summaryrefslogtreecommitdiff
path: root/lib/liboqs/src/sig/falcon/pqclean_falcon-1024_clean/fft.c
blob: a25bac4ec97ef956daaf2d366c227cae8343f383 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
#include "inner.h"

/*
 * FFT code.
 *
 * ==========================(LICENSE BEGIN)============================
 *
 * Copyright (c) 2017-2019  Falcon Project
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * ===========================(LICENSE END)=============================
 *
 * @author   Thomas Pornin <thomas.pornin@nccgroup.com>
 */


/*
 * Rules for complex number macros:
 * --------------------------------
 *
 * Operand order is: destination, source1, source2...
 *
 * Each operand is a real and an imaginary part.
 *
 * All overlaps are allowed.
 */

/*
 * Addition of two complex numbers (d = a + b).
 */
#define FPC_ADD(d_re, d_im, a_re, a_im, b_re, b_im)   do { \
        fpr fpct_re, fpct_im; \
        fpct_re = fpr_add(a_re, b_re); \
        fpct_im = fpr_add(a_im, b_im); \
        (d_re) = fpct_re; \
        (d_im) = fpct_im; \
    } while (0)

/*
 * Subtraction of two complex numbers (d = a - b).
 */
#define FPC_SUB(d_re, d_im, a_re, a_im, b_re, b_im)   do { \
        fpr fpct_re, fpct_im; \
        fpct_re = fpr_sub(a_re, b_re); \
        fpct_im = fpr_sub(a_im, b_im); \
        (d_re) = fpct_re; \
        (d_im) = fpct_im; \
    } while (0)

/*
 * Multplication of two complex numbers (d = a * b).
 */
#define FPC_MUL(d_re, d_im, a_re, a_im, b_re, b_im)   do { \
        fpr fpct_a_re, fpct_a_im; \
        fpr fpct_b_re, fpct_b_im; \
        fpr fpct_d_re, fpct_d_im; \
        fpct_a_re = (a_re); \
        fpct_a_im = (a_im); \
        fpct_b_re = (b_re); \
        fpct_b_im = (b_im); \
        fpct_d_re = fpr_sub( \
                             fpr_mul(fpct_a_re, fpct_b_re), \
                             fpr_mul(fpct_a_im, fpct_b_im)); \
        fpct_d_im = fpr_add( \
                             fpr_mul(fpct_a_re, fpct_b_im), \
                             fpr_mul(fpct_a_im, fpct_b_re)); \
        (d_re) = fpct_d_re; \
        (d_im) = fpct_d_im; \
    } while (0)

/*
 * Squaring of a complex number (d = a * a).
 */
#define FPC_SQR(d_re, d_im, a_re, a_im)   do { \
        fpr fpct_a_re, fpct_a_im; \
        fpr fpct_d_re, fpct_d_im; \
        fpct_a_re = (a_re); \
        fpct_a_im = (a_im); \
        fpct_d_re = fpr_sub(fpr_sqr(fpct_a_re), fpr_sqr(fpct_a_im)); \
        fpct_d_im = fpr_double(fpr_mul(fpct_a_re, fpct_a_im)); \
        (d_re) = fpct_d_re; \
        (d_im) = fpct_d_im; \
    } while (0)

/*
 * Inversion of a complex number (d = 1 / a).
 */
#define FPC_INV(d_re, d_im, a_re, a_im)   do { \
        fpr fpct_a_re, fpct_a_im; \
        fpr fpct_d_re, fpct_d_im; \
        fpr fpct_m; \
        fpct_a_re = (a_re); \
        fpct_a_im = (a_im); \
        fpct_m = fpr_add(fpr_sqr(fpct_a_re), fpr_sqr(fpct_a_im)); \
        fpct_m = fpr_inv(fpct_m); \
        fpct_d_re = fpr_mul(fpct_a_re, fpct_m); \
        fpct_d_im = fpr_mul(fpr_neg(fpct_a_im), fpct_m); \
        (d_re) = fpct_d_re; \
        (d_im) = fpct_d_im; \
    } while (0)

