summaryrefslogtreecommitdiff
path: root/lib/liboqs/src/sig/falcon/pqclean_falcon-512_clean/keygen.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/liboqs/src/sig/falcon/pqclean_falcon-512_clean/keygen.c')
-rw-r--r--lib/liboqs/src/sig/falcon/pqclean_falcon-512_clean/keygen.c4231
1 files changed, 4231 insertions, 0 deletions
diff --git a/lib/liboqs/src/sig/falcon/pqclean_falcon-512_clean/keygen.c b/lib/liboqs/src/sig/falcon/pqclean_falcon-512_clean/keygen.c
new file mode 100644
index 000000000..f72ecd991
--- /dev/null
+++ b/lib/liboqs/src/sig/falcon/pqclean_falcon-512_clean/keygen.c
@@ -0,0 +1,4231 @@
+#include "inner.h"
+
+/*
+ * Falcon key pair generation.
+ *
+ * ==========================(LICENSE BEGIN)============================
+ *
+ * Copyright (c) 2017-2019 Falcon Project
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+ * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * ===========================(LICENSE END)=============================
+ *
+ * @author Thomas Pornin <thomas.pornin@nccgroup.com>
+ */
+
+
+#define MKN(logn) ((size_t)1 << (logn))
+
+/* ==================================================================== */
+/*
+ * Modular arithmetics.
+ *
+ * We implement a few functions for computing modulo a small integer p.
+ *
+ * All functions require that 2^30 < p < 2^31. Moreover, operands must
+ * be in the 0..p-1 range.
+ *
+ * Modular addition and subtraction work for all such p.
+ *
+ * Montgomery multiplication requires that p is odd, and must be provided
+ * with an additional value p0i = -1/p mod 2^31. See below for some basics
+ * on Montgomery multiplication.
+ *
+ * Division computes an inverse modulo p by an exponentiation (with
+ * exponent p-2): this works only if p is prime. Multiplication
+ * requirements also apply, i.e. p must be odd and p0i must be provided.
+ *
+ * The NTT and inverse NTT need all of the above, and also that
+ * p = 1 mod 2048.
+ *
+ * -----------------------------------------------------------------------
+ *
+ * We use Montgomery representation with 31-bit values:
+ *
+ * Let R = 2^31 mod p. When 2^30 < p < 2^31, R = 2^31 - p.
+ * Montgomery representation of an integer x modulo p is x*R mod p.
+ *
+ * Montgomery multiplication computes (x*y)/R mod p for
+ * operands x and y. Therefore:
+ *
+ * - if operands are x*R and y*R (Montgomery representations of x and
+ * y), then Montgomery multiplication computes (x*R*y*R)/R = (x*y)*R
+ * mod p, which is the Montgomery representation of the product x*y;
+ *
+ * - if operands are x*R and y (or x and y*R), then Montgomery
+ * multiplication returns x*y mod p: mixed-representation
+ * multiplications yield results in normal representation.
+ *
+ * To convert to Montgomery representation, we multiply by R, which is done
+ * by Montgomery-multiplying by R^2. Stand-alone conversion back from
+ * Montgomery representation is Montgomery-multiplication by 1.
+ */
+
+/*
+ * Precomputed small primes. Each element contains the following:
+ *
+ * p The prime itself.
+ *
+ * g A primitive root of phi = X^N+1 (in field Z_p).
+ *
+ * s The inverse of the product of all previous primes in the array,
+ * computed modulo p and in Montgomery representation.
+ *
+ * All primes are such that p = 1 mod 2048, and are lower than 2^31. They
+ * are listed in decreasing order.
+ */
+
+typedef struct {
+ uint32_t p;
+ uint32_t g;
+ uint32_t s;
+} small_prime;
+
+static const small_prime PRIMES[] = {
+ { 2147473409, 383167813, 10239 },
+ { 2147389441, 211808905, 471403745 },
+ { 2147387393, 37672282, 1329335065 },
+ { 2147377153, 1977035326, 968223422 },
+ { 2147358721, 1067163706, 132460015 },
+ { 2147352577, 1606082042, 598693809 },
+ { 2147346433, 2033915641, 1056257184 },
+ { 2147338241, 1653770625, 421286710 },
+ { 2147309569, 631200819, 1111201074 },
+ { 2147297281, 2038364663, 1042003613 },
+ { 2147295233, 1962540515, 19440033 },
+ { 2147239937, 2100082663, 353296760 },
+ { 2147235841, 1991153006, 1703918027 },
+ { 2147217409, 516405114, 1258919613 },
+ { 2147205121, 409347988, 1089726929 },
+ { 2147196929, 927788991, 1946238668 },
+ { 2147178497, 1136922411, 1347028164 },
+ { 2147100673, 868626236, 701164723 },
+ { 2147082241, 1897279176, 617820870 },
+ { 2147074049, 1888819123, 158382189 },
+ { 2147051521, 25006327, 522758543 },
+ { 2147043329, 327546255, 37227845 },
+ { 2147039233, 766324424, 1133356428 },
+ { 2146988033, 1862817362, 73861329 },
+ { 2146963457, 404622040, 653019435 },
+ { 2146959361, 1936581214, 995143093 },
+ { 2146938881, 1559770096, 634921513 },
+ { 2146908161, 422623708, 1985060172 },
+ { 2146885633, 1751189170, 298238186 },
+ { 2146871297, 578919515, 291810829 },
+ { 2146846721, 1114060353, 915902322 },
+ { 2146834433, 2069565474, 47859524 },
+ { 2146818049, 1552824584, 646281055 },
+ { 2146775041, 1906267847, 1597832891 },
+ { 2146756609, 1847414714, 1228090888 },
+ { 2146744321, 1818792070, 1176377637 },
+ { 2146738177, 1118066398, 1054971214 },
+ { 2146736129, 52057278, 933422153 },
+ { 2146713601, 592259376, 1406621510 },
+ { 2146695169, 263161877, 1514178701 },
+ { 2146656257, 685363115, 384505091 },
+ { 2146650113, 927727032, 537575289 },
+ { 2146646017, 52575506, 1799464037 },
+ { 2146643969, 1276803876, 1348954416 },
+ { 2146603009, 814028633, 1521547704 },
+ { 2146572289, 1846678872, 1310832121 },
+ { 2146547713, 919368090, 1019041349 },
+ { 2146508801, 671847612, 38582496 },
+ { 2146492417, 283911680, 532424562 },
+ { 2146490369, 1780044827, 896447978 },
+ { 2146459649, 327980850, 1327906900 },
+ { 2146447361, 1310561493, 958645253 },
+ { 2146441217, 412148926, 287271128 },
+ { 2146437121, 293186449, 2009822534 },
+ { 2146430977, 179034356, 1359155584 },
+ { 2146418689, 1517345488, 1790248672 },
+ { 2146406401, 1615820390, 1584833571 },
+ { 2146404353, 826651445, 607120498 },
+ { 2146379777, 3816988, 1897049071 },
+ { 2146363393, 1221409784, 1986921567 },
+ { 2146355201, 1388081168, 849968120 },
+ { 2146336769, 1803473237, 1655544036 },
+ { 2146312193, 1023484977, 273671831 },
+ { 2146293761, 1074591448, 467406983 },
+ { 2146283521, 831604668, 1523950494 },
+ { 2146203649, 712865423, 1170834574 },
+ { 2146154497, 1764991362, 1064856763 },
+ { 2146142209, 627386213, 1406840151 },
+ { 2146127873, 1638674429, 2088393537 },
+ { 2146099201, 1516001018, 690673370 },
+ { 2146093057, 1294931393, 315136610 },
+ { 2146091009, 1942399533, 973539425 },
+ { 2146078721, 1843461814, 2132275436 },
+ { 2146060289, 1098740778, 360423481 },
+ { 2146048001, 1617213232, 1951981294 },
+ { 2146041857, 1805783169, 2075683489 },
+ { 2146019329, 272027909, 1753219918 },
+ { 2145986561, 1206530344, 2034028118 },
+ { 2145976321, 1243769360, 1173377644 },
+ { 2145964033, 887200839, 1281344586 },
+ { 2145906689, 1651026455, 906178216 },
+ { 2145875969, 1673238256, 1043521212 },
+ { 2145871873, 1226591210, 1399796492 },
+ { 2145841153, 1465353397, 1324527802 },
+ { 2145832961, 1150638905, 554084759 },
+ { 2145816577, 221601706, 427340863 },
+ { 2145785857, 608896761, 316590738 },
+ { 2145755137, 1712054942, 1684294304 },
+ { 2145742849, 1302302867, 724873116 },
+ { 2145728513, 516717693, 431671476 },
+ { 2145699841, 524575579, 1619722537 },
+ { 2145691649, 1925625239, 982974435 },
+ { 2145687553, 463795662, 1293154300 },
+ { 2145673217, 771716636, 881778029 },
+ { 2145630209, 1509556977, 837364988 },
+ { 2145595393, 229091856, 851648427 },
+ { 2145587201, 1796903241, 635342424 },
+ { 2145525761, 715310882, 1677228081 },
+ { 2145495041, 1040930522, 200685896 },
+ { 2145466369, 949804237, 1809146322 },
+ { 2145445889, 1673903706, 95316881 },
+ { 2145390593, 806941852, 1428671135 },
+ { 2145372161, 1402525292, 159350694 },
+ { 2145361921, 2124760298, 1589134749 },
+ { 2145359873, 1217503067, 1561543010 },
+ { 2145355777, 338341402, 83865711 },
+ { 2145343489, 1381532164, 641430002 },
+ { 2145325057, 1883895478, 1528469895 },
+ { 2145318913, 1335370424, 65809740 },
+ { 2145312769, 2000008042, 1919775760 },
+ { 2145300481, 961450962, 1229540578 },
+ { 2145282049, 910466767, 1964062701 },
+ { 2145232897, 816527501, 450152063 },
+ { 2145218561, 1435128058, 1794509700 },
+ { 2145187841, 33505311, 1272467582 },
+ { 2145181697, 269767433, 1380363849 },
+ { 2145175553, 56386299, 1316870546 },
+ { 2145079297, 2106880293, 1391797340 },
+ { 2145021953, 1347906152, 720510798 },
