summaryrefslogtreecommitdiff
path: root/stdlib/baltree.ml
diff options
context:
space:
mode:
Diffstat (limited to 'stdlib/baltree.ml')
-rw-r--r--stdlib/baltree.ml193
1 files changed, 0 insertions, 193 deletions
diff --git a/stdlib/baltree.ml b/stdlib/baltree.ml
deleted file mode 100644
index 6ecf9cf626..0000000000
--- a/stdlib/baltree.ml
+++ /dev/null
@@ -1,193 +0,0 @@
-(* Weight-balanced binary trees.
- These are binary trees such that one child of a node has at most N times
- as many elements as the other child. We take N=3. *)
-
-type 'a t = Empty | Node of 'a t * 'a * 'a t * int
- (* The type of trees containing elements of type ['a].
- [Empty] is the empty tree (containing no elements). *)
-
-type 'a contents = Nothing | Something of 'a
- (* Used with the functions [modify] and [List.split], to represent
- the presence or the absence of an element in a tree. *)
-
-(* Compute the size (number of nodes and leaves) of a tree. *)
-
-let size = function
- Empty -> 1
- | Node(_, _, _, s) -> s
-
-(* Creates a new node with left son l, value x and right son r.
- l and r must be balanced and size l / size r must be between 1/N and N.
- Inline expansion of size for better speed. *)
-
-let new l x r =
- let sl = match l with Empty -> 0 | Node(_,_,_,s) -> s in
- let sr = match r with Empty -> 0 | Node(_,_,_,s) -> s in
- Node(l, x, r, sl + sr + 1)
-
-(* Same as new, but performs rebalancing if necessary.
- Assumes l and r balanced, and size l / size r "reasonable"
- (between 1/N^2 and N^2 ???).
- Inline expansion of new for better speed in the most frequent case
- where no rebalancing is required. *)
-
-let bal l x r =
- let sl = match l with Empty -> 0 | Node(_,_,_,s) -> s in
- let sr = match r with Empty -> 0 | Node(_,_,_,s) -> s in
- if sl > 3 * sr then begin
- match l with
- Empty -> invalid_arg "Baltree.bal"
- | Node(ll, lv, lr, _) ->
- if size ll >= size lr then
- new ll lv (new lr x r)
- else begin
- match lr with
- Empty -> invalid_arg "Baltree.bal"
- | Node(lrl, lrv, lrr, _)->
- new (new ll lv lrl) lrv (new lrr x r)
- end
- end else if sr > 3 * sl then begin
- match r with
- Empty -> invalid_arg "Baltree.bal"
- | Node(rl, rv, rr, _) ->
- if size rr >= size rl then
- new (new l x rl) rv rr
- else begin
- match rl with
- Empty -> invalid_arg "Baltree.bal"
- | Node(rll, rlv, rlr, _) ->
- new (new l x rll) rlv (new rlr rv rr)
- end
- end else
- Node(l, x, r, sl + sr + 1)
-
-(* Same as bal, but rebalance regardless of the original ratio
- size l / size r *)
-
-let rec join l x r =
- match bal l x r with
- Empty -> invalid_arg "Baltree.join"
- | Node(l', x', r', _) as t' ->
- let sl = size l' and sr = size r' in
- if sl > 3 * sr or sr > 3 * sl then join l' x' r' else t'
-
-(* Merge two trees l and r into one.
- All elements of l must precede the elements of r.
- Assumes size l / size r between 1/N and N. *)
-
-let rec merge t1 t2 =
- match (t1, t2) with
- (Empty, t) -> t
- | (t, Empty) -> t
- | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
- bal l1 v1 (bal (merge r1 l2) v2 r2)
-
-(* Same as merge, but does not assume anything about l and r. *)
-
-let rec concat t1 t2 =
- match (t1, t2) with
- (Empty, t) -> t
- | (t, Empty) -> t
- | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
- join l1 v1 (join (concat r1 l2) v2 r2)
-
-(* Insertion *)
-
-let add searchpred x t =
- let rec add = function
- Empty ->
- Node(Empty, x, Empty, 1)
- | Node(l, v, r, _) as t ->
- let c = searchpred v in
- if c == 0 then t else
- if c < 0 then bal (add l) v r else bal l v (add r)
- in add t
-
-(* Membership *)
-
-let contains searchpred t =
- let rec contains = function
- Empty -> false
- | Node(l, v, r, _) ->
- let c = searchpred v in
- if c == 0 then true else
- if c < 0 then contains l else contains r
- in contains t
-
-(* Search *)
-
-let find searchpred t =
- let rec find = function
- Empty ->
- raise Not_found
- | Node(l, v, r, _) ->
- let c = searchpred v in
- if c == 0 then v else
- if c < 0 then find l else find r
- in find t
-
-(* Deletion *)
-
-let remove searchpred t =
- let rec remove = function
- Empty ->
- Empty
- | Node(l, v, r, _) ->
- let c = searchpred v in
- if c == 0 then merge l r else
- if c < 0 then bal (remove l) v r else bal l v (remove r)
- in remove t
-
-(* Modification *)
-
-let modify searchpred modifier t =
- let rec modify = function
- Empty ->
- begin match modifier Nothing with
- Nothing -> Empty
- | Something v -> Node(Empty, v, Empty, 1)
- end
- | Node(l, v, r, s) ->
- let c = searchpred v in
- if c == 0 then
- begin match modifier(Something v) with
- Nothing -> merge l r
- | Something v' -> Node(l, v', r, s)
- end
- else if c < 0 then bal (modify l) v r else bal l v (modify r)
- in modify t
-
-(* Splitting *)
-
-let split searchpred =
- let rec split = function
- Empty ->
- (Empty, Nothing, Empty)
- | Node(l, v, r, _) ->
- let c = searchpred v in
- if c == 0 then (l, Something v, r)
- else if c < 0 then
- let (ll, vl, rl) = split l in (ll, vl, join rl v r)
- else
- let (lr, vr, rr) = split r in (join l v lr, vr, rr)
- in split
-
-(* Comparison (by lexicographic ordering of the fringes of the two trees). *)
-
-let compare cmp s1 s2 =
- let rec compare_aux l1 l2 =
- match (l1, l2) with
- ([], []) -> 0
- | ([], _) -> -1
- | (_, []) -> 1
- | (Empty::t1, Empty::t2) ->
- compare_aux t1 t2
- | (Node(Empty, v1, r1, _) :: t1, Node(Empty, v2, r2, _) :: t2) ->
- let c = cmp v1 v2 in
- if c != 0 then c else compare_aux (r1::t1) (r2::t2)
- | (Node(l1, v1, r1, _) :: t1, t2) ->
- compare_aux (l1 :: Node(Empty, v1, r1, 0) :: t1) t2
- | (t1, Node(l2, v2, r2, _) :: t2) ->
- compare_aux t1 (l2 :: Node(Empty, v2, r2, 0) :: t2)
- in
- compare_aux [s1] [s2]