/*
 * Division of complex numbers (d = a / b).
 */
#define FPC_DIV(d_re, d_im, a_re, a_im, b_re, b_im)   do { \
        fpr fpct_a_re, fpct_a_im; \
        fpr fpct_b_re, fpct_b_im; \
        fpr fpct_d_re, fpct_d_im; \
        fpr fpct_m; \
        fpct_a_re = (a_re); \
        fpct_a_im = (a_im); \
        fpct_b_re = (b_re); \
        fpct_b_im = (b_im); \
        fpct_m = fpr_add(fpr_sqr(fpct_b_re), fpr_sqr(fpct_b_im)); \
        fpct_m = fpr_inv(fpct_m); \
        fpct_b_re = fpr_mul(fpct_b_re, fpct_m); \
        fpct_b_im = fpr_mul(fpr_neg(fpct_b_im), fpct_m); \
        fpct_d_re = fpr_sub( \
                             fpr_mul(fpct_a_re, fpct_b_re), \
                             fpr_mul(fpct_a_im, fpct_b_im)); \
        fpct_d_im = fpr_add( \
                             fpr_mul(fpct_a_re, fpct_b_im), \
                             fpr_mul(fpct_a_im, fpct_b_re)); \
        (d_re) = fpct_d_re; \
        (d_im) = fpct_d_im; \
    } while (0)

/*
 * Let w = exp(i*pi/N); w is a primitive 2N-th root of 1. We define the
 * values w_j = w^(2j+1) for all j from 0 to N-1: these are the roots
 * of X^N+1 in the field of complex numbers. A crucial property is that
 * w_{N-1-j} = conj(w_j) = 1/w_j for all j.
 *
 * FFT representation of a polynomial f (taken modulo X^N+1) is the
 * set of values f(w_j). Since f is real, conj(f(w_j)) = f(conj(w_j)),
 * thus f(w_{N-1-j}) = conj(f(w_j)). We thus store only half the values,
 * for j = 0 to N/2-1; the other half can be recomputed easily when (if)
 * needed. A consequence is that FFT representation has the same size
 * as normal representation: N/2 complex numbers use N real numbers (each
 * complex number is the combination of a real and an imaginary part).
 *
 * We use a specific ordering which makes computations easier. Let rev()
 * be the bit-reversal function over log(N) bits. For j in 0..N/2-1, we
 * store the real and imaginary parts of f(w_j) in slots:
 *
 *    Re(f(w_j)) -> slot rev(j)/2
 *    Im(f(w_j)) -> slot rev(j)/2+N/2
 *
 * (Note that rev(j) is even for j < N/2.)
 */

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_FFT(fpr *f, unsigned logn) {
    /*
     * FFT algorithm in bit-reversal order uses the following
     * iterative algorithm:
     *
     *   t = N
     *   for m = 1; m < N; m *= 2:
     *       ht = t/2
     *       for i1 = 0; i1 < m; i1 ++:
     *           j1 = i1 * t
     *           s = GM[m + i1]
     *           for j = j1; j < (j1 + ht); j ++:
     *               x = f[j]
     *               y = s * f[j + ht]
     *               f[j] = x + y
     *               f[j + ht] = x - y
     *       t = ht
     *
     * GM[k] contains w^rev(k) for primitive root w = exp(i*pi/N).
     *
     * In the description above, f[] is supposed to contain complex
     * numbers. In our in-memory representation, the real and
     * imaginary parts of f[k] are in array slots k and k+N/2.
     *
     * We only keep the first half of the complex numbers. We can
     * see that after the first iteration, the first and second halves
     * of the array of complex numbers have separate lives, so we
     * simply ignore the second part.
     */

    unsigned u;
    size_t t, n, hn, m;