+ { 2145015809, 206769262, 1651459955 },
+ { 2145003521, 1885513236, 1393381284 },
+ { 2144960513, 1810381315, 31937275 },
+ { 2144944129, 1306487838, 2019419520 },
+ { 2144935937, 37304730, 1841489054 },
+ { 2144894977, 1601434616, 157985831 },
+ { 2144888833, 98749330, 2128592228 },
+ { 2144880641, 1772327002, 2076128344 },
+ { 2144864257, 1404514762, 2029969964 },
+ { 2144827393, 801236594, 406627220 },
+ { 2144806913, 349217443, 1501080290 },
+ { 2144796673, 1542656776, 2084736519 },
+ { 2144778241, 1210734884, 1746416203 },
+ { 2144759809, 1146598851, 716464489 },
+ { 2144757761, 286328400, 1823728177 },
+ { 2144729089, 1347555695, 1836644881 },
+ { 2144727041, 1795703790, 520296412 },
+ { 2144696321, 1302475157, 852964281 },
+ { 2144667649, 1075877614, 504992927 },
+ { 2144573441, 198765808, 1617144982 },
+ { 2144555009, 321528767, 155821259 },
+ { 2144550913, 814139516, 1819937644 },
+ { 2144536577, 571143206, 962942255 },
+ { 2144524289, 1746733766, 2471321 },
+ { 2144512001, 1821415077, 124190939 },
+ { 2144468993, 917871546, 1260072806 },
+ { 2144458753, 378417981, 1569240563 },
+ { 2144421889, 175229668, 1825620763 },
+ { 2144409601, 1699216963, 351648117 },
+ { 2144370689, 1071885991, 958186029 },
+ { 2144348161, 1763151227, 540353574 },
+ { 2144335873, 1060214804, 919598847 },
+ { 2144329729, 663515846, 1448552668 },
+ { 2144327681, 1057776305, 590222840 },
+ { 2144309249, 1705149168, 1459294624 },
+ { 2144296961, 325823721, 1649016934 },
+ { 2144290817, 738775789, 447427206 },
+ { 2144243713, 962347618, 893050215 },
+ { 2144237569, 1655257077, 900860862 },
+ { 2144161793, 242206694, 1567868672 },
+ { 2144155649, 769415308, 1247993134 },
+ { 2144137217, 320492023, 515841070 },
+ { 2144120833, 1639388522, 770877302 },
+ { 2144071681, 1761785233, 964296120 },
+ { 2144065537, 419817825, 204564472 },
+ { 2144028673, 666050597, 2091019760 },
+ { 2144010241, 1413657615, 1518702610 },
+ { 2143952897, 1238327946, 475672271 },
+ { 2143940609, 307063413, 1176750846 },
+ { 2143918081, 2062905559, 786785803 },
+ { 2143899649, 1338112849, 1562292083 },
+ { 2143891457, 68149545, 87166451 },
+ { 2143885313, 921750778, 394460854 },
+ { 2143854593, 719766593, 133877196 },
+ { 2143836161, 1149399850, 1861591875 },
+ { 2143762433, 1848739366, 1335934145 },
+ { 2143756289, 1326674710, 102999236 },
+ { 2143713281, 808061791, 1156900308 },
+ { 2143690753, 388399459, 1926468019 },
+ { 2143670273, 1427891374, 1756689401 },
+ { 2143666177, 1912173949, 986629565 },
+ { 2143645697, 2041160111, 371842865 },
+ { 2143641601, 1279906897, 2023974350 },
+ { 2143635457, 720473174, 1389027526 },
+ { 2143621121, 1298309455, 1732632006 },
+ { 2143598593, 1548762216, 1825417506 },
+ { 2143567873, 620475784, 1073787233 },
+ { 2143561729, 1932954575, 949167309 },
+ { 2143553537, 354315656, 1652037534 },
+ { 2143541249, 577424288, 1097027618 },
+ { 2143531009, 357862822, 478640055 },
+ { 2143522817, 2017706025, 1550531668 },
+ { 2143506433, 2078127419, 1824320165 },
+ { 2143488001, 613475285, 1604011510 },
+ { 2143469569, 1466594987, 502095196 },
+ { 2143426561, 1115430331, 1044637111 },
+ { 2143383553, 9778045, 1902463734 },
+ { 2143377409, 1557401276, 2056861771 },
+ { 2143363073, 652036455, 1965915971 },
+ { 2143260673, 1464581171, 1523257541 },
+ { 2143246337, 1876119649, 764541916 },
+ { 2143209473, 1614992673, 1920672844 },
+ { 2143203329, 981052047, 2049774209 },
+ { 2143160321, 1847355533, 728535665 },
+ { 2143129601, 965558457, 603052992 },
+ { 2143123457, 2140817191, 8348679 },
+ { 2143100929, 1547263683, 694209023 },
+ { 2143092737, 643459066, 1979934533 },
+ { 2143082497, 188603778, 2026175670 },
+ { 2143062017, 1657329695, 377451099 },
+ { 2143051777, 114967950, 979255473 },
+ { 2143025153, 1698431342, 1449196896 },
+ { 2143006721, 1862741675, 1739650365 },
+ { 2142996481, 756660457, 996160050 },
+ { 2142976001, 927864010, 1166847574 },
+ { 2142965761, 905070557, 661974566 },
+ { 2142916609, 40932754, 1787161127 },
+ { 2142892033, 1987985648, 675335382 },
+ { 2142885889, 797497211, 1323096997 },
+ { 2142871553, 2068025830, 1411877159 },
+ { 2142861313, 1217177090, 1438410687 },
+ { 2142830593, 409906375, 1767860634 },
+ { 2142803969, 1197788993, 359782919 },
+ { 2142785537, 643817365, 513932862 },
+ { 2142779393, 1717046338, 218943121 },
+ { 2142724097, 89336830, 416687049 },
+ { 2142707713, 5944581, 1356813523 },
+ { 2142658561, 887942135, 2074011722 },
+ { 2142638081, 151851972, 1647339939 },
+ { 2142564353, 1691505537, 1483107336 },
+ { 2142533633, 1989920200, 1135938817 },
+ { 2142529537, 959263126, 1531961857 },
+ { 2142527489, 453251129, 1725566162 },
+ { 2142502913, 1536028102, 182053257 },
+ { 2142498817, 570138730, 701443447 },
+ { 2142416897, 326965800, 411931819 },
+ { 2142363649, 1675665410, 1517191733 },
+ { 2142351361, 968529566, 1575712703 },
+ { 2142330881, 1384953238, 1769087884 },
+ { 2142314497, 1977173242, 1833745524 },
+ { 2142289921, 95082313, 1714775493 },
+ { 2142283777, 109377615, 1070584533 },
+ { 2142277633, 16960510, 702157145 },
+ { 2142263297, 553850819, 431364395 },
+ { 2142208001, 241466367, 2053967982 },
+ { 2142164993, 1795661326, 1031836848 },
+ { 2142097409, 1212530046, 712772031 },
+ { 2142087169, 1763869720, 822276067 },
+ { 2142078977, 644065713, 1765268066 },
+ { 2142074881, 112671944, 643204925 },
+ { 2142044161, 1387785471, 1297890174 },
+ { 2142025729, 783885537, 1000425730 },
+ { 2142011393, 905662232, 1679401033 },
+ { 2141974529, 799788433, 468119557 },
+ { 2141943809, 1932544124, 449305555 },
+ { 2141933569, 1527403256, 841867925 },
+ { 2141931521, 1247076451, 743823916 },
+ { 2141902849, 1199660531, 401687910 },
+ { 2141890561, 150132350, 1720336972 },
+ { 2141857793, 1287438162, 663880489 },
+ { 2141833217, 618017731, 1819208266 },
+ { 2141820929, 999578638, 1403090096 },
+ { 2141786113, 81834325, 1523542501 },
+ { 2141771777, 120001928, 463556492 },
+ { 2141759489, 122455485, 2124928282 },
+ { 2141749249, 141986041, 940339153 },
+ { 2141685761, 889088734, 477141499 },
+ { 2141673473, 324212681, 1122558298 },
+ { 2141669377, 1175806187, 1373818177 },
+ { 2141655041, 1113654822, 296887082 },
+ { 2141587457, 991103258, 1585913875 },
+ { 2141583361, 1401451409, 1802457360 },
+ { 2141575169, 1571977166, 712760980 },
+ { 2141546497, 1107849376, 1250270109 },
+ { 2141515777, 196544219, 356001130 },
+ { 2141495297, 1733571506, 1060744866 },
+ { 2141483009, 321552363, 1168297026 },
+ { 2141458433, 505818251, 733225819 },
+ { 2141360129, 1026840098, 948342276 },
+ { 2141325313, 945133744, 2129965998 },
+ { 2141317121, 1871100260, 1843844634 },
+ { 2141286401, 1790639498, 1750465696 },
+ { 2141267969, 1376858592, 186160720 },
+ { 2141255681, 2129698296, 1876677959 },
+ { 2141243393, 2138900688, 1340009628 },
+ { 2141214721, 1933049835, 1087819477 },
+ { 2141212673, 1898664939, 1786328049 },
+ { 2141202433, 990234828, 940682169 },
+ { 2141175809, 1406392421, 993089586 },
+ { 2141165569, 1263518371, 289019479 },
+ { 2141073409, 1485624211, 507864514 },
+ { 2141052929, 1885134788, 311252465 },
+ { 2141040641, 1285021247, 280941862 },
+ { 2141028353, 1527610374, 375035110 },
+ { 2141011969, 1400626168, 164696620 },
+ { 2140999681, 632959608, 966175067 },
+ { 2140997633, 2045628978, 1290889438 },
+ { 2140993537, 1412755491, 375366253 },
+ { 2140942337, 719477232, 785367828 },
+ { 2140925953, 45224252, 836552317 },
+ { 2140917761, 1157376588, 1001839569 },
+ { 2140887041, 278480752, 2098732796 },
+ { 2140837889, 1663139953, 924094810 },
+ { 2140788737, 802501511, 2045368990 },
+ { 2140766209, 1820083885, 1800295504 },
+ { 2140764161, 1169561905, 2106792035 },
+ { 2140696577, 127781498, 1885987531 },
+ { 2140684289, 16014477, 1098116827 },
+ { 2140653569, 665960598, 1796728247 },
+ { 2140594177, 1043085491, 377310938 },
+ { 2140579841, 1732838211, 1504505945 },
+ { 2140569601, 302071939, 358291016 },
+ { 2140567553, 192393733, 1909137143 },
+ { 2140557313, 406595731, 1175330270 },
+ { 2140549121, 1748850918, 525007007 },
+ { 2140477441, 499436566, 1031159814 },
+ { 2140469249, 1886004401, 1029951320 },
+ { 2140426241, 1483168100, 1676273461 },
+ { 2140420097, 1779917297, 846024476 },
+ { 2140413953, 522948893, 1816354149 },
+ { 2140383233, 1931364473, 1296921241 },
+ { 2140366849, 1917356555, 147196204 },
+ { 2140354561, 16466177, 1349052107 },
