summaryrefslogtreecommitdiff
path: root/security/nss/lib/freebl/ecl/ecp_mont.c
diff options
context:
space:
mode:
Diffstat (limited to 'security/nss/lib/freebl/ecl/ecp_mont.c')
-rw-r--r--security/nss/lib/freebl/ecl/ecp_mont.c190
1 files changed, 0 insertions, 190 deletions
diff --git a/security/nss/lib/freebl/ecl/ecp_mont.c b/security/nss/lib/freebl/ecl/ecp_mont.c
deleted file mode 100644
index a251af1fc..000000000
--- a/security/nss/lib/freebl/ecl/ecp_mont.c
+++ /dev/null
@@ -1,190 +0,0 @@
-/*
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library.
- *
- * The Initial Developer of the Original Code is Sun Microsystems, Inc.
- * Portions created by Sun Microsystems, Inc. are Copyright (C) 2003
- * Sun Microsystems, Inc. All Rights Reserved.
- *
- * Contributor(s):
- * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- */
-
-/* Uses Montgomery reduction for field arithmetic. See mpi/mpmontg.c for
- * code implementation. */
-
-#include "mpi.h"
-#include "mplogic.h"
-#include "mpi-priv.h"
-#include "ecl-priv.h"
-#include "ecp.h"
-#include <stdlib.h>
-#include <stdio.h>
-
-/* Construct a generic GFMethod for arithmetic over prime fields with
- * irreducible irr. */
-GFMethod *
-GFMethod_consGFp_mont(const mp_int *irr)
-{
- mp_err res = MP_OKAY;
- int i;
- GFMethod *meth = NULL;
- mp_mont_modulus *mmm;
-
- meth = GFMethod_consGFp(irr);
- if (meth == NULL)
- return NULL;
-
- mmm = (mp_mont_modulus *) malloc(sizeof(mp_mont_modulus));
- if (mmm == NULL) {
- res = MP_MEM;
- goto CLEANUP;
- }
-
- meth->field_mul = &ec_GFp_mul_mont;
- meth->field_sqr = &ec_GFp_sqr_mont;
- meth->field_div = &ec_GFp_div_mont;
- meth->field_enc = &ec_GFp_enc_mont;
- meth->field_dec = &ec_GFp_dec_mont;
- meth->extra1 = mmm;
- meth->extra2 = NULL;
- meth->extra_free = &ec_GFp_extra_free_mont;
-
- mmm->N = meth->irr;
- i = mpl_significant_bits(&meth->irr);
- i += MP_DIGIT_BIT - 1;
- mmm->b = i - i % MP_DIGIT_BIT;
- mmm->n0prime = 0 - s_mp_invmod_radix(MP_DIGIT(&meth->irr, 0));
-
- CLEANUP:
- if (res != MP_OKAY) {
- GFMethod_free(meth);
- return NULL;
- }
- return meth;
-}
-
-/* Wrapper functions for generic prime field arithmetic. */
-
-/* Field multiplication using Montgomery reduction. */
-mp_err
-ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r,
- const GFMethod *meth)
-{
- mp_err res = MP_OKAY;
-
-#ifdef MP_MONT_USE_MP_MUL
- /* if MP_MONT_USE_MP_MUL is defined, then the function s_mp_mul_mont
- * is not implemented and we have to use mp_mul and s_mp_redc directly
- */
- MP_CHECKOK(mp_mul(a, b, r));
- MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1));
-#else
- mp_int s;
-
- MP_DIGITS(&s) = 0;
- /* s_mp_mul_mont doesn't allow source and destination to be the same */
- if ((a == r) || (b == r)) {
- MP_CHECKOK(mp_init(&s));
- MP_CHECKOK(s_mp_mul_mont
- (a, b, &s, (mp_mont_modulus *) meth->extra1));
- MP_CHECKOK(mp_copy(&s, r));
- mp_clear(&s);
- } else {
- return s_mp_mul_mont(a, b, r, (mp_mont_modulus *) meth->extra1);
- }
-#endif
- CLEANUP:
- return res;
-}
-
-/* Field squaring using Montgomery reduction. */
-mp_err
-ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
- return ec_GFp_mul_mont(a, a, r, meth);
-}
-
-/* Field division using Montgomery reduction. */
-mp_err
-ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r,
- const GFMethod *meth)
-{
- mp_err res = MP_OKAY;
-
- /* if A=aZ represents a encoded in montgomery coordinates with Z and #
- * and \ respectively represent multiplication and division in
- * montgomery coordinates, then A\B = (a/b)Z = (A/B)Z and Binv =
- * (1/b)Z = (1/B)(Z^2) where B # Binv = Z */
- MP_CHECKOK(ec_GFp_div(a, b, r, meth));
- MP_CHECKOK(ec_GFp_enc_mont(r, r, meth));
- if (a == NULL) {
- MP_CHECKOK(ec_GFp_enc_mont(r, r, meth));
- }
- CLEANUP:
- return res;
-}
-
-/* Encode a field element in Montgomery form. See s_mp_to_mont in
- * mpi/mpmontg.c */
-mp_err
-ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
- mp_mont_modulus *mmm;
- mp_err res = MP_OKAY;
-
- mmm = (mp_mont_modulus *) meth->extra1;
- MP_CHECKOK(mpl_lsh(a, r, mmm->b));
- MP_CHECKOK(mp_mod(r, &mmm->N, r));
- CLEANUP:
- return res;
-}
-
-/* Decode a field element from Montgomery form. */
-mp_err
-ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
- mp_err res = MP_OKAY;
-
- if (a != r) {
- MP_CHECKOK(mp_copy(a, r));
- }
- MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1));
- CLEANUP:
- return res;
-}
-
-/* Free the memory allocated to the extra fields of Montgomery GFMethod
- * object. */
-void
-ec_GFp_extra_free_mont(GFMethod *meth)
-{
- if (meth->extra1 != NULL) {
- free(meth->extra1);
- meth->extra1 = NULL;
- }
-}