    /*
     * First iteration: compute f[j] + i * f[j+N/2] for all j < N/2
     * (because GM[1] = w^rev(1) = w^(N/2) = i).
     * In our chosen representation, this is a no-op: everything is
     * already where it should be.
     */

    /*
     * Subsequent iterations are truncated to use only the first
     * half of values.
     */
    n = (size_t)1 << logn;
    hn = n >> 1;
    t = hn;
    for (u = 1, m = 2; u < logn; u ++, m <<= 1) {
        size_t ht, hm, i1, j1;

        ht = t >> 1;
        hm = m >> 1;
        for (i1 = 0, j1 = 0; i1 < hm; i1 ++, j1 += t) {
            size_t j, j2;

            j2 = j1 + ht;
            fpr s_re, s_im;

            s_re = fpr_gm_tab[((m + i1) << 1) + 0];
            s_im = fpr_gm_tab[((m + i1) << 1) + 1];
            for (j = j1; j < j2; j ++) {
                fpr x_re, x_im, y_re, y_im;

                x_re = f[j];
                x_im = f[j + hn];
                y_re = f[j + ht];
                y_im = f[j + ht + hn];
                FPC_MUL(y_re, y_im, y_re, y_im, s_re, s_im);
                FPC_ADD(f[j], f[j + hn],
                        x_re, x_im, y_re, y_im);
                FPC_SUB(f[j + ht], f[j + ht + hn],
                        x_re, x_im, y_re, y_im);
            }
        }
        t = ht;
    }
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_iFFT(fpr *f, unsigned logn) {
    /*
     * Inverse FFT algorithm in bit-reversal order uses the following
     * iterative algorithm:
     *
     *   t = 1
     *   for m = N; m > 1; m /= 2:
     *       hm = m/2
     *       dt = t*2
     *       for i1 = 0; i1 < hm; i1 ++:
     *           j1 = i1 * dt
     *           s = iGM[hm + i1]
     *           for j = j1; j < (j1 + t); j ++:
     *               x = f[j]
     *               y = f[j + t]
     *               f[j] = x + y
     *               f[j + t] = s * (x - y)
     *       t = dt
     *   for i1 = 0; i1 < N; i1 ++:
     *       f[i1] = f[i1] / N
     *
     * iGM[k] contains (1/w)^rev(k) for primitive root w = exp(i*pi/N)
     * (actually, iGM[k] = 1/GM[k] = conj(GM[k])).
     *
     * In the main loop (not counting the final division loop), in
     * all iterations except the last, the first and second half of f[]
     * (as an array of complex numbers) are separate. In our chosen
     * representation, we do not keep the second half.
     *
     * The last iteration recombines the recomputed half with the
     * implicit half, and should yield only real numbers since the
     * target polynomial is real; moreover, s = i at that step.
     * Thus, when considering x and y:
     *    y = conj(x) since the final f[j] must be real
     *    Therefore, f[j] is filled with 2*Re(x), and f[j + t] is
     *    filled with 2*Im(x).
     * But we already have Re(x) and Im(x) in array slots j and j+t
     * in our chosen representation. That last iteration is thus a
     * simple doubling of the values in all the array.
     *
     * We make the last iteration a no-op by tweaking the final
     * division into a division by N/2, not N.
     */
    size_t u, n, hn, t, m;

    n = (size_t)1 << logn;
    t = 1;
    m = n;
    hn = n >> 1;
    for (u = logn; u > 1; u --) {
        size_t hm, dt, i1, j1;

        hm = m >> 1;
        dt = t << 1;
        for (i1 = 0, j1 = 0; j1 < hn; i1 ++, j1 += dt) {
            size_t j, j2;

            j2 = j1 + t;
            fpr s_re, s_im;