+ { 2140348417, 1875366972, 1860485634 },
+ { 2140323841, 456498717, 1790256483 },
+ { 2140321793, 1629493973, 150031888 },
+ { 2140315649, 1904063898, 395510935 },
+ { 2140280833, 1784104328, 831417909 },
+ { 2140250113, 256087139, 697349101 },
+ { 2140229633, 388553070, 243875754 },
+ { 2140223489, 747459608, 1396270850 },
+ { 2140200961, 507423743, 1895572209 },
+ { 2140162049, 580106016, 2045297469 },
+ { 2140149761, 712426444, 785217995 },
+ { 2140137473, 1441607584, 536866543 },
+ { 2140119041, 346538902, 1740434653 },
+ { 2140090369, 282642885, 21051094 },
+ { 2140076033, 1407456228, 319910029 },
+ { 2140047361, 1619330500, 1488632070 },
+ { 2140041217, 2089408064, 2012026134 },
+ { 2140008449, 1705524800, 1613440760 },
+ { 2139924481, 1846208233, 1280649481 },
+ { 2139906049, 989438755, 1185646076 },
+ { 2139867137, 1522314850, 372783595 },
+ { 2139842561, 1681587377, 216848235 },
+ { 2139826177, 2066284988, 1784999464 },
+ { 2139824129, 480888214, 1513323027 },
+ { 2139789313, 847937200, 858192859 },
+ { 2139783169, 1642000434, 1583261448 },
+ { 2139770881, 940699589, 179702100 },
+ { 2139768833, 315623242, 964612676 },
+ { 2139666433, 331649203, 764666914 },
+ { 2139641857, 2118730799, 1313764644 },
+ { 2139635713, 519149027, 519212449 },
+ { 2139598849, 1526413634, 1769667104 },
+ { 2139574273, 551148610, 820739925 },
+ { 2139568129, 1386800242, 472447405 },
+ { 2139549697, 813760130, 1412328531 },
+ { 2139537409, 1615286260, 1609362979 },
+ { 2139475969, 1352559299, 1696720421 },
+ { 2139455489, 1048691649, 1584935400 },
+ { 2139432961, 836025845, 950121150 },
+ { 2139424769, 1558281165, 1635486858 },
+ { 2139406337, 1728402143, 1674423301 },
+ { 2139396097, 1727715782, 1483470544 },
+ { 2139383809, 1092853491, 1741699084 },
+ { 2139369473, 690776899, 1242798709 },
+ { 2139351041, 1768782380, 2120712049 },
+ { 2139334657, 1739968247, 1427249225 },
+ { 2139332609, 1547189119, 623011170 },
+ { 2139310081, 1346827917, 1605466350 },
+ { 2139303937, 369317948, 828392831 },
+ { 2139301889, 1560417239, 1788073219 },
+ { 2139283457, 1303121623, 595079358 },
+ { 2139248641, 1354555286, 573424177 },
+ { 2139240449, 60974056, 885781403 },
+ { 2139222017, 355573421, 1221054839 },
+ { 2139215873, 566477826, 1724006500 },
+ { 2139150337, 871437673, 1609133294 },
+ { 2139144193, 1478130914, 1137491905 },
+ { 2139117569, 1854880922, 964728507 },
+ { 2139076609, 202405335, 756508944 },
+ { 2139062273, 1399715741, 884826059 },
+ { 2139045889, 1051045798, 1202295476 },
+ { 2139033601, 1707715206, 632234634 },
+ { 2139006977, 2035853139, 231626690 },
+ { 2138951681, 183867876, 838350879 },
+ { 2138945537, 1403254661, 404460202 },
+ { 2138920961, 310865011, 1282911681 },
+ { 2138910721, 1328496553, 103472415 },
+ { 2138904577, 78831681, 993513549 },
+ { 2138902529, 1319697451, 1055904361 },
+ { 2138816513, 384338872, 1706202469 },
+ { 2138810369, 1084868275, 405677177 },
+ { 2138787841, 401181788, 1964773901 },
+ { 2138775553, 1850532988, 1247087473 },
+ { 2138767361, 874261901, 1576073565 },
+ { 2138757121, 1187474742, 993541415 },
+ { 2138748929, 1782458888, 1043206483 },
+ { 2138744833, 1221500487, 800141243 },
+ { 2138738689, 413465368, 1450660558 },
+ { 2138695681, 739045140, 342611472 },
+ { 2138658817, 1355845756, 672674190 },
+ { 2138644481, 608379162, 1538874380 },
+ { 2138632193, 1444914034, 686911254 },
+ { 2138607617, 484707818, 1435142134 },
+ { 2138591233, 539460669, 1290458549 },
+ { 2138572801, 2093538990, 2011138646 },
+ { 2138552321, 1149786988, 1076414907 },
+ { 2138546177, 840688206, 2108985273 },
+ { 2138533889, 209669619, 198172413 },
+ { 2138523649, 1975879426, 1277003968 },
+ { 2138490881, 1351891144, 1976858109 },
+ { 2138460161, 1817321013, 1979278293 },
+ { 2138429441, 1950077177, 203441928 },
+ { 2138400769, 908970113, 628395069 },
+ { 2138398721, 219890864, 758486760 },
+ { 2138376193, 1306654379, 977554090 },
+ { 2138351617, 298822498, 2004708503 },
+ { 2138337281, 441457816, 1049002108 },
+ { 2138320897, 1517731724, 1442269609 },
+ { 2138290177, 1355911197, 1647139103 },
+ { 2138234881, 531313247, 1746591962 },
+ { 2138214401, 1899410930, 781416444 },
+ { 2138202113, 1813477173, 1622508515 },
+ { 2138191873, 1086458299, 1025408615 },
+ { 2138183681, 1998800427, 827063290 },
+ { 2138173441, 1921308898, 749670117 },
+ { 2138103809, 1620902804, 2126787647 },
+ { 2138099713, 828647069, 1892961817 },
+ { 2138085377, 179405355, 1525506535 },
+ { 2138060801, 615683235, 1259580138 },
+ { 2138044417, 2030277840, 1731266562 },
+ { 2138042369, 2087222316, 1627902259 },
+ { 2138032129, 126388712, 1108640984 },
+ { 2138011649, 715026550, 1017980050 },
+ { 2137993217, 1693714349, 1351778704 },
+ { 2137888769, 1289762259, 1053090405 },
+ { 2137853953, 199991890, 1254192789 },
+ { 2137833473, 941421685, 896995556 },
+ { 2137817089, 750416446, 1251031181 },
+ { 2137792513, 798075119, 368077456 },
+ { 2137786369, 878543495, 1035375025 },
+ { 2137767937, 9351178, 1156563902 },
+ { 2137755649, 1382297614, 1686559583 },
+ { 2137724929, 1345472850, 1681096331 },
+ { 2137704449, 834666929, 630551727 },
+ { 2137673729, 1646165729, 1892091571 },
+ { 2137620481, 778943821, 48456461 },
+ { 2137618433, 1730837875, 1713336725 },
+ { 2137581569, 805610339, 1378891359 },
+ { 2137538561, 204342388, 1950165220 },
+ { 2137526273, 1947629754, 1500789441 },
+ { 2137516033, 719902645, 1499525372 },
+ { 2137491457, 230451261, 556382829 },
+ { 2137440257, 979573541, 412760291 },
+ { 2137374721, 927841248, 1954137185 },
+ { 2137362433, 1243778559, 861024672 },
+ { 2137313281, 1341338501, 980638386 },
+ { 2137311233, 937415182, 1793212117 },
+ { 2137255937, 795331324, 1410253405 },
+ { 2137243649, 150756339, 1966999887 },
+ { 2137182209, 163346914, 1939301431 },
+ { 2137171969, 1952552395, 758913141 },
+ { 2137159681, 570788721, 218668666 },
+ { 2137147393, 1896656810, 2045670345 },
+ { 2137141249, 358493842, 518199643 },
+ { 2137139201, 1505023029, 674695848 },
+ { 2137133057, 27911103, 830956306 },
+ { 2137122817, 439771337, 1555268614 },
+ { 2137116673, 790988579, 1871449599 },
+ { 2137110529, 432109234, 811805080 },
+ { 2137102337, 1357900653, 1184997641 },
+ { 2137098241, 515119035, 1715693095 },
+ { 2137090049, 408575203, 2085660657 },
+ { 2137085953, 2097793407, 1349626963 },
+ { 2137055233, 1556739954, 1449960883 },
+ { 2137030657, 1545758650, 1369303716 },
+ { 2136987649, 332602570, 103875114 },
+ { 2136969217, 1499989506, 1662964115 },
+ { 2136924161, 857040753, 4738842 },
+ { 2136895489, 1948872712, 570436091 },
+ { 2136893441, 58969960, 1568349634 },
+ { 2136887297, 2127193379, 273612548 },
+ { 2136850433, 111208983, 1181257116 },
+ { 2136809473, 1627275942, 1680317971 },
+ { 2136764417, 1574888217, 14011331 },
+ { 2136741889, 14011055, 1129154251 },
+ { 2136727553, 35862563, 1838555253 },
+ { 2136721409, 310235666, 1363928244 },
+ { 2136698881, 1612429202, 1560383828 },
+ { 2136649729, 1138540131, 800014364 },
+ { 2136606721, 602323503, 1433096652 },
+ { 2136563713, 182209265, 1919611038 },
+ { 2136555521, 324156477, 165591039 },
+ { 2136549377, 195513113, 217165345 },
+ { 2136526849, 1050768046, 939647887 },
+ { 2136508417, 1886286237, 1619926572 },
+ { 2136477697, 609647664, 35065157 },
+ { 2136471553, 679352216, 1452259468 },
+ { 2136457217, 128630031, 824816521 },
+ { 2136422401, 19787464, 1526049830 },
+ { 2136420353, 698316836, 1530623527 },
+ { 2136371201, 1651862373, 1804812805 },
+ { 2136334337, 326596005, 336977082 },
+ { 2136322049, 63253370, 1904972151 },
+ { 2136297473, 312176076, 172182411 },
+ { 2136248321, 381261841, 369032670 },
+ { 2136242177, 358688773, 1640007994 },
+ { 2136229889, 512677188, 75585225 },
+ { 2136219649, 2095003250, 1970086149 },
+ { 2136207361, 1909650722, 537760675 },
+ { 2136176641, 1334616195, 1533487619 },
+ { 2136158209, 2096285632, 1793285210 },
+ { 2136143873, 1897347517, 293843959 },
+ { 2136133633, 923586222, 1022655978 },
+ { 2136096769, 1464868191, 1515074410 },
+ { 2136094721, 2020679520, 2061636104 },
+ { 2136076289, 290798503, 1814726809 },
+ { 2136041473, 156415894, 1250757633 },
+ { 2135996417, 297459940, 1132158924 },
+ { 2135955457, 538755304, 1688831340 },
+ { 0, 0, 0 }
+};
+
+/*
+ * Reduce a small signed integer modulo a small prime. The source
+ * value x MUST be such that -p < x < p.
