ()
end;
(* Avoid the registers that have been assigned to pseudoregs
for which our neighbours have a preference *)
iter_preferred
(fun r w ->
match r.loc with
Reg n -> if n >= first_reg && n < last_reg then
score.(n - first_reg) <- score.(n - first_reg) - (w - 1)
(* w-1 to break the symmetry when two conflicting regs
have the same preference for a third reg. *)
| _ -> ())
neighbour)
reg.interf;
(* Pick the register with the best score *)
for n = start to num_regs - 1 do
if score.(n) > !best_score then begin
best_score := score.(n);
best_reg := n
end
done;
for n = 0 to start - 1 do
if score.(n) > !best_score then begin
best_score := score.(n);
best_reg := n
end
done
end;
(* Found a register? *)
if !best_reg >= 0 then begin
reg.loc <- Reg(first_reg + !best_reg);
if Proc.rotate_registers then
start_register.(cl) <- (if start+1 >= num_regs then 0 else start+1)
end else begin
(* Sorry, we must put the pseudoreg in a stack location *)
(* First, check if we have a preference for an incoming location
we do not conflict with. *)
let best_score = ref 0 and best_incoming_loc = ref (-1) in
List.iter
(fun (r, w) ->
match r.loc with
Stack(Incoming n) ->
if w > !best_score
&& List.for_all (fun neighbour -> neighbour.loc <> r.loc)
reg.interf
then begin
best_score := w;
best_incoming_loc := n
end
| _ -> ())
reg.prefer;
if !best_incoming_loc >= 0 then
reg.loc <- Stack(Incoming !best_incoming_loc)
else begin
(* Now, look for a location in the local area *)
let nslots = Proc.num_stack_slots.(cl) in
let score = Array.create nslots 0 in
(* Compute the scores as for registers *)
List.iter
(fun (r, w) ->
match r.loc with
Stack(Local n) -> if Proc.register_class r = cl then
score.(n) <- score.(n) + w
| Unknown ->
List.iter
(fun neighbour ->
match neighbour.loc with
Stack(Local n) ->
if Proc.register_class neighbour = cl
then score.(n) <- score.(n) - w
| _ -> ())
r.interf
| _ -> ())
reg.prefer;
List.iter
(fun neighbour ->
begin match neighbour.loc with
Stack(Local n) ->
if Proc.register_class neighbour = cl then
score.(n) <- (-1000000)
| _ -> ()
end;
List.iter
(fun (r, w) ->
match r.loc with
Stack(Local n) -> if Proc.register_class r = cl then
score.(n) <- score.(n) - w
| _ -> ())
neighbour.prefer)
reg.interf;
(* Pick the location with the best score *)
let best_score = ref (-1000000) and best_slot = ref (-1) in
for n = 0 to nslots - 1 do
if score.(n) > !best_score then begin
best_score := score.(n);
best_slot := n
end
done;
(* Found one? *)
if !best_slot >= 0 then
reg.loc <- Stack(Local !best_slot)
else begin
(* Allocate a new stack slot *)
reg.loc <- Stack(Local nslots);
Proc.num_stack_slots.(cl) <- nslots + 1
end
end
end;
(* Cancel the preferences of this register so that they don't influence
transitively the allocation of registers that prefer this reg. *)
reg.prefer <- []
let allocate_registers() =
(* First pass: preallocate spill registers
Second pass: compute the degrees
Third pass: determine coloring order by successive removals of regs
Fourth pass: assign registers in that order *)
for i = 0 to Proc.num_register_classes - 1 do
Proc.num_stack_slots.(i) <- 0;
start_register.(i) <- 0
done;
List.iter allocate_spilled (Reg.all_registers());
List.iter find_degree (Reg.all_registers());
List.iter assign_location (remove_all_regs [])
|