            s_re = fpr_gm_tab[((hm + i1) << 1) + 0];
            s_im = fpr_neg(fpr_gm_tab[((hm + i1) << 1) + 1]);
            for (j = j1; j < j2; j ++) {
                fpr x_re, x_im, y_re, y_im;

                x_re = f[j];
                x_im = f[j + hn];
                y_re = f[j + t];
                y_im = f[j + t + hn];
                FPC_ADD(f[j], f[j + hn],
                        x_re, x_im, y_re, y_im);
                FPC_SUB(x_re, x_im, x_re, x_im, y_re, y_im);
                FPC_MUL(f[j + t], f[j + t + hn],
                        x_re, x_im, s_re, s_im);
            }
        }
        t = dt;
        m = hm;
    }

    /*
     * Last iteration is a no-op, provided that we divide by N/2
     * instead of N. We need to make a special case for logn = 0.
     */
    if (logn > 0) {
        fpr ni;

        ni = fpr_p2_tab[logn];
        for (u = 0; u < n; u ++) {
            f[u] = fpr_mul(f[u], ni);
        }
    }
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_add(
    fpr *a, const fpr *b, unsigned logn) {
    size_t n, u;

    n = (size_t)1 << logn;
    for (u = 0; u < n; u ++) {
        a[u] = fpr_add(a[u], b[u]);
    }
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_sub(
    fpr *a, const fpr *b, unsigned logn) {
    size_t n, u;

    n = (size_t)1 << logn;
    for (u = 0; u < n; u ++) {
        a[u] = fpr_sub(a[u], b[u]);
    }
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_neg(fpr *a, unsigned logn) {
    size_t n, u;

    n = (size_t)1 << logn;
    for (u = 0; u < n; u ++) {
        a[u] = fpr_neg(a[u]);
    }
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_adj_fft(fpr *a, unsigned logn) {
    size_t n, u;

    n = (size_t)1 << logn;
    for (u = (n >> 1); u < n; u ++) {
        a[u] = fpr_neg(a[u]);
    }
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_mul_fft(
    fpr *a, const fpr *b, unsigned logn) {
    size_t n, hn, u;

    n = (size_t)1 << logn;
    hn = n >> 1;
    for (u = 0; u < hn; u ++) {
        fpr a_re, a_im, b_re, b_im;

        a_re = a[u];
        a_im = a[u + hn];
        b_re = b[u];
        b_im = b[u + hn];
        FPC_MUL(a[u], a[u + hn], a_re, a_im, b_re, b_im);
    }
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_muladj_fft(
    fpr *a, const fpr *b, unsigned logn) {
    size_t n, hn, u;

    n = (size_t)1 << logn;
    hn = n >> 1;
    for (u = 0; u < hn; u ++) {
        fpr a_re, a_im, b_re, b_im;

        a_re = a[u];
        a_im = a[u + hn];
        b_re = b[u];
        b_im = fpr_neg(b[u + hn]);
        FPC_MUL(a[u], a[u + hn], a_re, a_im, b_re, b_im);
    }
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_mulselfadj_fft(fpr *a, unsigned logn) {
    /*
     * Since each coefficient is multiplied with its own conjugate,
     * the result contains only real values.
     */
    size_t n, hn, u;

    n = (size_t)1 << logn;
    hn = n >> 1;
    for (u = 0; u < hn; u ++) {
        fpr a_re, a_im;

        a_re = a[u];
        a_im = a[u + hn];
        a[u] = fpr_add(fpr_sqr(a_re), fpr_sqr(a_im));
        a[u + hn] = fpr_zero;
    }
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_mulconst(fpr *a, fpr x, unsigned logn) {
    size_t n, u;

    n = (size_t)1 << logn;
    for (u = 0; u < n; u ++) {
        a[u] = fpr_mul(a[u], x);
    }
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_div_fft(
    fpr *a, const fpr *b, unsigned logn) {
    size_t n, hn, u;