+ */
+static inline uint32_t
+modp_set(int32_t x, uint32_t p) {
+ uint32_t w;
+
+ w = (uint32_t)x;
+ w += p & -(w >> 31);
+ return w;
+}
+
+/*
+ * Normalize a modular integer around 0.
+ */
+static inline int32_t
+modp_norm(uint32_t x, uint32_t p) {
+ return (int32_t)(x - (p & (((x - ((p + 1) >> 1)) >> 31) - 1)));
+}
+
+/*
+ * Compute -1/p mod 2^31. This works for all odd integers p that fit
+ * on 31 bits.
+ */
+static uint32_t
+modp_ninv31(uint32_t p) {
+ uint32_t y;
+
+ y = 2 - p;
+ y *= 2 - p * y;
+ y *= 2 - p * y;
+ y *= 2 - p * y;
+ y *= 2 - p * y;
+ return (uint32_t)0x7FFFFFFF & -y;
+}
+
+/*
+ * Compute R = 2^31 mod p.
+ */
+static inline uint32_t
+modp_R(uint32_t p) {
+ /*
+ * Since 2^30 < p < 2^31, we know that 2^31 mod p is simply
+ * 2^31 - p.
+ */
+ return ((uint32_t)1 << 31) - p;
+}
+
+/*
+ * Addition modulo p.
+ */
+static inline uint32_t
+modp_add(uint32_t a, uint32_t b, uint32_t p) {
+ uint32_t d;
+
+ d = a + b - p;
+ d += p & -(d >> 31);
+ return d;
+}
+
+/*
+ * Subtraction modulo p.
+ */
+static inline uint32_t
+modp_sub(uint32_t a, uint32_t b, uint32_t p) {
+ uint32_t d;
+
+ d = a - b;
+ d += p & -(d >> 31);
+ return d;
+}
+
+/*
+ * Halving modulo p.
+ */
+/* unused
+static inline uint32_t
+modp_half(uint32_t a, uint32_t p)
+{
+ a += p & -(a & 1);
+ return a >> 1;
+}
+*/
+
+/*
+ * Montgomery multiplication modulo p. The 'p0i' value is -1/p mod 2^31.
+ * It is required that p is an odd integer.
+ */
+static inline uint32_t
+modp_montymul(uint32_t a, uint32_t b, uint32_t p, uint32_t p0i) {
+ uint64_t z, w;
+ uint32_t d;
+
+ z = (uint64_t)a * (uint64_t)b;
+ w = ((z * p0i) & (uint64_t)0x7FFFFFFF) * p;
+ d = (uint32_t)((z + w) >> 31) - p;
+ d += p & -(d >> 31);
+ return d;
+}
+
+/*
+ * Compute R2 = 2^62 mod p.
+ */
+static uint32_t
+modp_R2(uint32_t p, uint32_t p0i) {
+ uint32_t z;
+
+ /*
+ * Compute z = 2^31 mod p (this is the value 1 in Montgomery
+ * representation), then double it with an addition.
+ */
+ z = modp_R(p);
+ z = modp_add(z, z, p);
+
+ /*
+ * Square it five times to obtain 2^32 in Montgomery representation
+ * (i.e. 2^63 mod p).
+ */
+ z = modp_montymul(z, z, p, p0i);
+ z = modp_montymul(z, z, p, p0i);
+ z = modp_montymul(z, z, p, p0i);
+ z = modp_montymul(z, z, p, p0i);
+ z = modp_montymul(z, z, p, p0i);
+
+ /*
+ * Halve the value mod p to get 2^62.
+ */
+ z = (z + (p & -(z & 1))) >> 1;
+ return z;
+}
+
+/*
+ * Compute 2^(31*x) modulo p. This works for integers x up to 2^11.
+ * p must be prime such that 2^30 < p < 2^31; p0i must be equal to
+ * -1/p mod 2^31; R2 must be equal to 2^62 mod p.
+ */
+static inline uint32_t
+modp_Rx(unsigned x, uint32_t p, uint32_t p0i, uint32_t R2) {
+ int i;
+ uint32_t r, z;
+
+ /*
+ * 2^(31*x) = (2^31)*(2^(31*(x-1))); i.e. we want the Montgomery
+ * representation of (2^31)^e mod p, where e = x-1.
+ * R2 is 2^31 in Montgomery representation.
+ */
+ x --;
+ r = R2;
+ z = modp_R(p);
+ for (i = 0; (1U << i) <= x; i ++) {
+ if ((x & (1U << i)) != 0) {
+ z = modp_montymul(z, r, p, p0i);
+ }
+ r = modp_montymul(r, r, p, p0i);
+ }
+ return z;
+}
+
+/*
+ * Division modulo p. If the divisor (b) is 0, then 0 is returned.
+ * This function computes proper results only when p is prime.
+ * Parameters:
+ * a dividend
+ * b divisor
+ * p odd prime modulus
+ * p0i -1/p mod 2^31
+ * R 2^31 mod R
+ */
+static uint32_t
+modp_div(uint32_t a, uint32_t b, uint32_t p, uint32_t p0i, uint32_t R) {
+ uint32_t z, e;
+ int i;
+
+ e = p - 2;
+ z = R;
+ for (i = 30; i >= 0; i --) {
+ uint32_t z2;
+
+ z = modp_montymul(z, z, p, p0i);
+ z2 = modp_montymul(z, b, p, p0i);
+ z ^= (z ^ z2) & -(uint32_t)((e >> i) & 1);
+ }
+
+ /*
+ * The loop above just assumed that b was in Montgomery
+ * representation, i.e. really contained b*R; under that
+ * assumption, it returns 1/b in Montgomery representation,
+ * which is R/b. But we gave it b in normal representation,
+ * so the loop really returned R/(b/R) = R^2/b.
+ *
+ * We want a/b, so we need one Montgomery multiplication with a,
+ * which also remove one of the R factors, and another such
+ * multiplication to remove the second R factor.
+ */
+ z = modp_montymul(z, 1, p, p0i);
+ return modp_montymul(a, z, p, p0i);
+}
+
+/*
+ * Bit-reversal index table.
+ */
+static const uint16_t REV10[] = {
+ 0, 512, 256, 768, 128, 640, 384, 896, 64, 576, 320, 832,
+ 192, 704, 448, 960, 32, 544, 288, 800, 160, 672, 416, 928,
+ 96, 608, 352, 864, 224, 736, 480, 992, 16, 528, 272, 784,
+ 144, 656, 400, 912, 80, 592, 336, 848, 208, 720, 464, 976,
+ 48, 560, 304, 816, 176, 688, 432, 944, 112, 624, 368, 880,
+ 240, 752, 496, 1008, 8, 520, 264, 776, 136, 648, 392, 904,
+ 72, 584, 328, 840, 200, 712, 456, 968, 40, 552, 296, 808,
+ 168, 680, 424, 936, 104, 616, 360, 872, 232, 744, 488, 1000,
+ 24, 536, 280, 792, 152, 664, 408, 920, 88, 600, 344, 856,
+ 216, 728, 472, 984, 56, 568, 312, 824, 184, 696, 440, 952,
+ 120, 632, 376, 888, 248, 760, 504, 1016, 4, 516, 260, 772,
+ 132, 644, 388, 900, 68, 580, 324, 836, 196, 708, 452, 964,
+ 36, 548, 292, 804, 164, 676, 420, 932, 100, 612, 356, 868,
+ 228, 740, 484, 996, 20, 532, 276, 788, 148, 660, 404, 916,
+ 84, 596, 340, 852, 212, 724, 468, 980, 52, 564, 308, 820,
+ 180, 692, 436, 948, 116, 628, 372, 884, 244, 756, 500, 1012,
+ 12, 524, 268, 780, 140, 652, 396, 908, 76, 588, 332, 844,
+ 204, 716, 460, 972, 44, 556, 300, 812, 172, 684, 428, 940,
+ 108, 620, 364, 876, 236, 748, 492, 1004, 28, 540, 284, 796,
+ 156, 668, 412, 924, 92, 604, 348, 860, 220, 732, 476, 988,
+ 60, 572, 316, 828, 188, 700, 444, 956, 124, 636, 380, 892,
+ 252, 764, 508, 1020, 2, 514, 258, 770, 130, 642, 386, 898,
+ 66, 578, 322, 834, 194, 706, 450, 962, 34, 546, 290, 802,
+ 162, 674, 418, 930, 98, 610, 354, 866, 226, 738, 482, 994,
+ 18, 530, 274, 786, 146, 658, 402, 914, 82, 594, 338, 850,
+ 210, 722, 466, 978, 50, 562, 306, 818, 178, 690, 434, 946,
+ 114, 626, 370, 882, 242, 754, 498, 1010, 10, 522, 266, 778,
+ 138, 650, 394, 906, 74, 586, 330, 842, 202, 714, 458, 970,
+ 42, 554, 298, 810, 170, 682, 426, 938, 106, 618, 362, 874,
+ 234, 746, 490, 1002, 26, 538, 282, 794, 154, 666, 410, 922,
+ 90, 602, 346, 858, 218, 730, 474, 986, 58, 570, 314, 826,
+ 186, 698, 442, 954, 122, 634, 378, 890, 250, 762, 506, 1018,
+ 6, 518, 262, 774, 134, 646, 390, 902, 70, 582, 326, 838,
+ 198, 710, 454, 966, 38, 550, 294, 806, 166, 678, 422, 934,
+ 102, 614, 358, 870, 230, 742, 486, 998, 22, 534, 278, 790,
+ 150, 662, 406, 918, 86, 598, 342, 854, 214, 726, 470, 982,
+ 54, 566, 310, 822, 182, 694, 438, 950, 118, 630, 374, 886,
+ 246, 758, 502, 1014, 14, 526, 270, 782, 142, 654, 398, 910,
+ 78, 590, 334, 846, 206, 718, 462, 974, 46, 558, 302, 814,
+ 174, 686, 430, 942, 110, 622, 366, 878, 238, 750, 494, 1006,
+ 30, 542, 286, 798, 158, 670, 414, 926, 94, 606, 350, 862,
+ 222, 734, 478, 990, 62, 574, 318, 830, 190, 702, 446, 958,
+ 126, 638, 382, 894, 254, 766, 510, 1022, 1, 513, 257, 769,
+ 129, 641, 385, 897, 65, 577, 321, 833, 193, 705, 449, 961,