    n = (size_t)1 << logn;
    hn = n >> 1;
    for (u = 0; u < hn; u ++) {
        fpr a_re, a_im, b_re, b_im;

        a_re = a[u];
        a_im = a[u + hn];
        b_re = b[u];
        b_im = b[u + hn];
        FPC_DIV(a[u], a[u + hn], a_re, a_im, b_re, b_im);
    }
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_invnorm2_fft(fpr *d,
        const fpr *a, const fpr *b, unsigned logn) {
    size_t n, hn, u;

    n = (size_t)1 << logn;
    hn = n >> 1;
    for (u = 0; u < hn; u ++) {
        fpr a_re, a_im;
        fpr b_re, b_im;

        a_re = a[u];
        a_im = a[u + hn];
        b_re = b[u];
        b_im = b[u + hn];
        d[u] = fpr_inv(fpr_add(
                           fpr_add(fpr_sqr(a_re), fpr_sqr(a_im)),
                           fpr_add(fpr_sqr(b_re), fpr_sqr(b_im))));
    }
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_add_muladj_fft(fpr *d,
        const fpr *F, const fpr *G,
        const fpr *f, const fpr *g, unsigned logn) {
    size_t n, hn, u;

    n = (size_t)1 << logn;
    hn = n >> 1;
    for (u = 0; u < hn; u ++) {
        fpr F_re, F_im, G_re, G_im;
        fpr f_re, f_im, g_re, g_im;
        fpr a_re, a_im, b_re, b_im;

        F_re = F[u];
        F_im = F[u + hn];
        G_re = G[u];
        G_im = G[u + hn];
        f_re = f[u];
        f_im = f[u + hn];
        g_re = g[u];
        g_im = g[u + hn];

        FPC_MUL(a_re, a_im, F_re, F_im, f_re, fpr_neg(f_im));
        FPC_MUL(b_re, b_im, G_re, G_im, g_re, fpr_neg(g_im));
        d[u] = fpr_add(a_re, b_re);
        d[u + hn] = fpr_add(a_im, b_im);
    }
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_mul_autoadj_fft(
    fpr *a, const fpr *b, unsigned logn) {
    size_t n, hn, u;

    n = (size_t)1 << logn;
    hn = n >> 1;
    for (u = 0; u < hn; u ++) {
        a[u] = fpr_mul(a[u], b[u]);
        a[u + hn] = fpr_mul(a[u + hn], b[u]);
    }
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_div_autoadj_fft(
    fpr *a, const fpr *b, unsigned logn) {
    size_t n, hn, u;

    n = (size_t)1 << logn;
    hn = n >> 1;
    for (u = 0; u < hn; u ++) {
        fpr ib;

        ib = fpr_inv(b[u]);
        a[u] = fpr_mul(a[u], ib);
        a[u + hn] = fpr_mul(a[u + hn], ib);
    }
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_LDL_fft(
    const fpr *g00,
    fpr *g01, fpr *g11, unsigned logn) {
    size_t n, hn, u;

    n = (size_t)1 << logn;
    hn = n >> 1;
    for (u = 0; u < hn; u ++) {
        fpr g00_re, g00_im, g01_re, g01_im, g11_re, g11_im;
        fpr mu_re, mu_im;

        g00_re = g00[u];
        g00_im = g00[u + hn];
        g01_re = g01[u];
        g01_im = g01[u + hn];
        g11_re = g11[u];
        g11_im = g11[u + hn];
        FPC_DIV(mu_re, mu_im, g01_re, g01_im, g00_re, g00_im);
        FPC_MUL(g01_re, g01_im, mu_re, mu_im, g01_re, fpr_neg(g01_im));
        FPC_SUB(g11[u], g11[u + hn], g11_re, g11_im, g01_re, g01_im);
        g01[u] = mu_re;
        g01[u + hn] = fpr_neg(mu_im);
    }
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_LDLmv_fft(
    fpr *d11, fpr *l10,
    const fpr *g00, const fpr *g01,
    const fpr *g11, unsigned logn) {
    size_t n, hn, u;