+ 33, 545, 289, 801, 161, 673, 417, 929, 97, 609, 353, 865,
+ 225, 737, 481, 993, 17, 529, 273, 785, 145, 657, 401, 913,
+ 81, 593, 337, 849, 209, 721, 465, 977, 49, 561, 305, 817,
+ 177, 689, 433, 945, 113, 625, 369, 881, 241, 753, 497, 1009,
+ 9, 521, 265, 777, 137, 649, 393, 905, 73, 585, 329, 841,
+ 201, 713, 457, 969, 41, 553, 297, 809, 169, 681, 425, 937,
+ 105, 617, 361, 873, 233, 745, 489, 1001, 25, 537, 281, 793,
+ 153, 665, 409, 921, 89, 601, 345, 857, 217, 729, 473, 985,
+ 57, 569, 313, 825, 185, 697, 441, 953, 121, 633, 377, 889,
+ 249, 761, 505, 1017, 5, 517, 261, 773, 133, 645, 389, 901,
+ 69, 581, 325, 837, 197, 709, 453, 965, 37, 549, 293, 805,
+ 165, 677, 421, 933, 101, 613, 357, 869, 229, 741, 485, 997,
+ 21, 533, 277, 789, 149, 661, 405, 917, 85, 597, 341, 853,
+ 213, 725, 469, 981, 53, 565, 309, 821, 181, 693, 437, 949,
+ 117, 629, 373, 885, 245, 757, 501, 1013, 13, 525, 269, 781,
+ 141, 653, 397, 909, 77, 589, 333, 845, 205, 717, 461, 973,
+ 45, 557, 301, 813, 173, 685, 429, 941, 109, 621, 365, 877,
+ 237, 749, 493, 1005, 29, 541, 285, 797, 157, 669, 413, 925,
+ 93, 605, 349, 861, 221, 733, 477, 989, 61, 573, 317, 829,
+ 189, 701, 445, 957, 125, 637, 381, 893, 253, 765, 509, 1021,
+ 3, 515, 259, 771, 131, 643, 387, 899, 67, 579, 323, 835,
+ 195, 707, 451, 963, 35, 547, 291, 803, 163, 675, 419, 931,
+ 99, 611, 355, 867, 227, 739, 483, 995, 19, 531, 275, 787,
+ 147, 659, 403, 915, 83, 595, 339, 851, 211, 723, 467, 979,
+ 51, 563, 307, 819, 179, 691, 435, 947, 115, 627, 371, 883,
+ 243, 755, 499, 1011, 11, 523, 267, 779, 139, 651, 395, 907,
+ 75, 587, 331, 843, 203, 715, 459, 971, 43, 555, 299, 811,
+ 171, 683, 427, 939, 107, 619, 363, 875, 235, 747, 491, 1003,
+ 27, 539, 283, 795, 155, 667, 411, 923, 91, 603, 347, 859,
+ 219, 731, 475, 987, 59, 571, 315, 827, 187, 699, 443, 955,
+ 123, 635, 379, 891, 251, 763, 507, 1019, 7, 519, 263, 775,
+ 135, 647, 391, 903, 71, 583, 327, 839, 199, 711, 455, 967,
+ 39, 551, 295, 807, 167, 679, 423, 935, 103, 615, 359, 871,
+ 231, 743, 487, 999, 23, 535, 279, 791, 151, 663, 407, 919,
+ 87, 599, 343, 855, 215, 727, 471, 983, 55, 567, 311, 823,
+ 183, 695, 439, 951, 119, 631, 375, 887, 247, 759, 503, 1015,
+ 15, 527, 271, 783, 143, 655, 399, 911, 79, 591, 335, 847,
+ 207, 719, 463, 975, 47, 559, 303, 815, 175, 687, 431, 943,
+ 111, 623, 367, 879, 239, 751, 495, 1007, 31, 543, 287, 799,
+ 159, 671, 415, 927, 95, 607, 351, 863, 223, 735, 479, 991,
+ 63, 575, 319, 831, 191, 703, 447, 959, 127, 639, 383, 895,
+ 255, 767, 511, 1023
+};
+
+/*
+ * Compute the roots for NTT and inverse NTT (binary case). Input
+ * parameter g is a primitive 2048-th root of 1 modulo p (i.e. g^1024 =
+ * -1 mod p). This fills gm[] and igm[] with powers of g and 1/g:
+ * gm[rev(i)] = g^i mod p
+ * igm[rev(i)] = (1/g)^i mod p
+ * where rev() is the "bit reversal" function over 10 bits. It fills
+ * the arrays only up to N = 2^logn values.
+ *
+ * The values stored in gm[] and igm[] are in Montgomery representation.
+ *
+ * p must be a prime such that p = 1 mod 2048.
+ */
+static void
+modp_mkgm2(uint32_t *gm, uint32_t *igm, unsigned logn,
+ uint32_t g, uint32_t p, uint32_t p0i) {
+ size_t u, n;
+ unsigned k;
+ uint32_t ig, x1, x2, R2;
+
+ n = (size_t)1 << logn;
+
+ /*
+ * We want g such that g^(2N) = 1 mod p, but the provided
+ * generator has order 2048. We must square it a few times.
+ */
+ R2 = modp_R2(p, p0i);
+ g = modp_montymul(g, R2, p, p0i);
+ for (k = logn; k < 10; k ++) {
+ g = modp_montymul(g, g, p, p0i);
+ }
+
+ ig = modp_div(R2, g, p, p0i, modp_R(p));
+ k = 10 - logn;
+ x1 = x2 = modp_R(p);
+ for (u = 0; u < n; u ++) {
+ size_t v;
+
+ v = REV10[u << k];
+ gm[v] = x1;
+ igm[v] = x2;
+ x1 = modp_montymul(x1, g, p, p0i);
+ x2 = modp_montymul(x2, ig, p, p0i);
+ }
+}
+
+/*
+ * Compute the NTT over a polynomial (binary case). Polynomial elements
+ * are a[0], a[stride], a[2 * stride]...
+ */
+static void
+modp_NTT2_ext(uint32_t *a, size_t stride, const uint32_t *gm, unsigned logn,
+ uint32_t p, uint32_t p0i) {
+ size_t t, m, n;
+
+ if (logn == 0) {
+ return;
+ }
+ n = (size_t)1 << logn;
+ t = n;
+ for (m = 1; m < n; m <<= 1) {
+ size_t ht, u, v1;
+
+ ht = t >> 1;
+ for (u = 0, v1 = 0; u < m; u ++, v1 += t) {
+ uint32_t s;
+ size_t v;
+ uint32_t *r1, *r2;
+
+ s = gm[m + u];
+ r1 = a + v1 * stride;
+ r2 = r1 + ht * stride;
+ for (v = 0; v < ht; v ++, r1 += stride, r2 += stride) {
+ uint32_t x, y;
+
+ x = *r1;
+ y = modp_montymul(*r2, s, p, p0i);
+ *r1 = modp_add(x, y, p);
+ *r2 = modp_sub(x, y, p);
+ }
+ }
+ t = ht;
+ }
+}
+
+/*
+ * Compute the inverse NTT over a polynomial (binary case).
+ */
+static void
+modp_iNTT2_ext(uint32_t *a, size_t stride, const uint32_t *igm, unsigned logn,
+ uint32_t p, uint32_t p0i) {
+ size_t t, m, n, k;
+ uint32_t ni;
+ uint32_t *r;
+
+ if (logn == 0) {
+ return;
+ }
+ n = (size_t)1 << logn;
+ t = 1;
+ for (m = n; m > 1; m >>= 1) {
+ size_t hm, dt, u, v1;
+
+ hm = m >> 1;
+ dt = t << 1;
+ for (u = 0, v1 = 0; u < hm; u ++, v1 += dt) {
+ uint32_t s;
+ size_t v;
+ uint32_t *r1, *r2;
+
+ s = igm[hm + u];
+ r1 = a + v1 * stride;
+ r2 = r1 + t * stride;
+ for (v = 0; v < t; v ++, r1 += stride, r2 += stride) {
+ uint32_t x, y;
+
+ x = *r1;
+ y = *r2;
+ *r1 = modp_add(x, y, p);
+ *r2 = modp_montymul(
+ modp_sub(x, y, p), s, p, p0i);;
+ }
+ }
+ t = dt;
+ }
+
+ /*
+ * We need 1/n in Montgomery representation, i.e. R/n. Since
+ * 1 <= logn <= 10, R/n is an integer; morever, R/n <= 2^30 < p,
+ * thus a simple shift will do.
+ */
+ ni = (uint32_t)1 << (31 - logn);
+ for (k = 0, r = a; k < n; k ++, r += stride) {
+ *r = modp_montymul(*r, ni, p, p0i);
+ }
+}
+
+/*
+ * Simplified macros for NTT and iNTT (binary case) when the elements
+ * are consecutive in RAM.
+ */
+#define modp_NTT2(a, gm, logn, p, p0i) modp_NTT2_ext(a, 1, gm, logn, p, p0i)
+#define modp_iNTT2(a, igm, logn, p, p0i) modp_iNTT2_ext(a, 1, igm, logn, p, p0i)
+
+/*
+ * Given polynomial f in NTT representation modulo p, compute f' of degree
+ * less than N/2 such that f' = f0^2 - X*f1^2, where f0 and f1 are
+ * polynomials of degree less than N/2 such that f = f0(X^2) + X*f1(X^2).
+ *
+ * The new polynomial is written "in place" over the first N/2 elements
+ * of f.
+ *
+ * If applied logn times successively on a given polynomial, the resulting
+ * degree-0 polynomial is the resultant of f and X^N+1 modulo p.
+ *
+ * This function applies only to the binary case; it is invoked from
+ * solve_NTRU_binary_depth1().
+ */
+static void
+modp_poly_rec_res(uint32_t *f, unsigned logn,
+ uint32_t p, uint32_t p0i, uint32_t R2) {
+ size_t hn, u;
+
+ hn = (size_t)1 << (logn - 1);
+ for (u = 0; u < hn; u ++) {
+ uint32_t w0, w1;
+
+ w0 = f[(u << 1) + 0];
+ w1 = f[(u << 1) + 1];
+ f[u] = modp_montymul(modp_montymul(w0, w1, p, p0i), R2, p, p0i);
+ }
+}
+
+/* ==================================================================== */
+/*
+ * Custom bignum implementation.