    n = (size_t)1 << logn;
    hn = n >> 1;
    for (u = 0; u < hn; u ++) {
        fpr g00_re, g00_im, g01_re, g01_im, g11_re, g11_im;
        fpr mu_re, mu_im;

        g00_re = g00[u];
        g00_im = g00[u + hn];
        g01_re = g01[u];
        g01_im = g01[u + hn];
        g11_re = g11[u];
        g11_im = g11[u + hn];
        FPC_DIV(mu_re, mu_im, g01_re, g01_im, g00_re, g00_im);
        FPC_MUL(g01_re, g01_im, mu_re, mu_im, g01_re, fpr_neg(g01_im));
        FPC_SUB(d11[u], d11[u + hn], g11_re, g11_im, g01_re, g01_im);
        l10[u] = mu_re;
        l10[u + hn] = fpr_neg(mu_im);
    }
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_split_fft(
    fpr *f0, fpr *f1,
    const fpr *f, unsigned logn) {
    /*
     * The FFT representation we use is in bit-reversed order
     * (element i contains f(w^(rev(i))), where rev() is the
     * bit-reversal function over the ring degree. This changes
     * indexes with regards to the Falcon specification.
     */
    size_t n, hn, qn, u;

    n = (size_t)1 << logn;
    hn = n >> 1;
    qn = hn >> 1;

    /*
     * We process complex values by pairs. For logn = 1, there is only
     * one complex value (the other one is the implicit conjugate),
     * so we add the two lines below because the loop will be
     * skipped.
     */
    f0[0] = f[0];
    f1[0] = f[hn];

    for (u = 0; u < qn; u ++) {
        fpr a_re, a_im, b_re, b_im;
        fpr t_re, t_im;

        a_re = f[(u << 1) + 0];
        a_im = f[(u << 1) + 0 + hn];
        b_re = f[(u << 1) + 1];
        b_im = f[(u << 1) + 1 + hn];

        FPC_ADD(t_re, t_im, a_re, a_im, b_re, b_im);
        f0[u] = fpr_half(t_re);
        f0[u + qn] = fpr_half(t_im);

        FPC_SUB(t_re, t_im, a_re, a_im, b_re, b_im);
        FPC_MUL(t_re, t_im, t_re, t_im,
                fpr_gm_tab[((u + hn) << 1) + 0],
                fpr_neg(fpr_gm_tab[((u + hn) << 1) + 1]));
        f1[u] = fpr_half(t_re);
        f1[u + qn] = fpr_half(t_im);
    }
}

/* see inner.h */
void
PQCLEAN_FALCON1024_CLEAN_poly_merge_fft(
    fpr *f,
    const fpr *f0, const fpr *f1, unsigned logn) {
    size_t n, hn, qn, u;

    n = (size_t)1 << logn;
    hn = n >> 1;
    qn = hn >> 1;

    /*
     * An extra copy to handle the special case logn = 1.
     */
    f[0] = f0[0];
    f[hn] = f1[0];

    for (u = 0; u < qn; u ++) {
        fpr a_re, a_im, b_re, b_im;
        fpr t_re, t_im;

        a_re = f0[u];
        a_im = f0[u + qn];
        FPC_MUL(b_re, b_im, f1[u], f1[u + qn],
                fpr_gm_tab[((u + hn) << 1) + 0],
                fpr_gm_tab[((u + hn) << 1) + 1]);
        FPC_ADD(t_re, t_im, a_re, a_im, b_re, b_im);
        f[(u << 1) + 0] = t_re;
        f[(u << 1) + 0 + hn] = t_im;
        FPC_SUB(t_re, t_im, a_re, a_im, b_re, b_im);
        f[(u << 1) + 1] = t_re;
        f[(u << 1) + 1 + hn] = t_im;
    }
}