+ *
+ * This is a very reduced set of functionalities. We need to do the
+ * following operations:
+ *
+ * - Rebuild the resultant and the polynomial coefficients from their
+ * values modulo small primes (of length 31 bits each).
+ *
+ * - Compute an extended GCD between the two computed resultants.
+ *
+ * - Extract top bits and add scaled values during the successive steps
+ * of Babai rounding.
+ *
+ * When rebuilding values using CRT, we must also recompute the product
+ * of the small prime factors. We always do it one small factor at a
+ * time, so the "complicated" operations can be done modulo the small
+ * prime with the modp_* functions. CRT coefficients (inverses) are
+ * precomputed.
+ *
+ * All values are positive until the last step: when the polynomial
+ * coefficients have been rebuilt, we normalize them around 0. But then,
+ * only additions and subtractions on the upper few bits are needed
+ * afterwards.
+ *
+ * We keep big integers as arrays of 31-bit words (in uint32_t values);
+ * the top bit of each uint32_t is kept equal to 0. Using 31-bit words
+ * makes it easier to keep track of carries. When negative values are
+ * used, two's complement is used.
+ */
+
+/*
+ * Subtract integer b from integer a. Both integers are supposed to have
+ * the same size. The carry (0 or 1) is returned. Source arrays a and b
+ * MUST be distinct.
+ *
+ * The operation is performed as described above if ctr = 1. If
+ * ctl = 0, the value a[] is unmodified, but all memory accesses are
+ * still performed, and the carry is computed and returned.
+ */
+static uint32_t
+zint_sub(uint32_t *a, const uint32_t *b, size_t len,
+ uint32_t ctl) {
+ size_t u;
+ uint32_t cc, m;
+
+ cc = 0;
+ m = -ctl;
+ for (u = 0; u < len; u ++) {
+ uint32_t aw, w;
+
+ aw = a[u];
+ w = aw - b[u] - cc;
+ cc = w >> 31;
+ aw ^= ((w & 0x7FFFFFFF) ^ aw) & m;
+ a[u] = aw;
+ }
+ return cc;
+}
+
+/*
+ * Mutiply the provided big integer m with a small value x.
+ * This function assumes that x < 2^31. The carry word is returned.
+ */
+static uint32_t
+zint_mul_small(uint32_t *m, size_t mlen, uint32_t x) {
+ size_t u;
+ uint32_t cc;
+
+ cc = 0;
+ for (u = 0; u < mlen; u ++) {
+ uint64_t z;
+
+ z = (uint64_t)m[u] * (uint64_t)x + cc;
+ m[u] = (uint32_t)z & 0x7FFFFFFF;
+ cc = (uint32_t)(z >> 31);
+ }
+ return cc;
+}
+
+/*
+ * Reduce a big integer d modulo a small integer p.
+ * Rules:
+ * d is unsigned
+ * p is prime
+ * 2^30 < p < 2^31
+ * p0i = -(1/p) mod 2^31
+ * R2 = 2^62 mod p
+ */
+static uint32_t
+zint_mod_small_unsigned(const uint32_t *d, size_t dlen,
+ uint32_t p, uint32_t p0i, uint32_t R2) {
+ uint32_t x;
+ size_t u;
+
+ /*
+ * Algorithm: we inject words one by one, starting with the high
+ * word. Each step is:
+ * - multiply x by 2^31
+ * - add new word
+ */
+ x = 0;
+ u = dlen;
+ while (u -- > 0) {
+ uint32_t w;
+
+ x = modp_montymul(x, R2, p, p0i);
+ w = d[u] - p;
+ w += p & -(w >> 31);
+ x = modp_add(x, w, p);
+ }
+ return x;
+}
+
+/*
+ * Similar to zint_mod_small_unsigned(), except that d may be signed.
+ * Extra parameter is Rx = 2^(31*dlen) mod p.
+ */
+static uint32_t
+zint_mod_small_signed(const uint32_t *d, size_t dlen,
+ uint32_t p, uint32_t p0i, uint32_t R2, uint32_t Rx) {
+ uint32_t z;
+
+ if (dlen == 0) {
+ return 0;
+ }
+ z = zint_mod_small_unsigned(d, dlen, p, p0i, R2);
+ z = modp_sub(z, Rx & -(d[dlen - 1] >> 30), p);
+ return z;
+}
+
+/*
+ * Add y*s to x. x and y initially have length 'len' words; the new x
+ * has length 'len+1' words. 's' must fit on 31 bits. x[] and y[] must
+ * not overlap.
+ */
+static void
+zint_add_mul_small(uint32_t *x,
+ const uint32_t *y, size_t len, uint32_t s) {
+ size_t u;
+ uint32_t cc;
+
+ cc = 0;
+ for (u = 0; u < len; u ++) {
+ uint32_t xw, yw;
+ uint64_t z;
+
+ xw = x[u];
+ yw = y[u];
+ z = (uint64_t)yw * (uint64_t)s + (uint64_t)xw + (uint64_t)cc;
+ x[u] = (uint32_t)z & 0x7FFFFFFF;
+ cc = (uint32_t)(z >> 31);
+ }
+ x[len] = cc;
+}
+
+/*
+ * Normalize a modular integer around 0: if x > p/2, then x is replaced
+ * with x - p (signed encoding with two's complement); otherwise, x is
+ * untouched. The two integers x and p are encoded over the same length.
+ */
+static void
+zint_norm_zero(uint32_t *x, const uint32_t *p, size_t len) {
+ size_t u;
+ uint32_t r, bb;
+
+ /*
+ * Compare x with p/2. We use the shifted version of p, and p
+ * is odd, so we really compare with (p-1)/2; we want to perform
+ * the subtraction if and only if x > (p-1)/2.
+ */
+ r = 0;
+ bb = 0;
+ u = len;
+ while (u -- > 0) {
+ uint32_t wx, wp, cc;
+
+ /*
+ * Get the two words to compare in wx and wp (both over
+ * 31 bits exactly).
+ */
+ wx = x[u];
+ wp = (p[u] >> 1) | (bb << 30);
+ bb = p[u] & 1;
+
+ /*
+ * We set cc to -1, 0 or 1, depending on whether wp is
+ * lower than, equal to, or greater than wx.
+ */
+ cc = wp - wx;
+ cc = ((-cc) >> 31) | -(cc >> 31);
+
+ /*
+ * If r != 0 then it is either 1 or -1, and we keep its
+ * value. Otherwise, if r = 0, then we replace it with cc.
+ */
+ r |= cc & ((r & 1) - 1);
+ }
+
+ /*
+ * At this point, r = -1, 0 or 1, depending on whether (p-1)/2
+ * is lower than, equal to, or greater than x. We thus want to
+ * do the subtraction only if r = -1.
+ */
+ zint_sub(x, p, len, r >> 31);
+}
+
+/*
+ * Rebuild integers from their RNS representation. There are 'num'
+ * integers, and each consists in 'xlen' words. 'xx' points at that
+ * first word of the first integer; subsequent integers are accessed
+ * by adding 'xstride' repeatedly.
+ *
+ * The words of an integer are the RNS representation of that integer,
+ * using the provided 'primes' are moduli. This function replaces
+ * each integer with its multi-word value (little-endian order).
+ *
+ * If "normalize_signed" is non-zero, then the returned value is
+ * normalized to the -m/2..m/2 interval (where m is the product of all
+ * small prime moduli); two's complement is used for negative values.
+ */
+static void
+zint_rebuild_CRT(uint32_t *xx, size_t xlen, size_t xstride,
+ size_t num, const small_prime *primes, int normalize_signed,
+ uint32_t *tmp) {
+ size_t u;
+ uint32_t *x;
+
+ tmp[0] = primes[0].p;
+ for (u = 1; u < xlen; u ++) {
+ /*
+ * At the entry of each loop iteration:
+ * - the first u words of each array have been
+ * reassembled;
+ * - the first u words of tmp[] contains the
+ * product of the prime moduli processed so far.
+ *
+ * We call 'q' the product of all previous primes.
+ */
+ uint32_t p, p0i, s, R2;
+ size_t v;
+
+ p = primes[u].p;
+ s = primes[u].s;
+ p0i = modp_ninv31(p);
+ R2 = modp_R2(p, p0i);
+
+ for (v = 0, x = xx; v < num; v ++, x += xstride) {
+ uint32_t xp, xq, xr;
+ /*
+ * xp = the integer x modulo the prime p for this
+ * iteration
+ * xq = (x mod q) mod p
+ */
+ xp = x[u];
+ xq = zint_mod_small_unsigned(x, u, p, p0i, R2);
+
+ /*
+ * New value is (x mod q) + q * (s * (xp - xq) mod p)
+ */
+ xr = modp_montymul(s, modp_sub(xp, xq, p), p, p0i);
+ zint_add_mul_small(x, tmp, u, xr);
+ }
+
+ /*
+ * Update product of primes in tmp[].
+ */
+ tmp[u] = zint_mul_small(tmp, u, p);
+ }
+
+ /*
+ * Normalize the reconstructed values around 0.
+ */
+ if (normalize_signed) {
+ for (u = 0, x = xx; u < num; u ++, x += xstride) {
+ zint_norm_zero(x, tmp, xlen);
+ }
+ }
+}
+
+/*
+ * Negate a big integer conditionally: value a is replaced with -a if
+ * and only if ctl = 1. Control value ctl must be 0 or 1.
+ */
+static void
+zint_negate(uint32_t *a, size_t len, uint32_t ctl) {
+ size_t u;
+ uint32_t cc, m;
+
+ /*
+ * If ctl = 1 then we flip the bits of a by XORing with
+ * 0x7FFFFFFF, and we add 1 to the value. If ctl = 0 then we XOR
+ * with 0 and add 0, which leaves the value unchanged.
+ */
+ cc = ctl;
+ m = -ctl >> 1;
+ for (u = 0; u < len; u ++) {
+ uint32_t aw;
+
+ aw = a[u];
+ aw = (aw ^ m) + cc;
+ a[u] = aw & 0x7FFFFFFF;
+ cc = aw >> 31;
+ }
+}
+
+/*
+ * Replace a with (a*xa+b*xb)/(2^31) and b with (a*ya+b*yb)/(2^31).
+ * The low bits are dropped (the caller should compute the coefficients
+ * such that these dropped bits are all zeros). If either or both
+ * yields a negative value, then the value is negated.
+ *
+ * Returned value is:
+ * 0 both values were positive
+ * 1 new a had to be negated
+ * 2 new b had to be negated
+ * 3 both new a and new b had to be negated
+ *
+ * Coefficients xa, xb, ya and yb may use the full signed 32-bit range.
+ */
+static uint32_t
+zint_co_reduce(uint32_t *a, uint32_t *b, size_t len,
+ int64_t xa, int64_t xb, int64_t ya, int64_t yb) {
+ size_t u;
+ int64_t cca, ccb;
+ uint32_t nega, negb;
+
+ cca = 0;
+ ccb = 0;
+ for (u = 0; u < len; u ++) {
+ uint32_t wa, wb;
+ uint64_t za, zb;
+
+ wa = a[u];
+ wb = b[u];
+ za = wa * (uint64_t)xa + wb * (uint64_t)xb + (uint64_t)cca;
+ zb = wa * (uint64_t)ya + wb * (uint64_t)yb + (uint64_t)ccb;
+ if (u > 0) {
+ a[u - 1] = (uint32_t)za & 0x7FFFFFFF;
+ b[u - 1] = (uint32_t)zb & 0x7FFFFFFF;
+ }
+ cca = *(int64_t *)&za >> 31;
+ ccb = *(int64_t *)&zb >> 31;
+ }
+ a[len - 1] = (uint32_t)cca;
+ b[len - 1] = (uint32_t)ccb;
+
+ nega = (uint32_t)((uint64_t)cca >> 63);
+ negb = (uint32_t)((uint64_t)ccb >> 63);
+ zint_negate(a, len, nega);
+ zint_negate(b, len, negb);
+ return nega | (negb << 1);
+}
+
+/*
+ * Finish modular reduction. Rules on input parameters:
+ *
+ * if neg = 1, then -m <= a < 0
+ * if neg = 0, then 0 <= a < 2*m
+ *
+ * If neg = 0, then the top word of a[] is allowed to use 32 bits.
+ *
+ * Modulus m must be odd.
+ */
+static void
+zint_finish_mod(uint32_t *a, size_t len, const uint32_t *m, uint32_t neg) {
+ size_t u;
+ uint32_t cc, xm, ym;
+
+ /*
+ * First pass: compare a (assumed nonnegative) with m. Note that
+ * if the top word uses 32 bits, subtracting m must yield a
+ * value less than 2^31 since a < 2*m.
+ */
+ cc = 0;
+ for (u = 0; u < len; u ++) {
+ cc = (a[u] - m[u] - cc) >> 31;
+ }
+
+ /*
+ * If neg = 1 then we must add m (regardless of cc)
+ * If neg = 0 and cc = 0 then we must subtract m
+ * If neg = 0 and cc = 1 then we must do nothing
+ *
+ * In the loop below, we conditionally subtract either m or -m
+ * from a. Word xm is a word of m (if neg = 0) or -m (if neg = 1);
+ * but if neg = 0 and cc = 1, then ym = 0 and it forces mw to 0.
+ */
+ xm = -neg >> 1;
+ ym = -(neg | (1 - cc));
+ cc = neg;
+ for (u = 0; u < len; u ++) {
+ uint32_t aw, mw;
+
+ aw = a[u];
+ mw = (m[u] ^ xm) & ym;
+ aw = aw - mw - cc;
+ a[u] = aw & 0x7FFFFFFF;
+ cc = aw >> 31;
+ }
+}
+
+/*
+ * Replace a with (a*xa+b*xb)/(2^31) mod m, and b with
+ * (a*ya+b*yb)/(2^31) mod m. Modulus m must be odd; m0i = -1/m[0] mod 2^31.
+ */
+static void
+zint_co_reduce_mod(uint32_t *a, uint32_t *b, const uint32_t *m, size_t len,
+ uint32_t m0i, int64_t xa, int64_t xb, int64_t ya, int64_t yb) {
+ size_t u;
+ int64_t cca, ccb;
+ uint32_t fa, fb;
+
+ /*
+ * These are actually four combined Montgomery multiplications.
+ */
+ cca = 0;
+ ccb = 0;
+ fa = ((a[0] * (uint32_t)xa + b[0] * (uint32_t)xb) * m0i) & 0x7FFFFFFF;
+ fb = ((a[0] * (uint32_t)ya + b[0] * (uint32_t)yb) * m0i) & 0x7FFFFFFF;
+ for (u = 0; u < len; u ++) {
+ uint32_t wa, wb;
+ uint64_t za, zb;
+
+ wa = a[u];
+ wb = b[u];
+ za = wa * (uint64_t)xa + wb * (uint64_t)xb
+ + m[u] * (uint64_t)fa + (uint64_t)cca;
+ zb = wa * (uint64_t)ya + wb * (uint64_t)yb
+ + m[u] * (uint64_t)fb + (uint64_t)ccb;
+ if (u > 0) {
+ a[u - 1] = (uint32_t)za & 0x7FFFFFFF;
+ b[u - 1] = (uint32_t)zb & 0x7FFFFFFF;
+ }
+ cca = *(int64_t *)&za >> 31;
+ ccb = *(int64_t *)&zb >> 31;
+ }
+ a[len - 1] = (uint32_t)cca;
+ b[len - 1] = (uint32_t)ccb;
+
+ /*
+ * At this point:
+ * -m <= a < 2*m
+ * -m <= b < 2*m
+ * (this is a case of Montgomery reduction)
+ * The top words of 'a' and 'b' may have a 32-th bit set.
+ * We want to add or subtract the modulus, as required.
+ */
+ zint_finish_mod(a, len, m, (uint32_t)((uint64_t)cca >> 63));
+ zint_finish_mod(b, len, m, (uint32_t)((uint64_t)ccb >> 63));
+}
+
+/*
+ * Compute a GCD between two positive big integers x and y. The two
+ * integers must be odd. Returned value is 1 if the GCD is 1, 0
+ * otherwise. When 1 is returned, arrays u and v are filled with values
+ * such that:
+ * 0 <= u <= y
+ * 0 <= v <= x
+ * x*u - y*v = 1
+ * x[] and y[] are unmodified. Both input values must have the same
+ * encoded length. Temporary array must be large enough to accommodate 4
+ * extra values of that length. Arrays u, v and tmp may not overlap with
+ * each other, or with either x or y.
+ */
+static int
+zint_bezout(uint32_t *u, uint32_t *v,
+ const uint32_t *x, const uint32_t *y,
+ size_t len, uint32_t *tmp) {
+ /*
+ * Algorithm is an extended binary GCD. We maintain 6 values
+ * a, b, u0, u1, v0 and v1 with the following invariants:
+ *
+ * a = x*u0 - y*v0
+ * b = x*u1 - y*v1
+ * 0 <= a <= x
+ * 0 <= b <= y
+ * 0 <= u0 < y
+ * 0 <= v0 < x
+ * 0 <= u1 <= y
+ * 0 <= v1 < x
+ *
+ * Initial values are:
+ *
+ * a = x u0 = 1 v0 = 0
+ * b = y u1 = y v1 = x-1
+ *
+ * Each iteration reduces either a or b, and maintains the
+ * invariants. Algorithm stops when a = b, at which point their
+ * common value is GCD(a,b) and (u0,v0) (or (u1,v1)) contains
+ * the values (u,v) we want to return.
+ *
+ * The formal definition of the algorithm is a sequence of steps:
+ *
+ * - If a is even, then:
+ * a <- a/2
+ * u0 <- u0/2 mod y
+ * v0 <- v0/2 mod x
+ *
+ * - Otherwise, if b is even, then:
+ * b <- b/2
+ * u1 <- u1/2 mod y
+ * v1 <- v1/2 mod x
+ *
+ * - Otherwise, if a > b, then:
+ * a <- (a-b)/2
+ * u0 <- (u0-u1)/2 mod y
+ * v0 <- (v0-v1)/2 mod x
+ *
+ * - Otherwise:
+ * b <- (b-a)/2
+ * u1 <- (u1-u0)/2 mod y
+ * v1 <- (v1-v0)/2 mod y
+ *
+ * We can show that the operations above preserve the invariants:
+ *
+ * - If a is even, then u0 and v0 are either both even or both
+ * odd (since a = x*u0 - y*v0, and x and y are both odd).
+ * If u0 and v0 are both even, then (u0,v0) <- (u0/2,v0/2).
+ * Otherwise, (u0,v0) <- ((u0+y)/2,(v0+x)/2). Either way,
+ * the a = x*u0 - y*v0 invariant is preserved.
+ *
+ * - The same holds for the case where b is even.
+ *
+ * - If a and b are odd, and a > b, then:
+ *
+ * a-b = x*(u0-u1) - y*(v0-v1)
+ *
+ * In that situation, if u0 < u1, then x*(u0-u1) < 0, but
+ * a-b > 0; therefore, it must be that v0 < v1, and the
+ * first part of the update is: (u0,v0) <- (u0-u1+y,v0-v1+x),
+ * which preserves the invariants. Otherwise, if u0 > u1,
+ * then u0-u1 >= 1, thus x*(u0-u1) >= x. But a <= x and
+ * b >= 0, hence a-b <= x. It follows that, in that case,
+ * v0-v1 >= 0. The first part of the update is then:
+ * (u0,v0) <- (u0-u1,v0-v1), which again preserves the
+ * invariants.
+ *
+ * Either way, once the subtraction is done, the new value of
+ * a, which is the difference of two odd values, is even,
+ * and the remaining of this step is a subcase of the
+ * first algorithm case (i.e. when a is even).
+ *
+ * - If a and b are odd, and b > a, then the a similar
+ * argument holds.
+ *
+ * The values a and b start at x and y, respectively. Since x
+ * and y are odd, their GCD is odd, and it is easily seen that
+ * all steps conserve the GCD (GCD(a-b,b) = GCD(a, b);
+ * GCD(a/2,b) = GCD(a,b) if GCD(a,b) is odd). Moreover, either a
+ * or b is reduced by at least one bit at each iteration, so
+ * the algorithm necessarily converges on the case a = b, at
+ * which point the common value is the GCD.
+ *
+ * In the algorithm expressed above, when a = b, the fourth case
+ * applies, and sets b = 0. Since a contains the GCD of x and y,
+ * which are both odd, a must be odd, and subsequent iterations
+ * (if any) will simply divide b by 2 repeatedly, which has no
+ * consequence. Thus, the algorithm can run for more iterations
+ * than necessary; the final GCD will be in a, and the (u,v)
+ * coefficients will be (u0,v0).
+ *
+ *
+ * The presentation above is bit-by-bit. It can be sped up by
+ * noticing that all decisions are taken based on the low bits
+ * and high bits of a and b. We can extract the two top words
+ * and low word of each of a and b, and compute reduction
+ * parameters pa, pb, qa and qb such that the new values for
+ * a and b are:
+ * a' = (a*pa + b*pb) / (2^31)
+ * b' = (a*qa + b*qb) / (2^31)
+ * the two divisions being exact. The coefficients are obtained
+ * just from the extracted words, and may be slightly off, requiring
+ * an optional correction: if a' < 0, then we replace pa with -pa
+ * and pb with -pb. Each such step will reduce the total length
+ * (sum of lengths of a and b) by at least 30 bits at each
+ * iteration.
+ */
+ uint32_t *u0, *u1, *v0, *v1, *a, *b;
+ uint32_t x0i, y0i;
+ uint32_t num, rc;
+ size_t j;
+
+ if (len == 0) {
+ return 0;
+ }
+
+ /*
+ * u0 and v0 are the u and v result buffers; the four other
+ * values (u1, v1, a and b) are taken from tmp[].
+ */
+ u0 = u;
+ v0 = v;
+ u1 = tmp;
+ v1 = u1 + len;
+ a = v1 + len;
+ b = a + len;
+
+ /*
+ * We'll need the Montgomery reduction coefficients.
+ */
+ x0i = modp_ninv31(x[0]);
+ y0i = modp_ninv31(y[0]);
+
+ /*
+ * Initialize a, b, u0, u1, v0 and v1.
+ * a = x u0 = 1 v0 = 0
+ * b = y u1 = y v1 = x-1
+ * Note that x is odd, so computing x-1 is easy.
+ */
+ memcpy(a, x, len * sizeof * x);
+ memcpy(b, y, len * sizeof * y);
+ u0[0] = 1;
+ memset(u0 + 1, 0, (len - 1) * sizeof * u0);
+ memset(v0, 0, len * sizeof * v0);
+ memcpy(u1, y, len * sizeof * u1);
+ memcpy(v1, x, len * sizeof * v1);
+ v1[0] --;
+
+ /*
+ * Each input operand may be as large as 31*len bits, and we
+ * reduce the total length by at least 30 bits at each iteration.
+ */
+ for (num = 62 * (uint32_t)len + 30; num >= 30; num -= 30) {
+ uint32_t c0, c1;
+ uint32_t a0, a1, b0, b1;
+ uint64_t a_hi, b_hi;
+ uint32_t a_lo, b_lo;
+ int64_t pa, pb, qa, qb;
+ int i;
+ uint32_t r;
+
+ /*
+ * Extract the top words of a and b. If j is the highest
+ * index >= 1 such that a[j] != 0 or b[j] != 0, then we
+ * want (a[j] << 31) + a[j-1] and (b[j] << 31) + b[j-1].
+ * If a and b are down to one word each, then we use
+ * a[0] and b[0].
+ */
+ c0 = (uint32_t) -1;
+ c1 = (uint32_t) -1;
+ a0 = 0;
+ a1 = 0;
+ b0 = 0;
+ b1 = 0;
+ j = len;
+ while (j -- > 0) {
+ uint32_t aw, bw;
+
+ aw = a[j];
+ bw = b[j];
+ a0 ^= (a0 ^ aw) & c0;
+ a1 ^= (a1 ^ aw) & c1;
+ b0 ^= (b0 ^ bw) & c0;
+ b1 ^= (b1 ^ bw) & c1;
+ c1 = c0;
+ c0 &= (((aw | bw) + 0x7FFFFFFF) >> 31) - (uint32_t)1;
+ }
+
+ /*
+ * If c1 = 0, then we grabbed two words for a and b.
+ * If c1 != 0 but c0 = 0, then we grabbed one word. It
+ * is not possible that c1 != 0 and c0 != 0, because that
+ * would mean that both integers are zero.
+ */
+ a1 |= a0 & c1;
+ a0 &= ~c1;
+ b1 |= b0 & c1;
+ b0 &= ~c1;
+ a_hi = ((uint64_t)a0 << 31) + a1;
+ b_hi = ((uint64_t)b0 << 31) + b1;
+ a_lo = a[0];
+ b_lo = b[0];
+
+ /*
+ * Compute reduction factors:
+ *
+ * a' = a*pa + b*pb
+ * b' = a*qa + b*qb
+ *
+ * such that a' and b' are both multiple of 2^31, but are
+ * only marginally larger than a and b.
+ */
+ pa = 1;
+ pb = 0;
+ qa = 0;
+ qb = 1;
+ for (i = 0; i < 31; i ++) {
+ /*
+ * At each iteration:
+ *
+ * a <- (a-b)/2 if: a is odd, b is odd, a_hi > b_hi
+ * b <- (b-a)/2 if: a is odd, b is odd, a_hi <= b_hi
+ * a <- a/2 if: a is even
+ * b <- b/2 if: a is odd, b is even
+ *
+ * We multiply a_lo and b_lo by 2 at each
+ * iteration, thus a division by 2 really is a
+ * non-multiplication by 2.
+ */
+ uint32_t rt, oa, ob, cAB, cBA, cA;
+ uint64_t rz;
+
+ /*
+ * rt = 1 if a_hi > b_hi, 0 otherwise.
+ */
+ rz = b_hi - a_hi;
+ rt = (uint32_t)((rz ^ ((a_hi ^ b_hi)
+ & (a_hi ^ rz))) >> 63);
+
+ /*
+ * cAB = 1 if b must be subtracted from a
+ * cBA = 1 if a must be subtracted from b
+ * cA = 1 if a must be divided by 2
+ *
+ * Rules:
+ *
+ * cAB and cBA cannot both be 1.
+ * If a is not divided by 2, b is.
+ */
+ oa = (a_lo >> i) & 1;
+ ob = (b_lo >> i) & 1;
+ cAB = oa & ob & rt;
+ cBA = oa & ob & ~rt;
+ cA = cAB | (oa ^ 1);
+
+ /*
+ * Conditional subtractions.
+ */
+ a_lo -= b_lo & -cAB;
+ a_hi -= b_hi & -(uint64_t)cAB;
+ pa -= qa & -(int64_t)cAB;
+ pb -= qb & -(int64_t)cAB;
+ b_lo -= a_lo & -cBA;
+ b_hi -= a_hi & -(uint64_t)cBA;
+ qa -= pa & -(int64_t)cBA;
+ qb -= pb & -(int64_t)cBA;
+
+ /*
+ * Shifting.
+ */
+ a_lo += a_lo & (cA - 1);
+ pa += pa & ((int64_t)cA - 1);
+ pb += pb & ((int64_t)cA - 1);
+ a_hi ^= (a_hi ^ (a_hi >> 1)) & -(uint64_t)cA;
+ b_lo += b_lo & -cA;
+ qa += qa & -(int64_t)cA;
+ qb += qb & -(int64_t)cA;
+ b_hi ^= (b_hi ^ (b_hi >> 1)) & ((uint64_t)cA - 1);
+ }
+
+ /*
+ * Apply the computed parameters to our values. We
+ * may have to correct pa and pb depending on the
+ * returned value of zint_co_reduce() (when a and/or b
+ * had to be negated).
+ */
+ r = zint_co_reduce(a, b, len, pa, pb, qa, qb);
+ pa -= (pa + pa) & -(int64_t)(r & 1);
+ pb -= (pb + pb) & -(int64_t)(r & 1);
+ qa -= (qa + qa) & -(int64_t)(r >> 1);
+ qb -= (qb + qb) & -(int64_t)(r >> 1);
+ zint_co_reduce_mod(u0, u1, y, len, y0i, pa, pb, qa, qb);
+ zint_co_reduce_mod(v0, v1, x, len, x0i, pa, pb, qa, qb);
+ }
+
+ /*
+ * At that point, array a[] should contain the GCD, and the
+ * results (u,v) should already be set. We check that the GCD
+ * is indeed 1. We also check that the two operands x and y
+ * are odd.
+ */
+ rc = a[0] ^ 1;
+ for (j = 1; j < len; j ++) {
+ rc |= a[j];
+ }
+ return (int)((1 - ((rc | -rc) >> 31)) & x[0] & y[0]);
+}
+
+/*
+ * Add k*y*2^sc to x. The result is assumed to fit in the array of
+ * size xlen (truncation is applied if necessary).
+ * Scale factor 'sc' is provided as sch and scl, such that:
+ * sch = sc / 31
+ * scl = sc % 31
+ * xlen MUST NOT be lower than ylen.
+ *
+ * x[] and y[] are both signed integers, using two's complement for
+ * negative values.
+ */
+static void
+zint_add_scaled_mul_small(uint32_t *x, size_t xlen,
+ const uint32_t *y, size_t ylen, int32_t k,
+ uint32_t sch, uint32_t scl) {
+ size_t u;
+ uint32_t ysign, tw;
+ int32_t cc;
+
+ if (ylen == 0) {
+ return;
+ }
+
+ ysign = -(y[ylen - 1] >> 30) >> 1;
+ tw = 0;
+ cc = 0;
+ for (u = sch; u < xlen; u ++) {
+ size_t v;
+ uint32_t wy, wys, ccu;
+ uint64_t z;
+
+ /*
+ * Get the next word of y (scaled).
+ */
+ v = u - sch;
+ if (v < ylen) {
+ wy = y[v];
+ } else {
+ wy = ysign;
+ }
+ wys = ((wy << scl) & 0x7FFFFFFF) | tw;
+ tw = wy >> (31 - scl);
+
+ /*
+ * The expression below does not overflow.
+ */
+ z = (uint64_t)((int64_t)wys * (int64_t)k + (int64_t)x[u] + cc);
+ x[u] = (uint32_t)z & 0x7FFFFFFF;
+
+ /*
+ * Right-shifting the signed value z would yield
+ * implementation-defined results (arithmetic shift is
+ * not guaranteed). However, we can cast to unsigned,
+ * and get the next carry as an unsigned word. We can
+ * then convert it back to signed by using the guaranteed
+ * fact that 'int32_t' uses two's complement with no
+ * trap representation or padding bit, and with a layout
+ * compatible with that of 'uint32_t'.
+ */
+ ccu = (uint32_t)(z >> 31);
+ cc = *(int32_t *)&ccu;
+ }
+}
+
+/*
+ * Subtract y*2^sc from x. The result is assumed to fit in the array of
+ * size xlen (truncation is applied if necessary).
+ * Scale factor 'sc' is provided as sch and scl, such that:
+ * sch = sc / 31
+ * scl = sc % 31
+ * xlen MUST NOT be lower than ylen.
+ *
+ * x[] and y[] are both signed integers, using two's complement for
+ * negative values.
+ */
+static void
+zint_sub_scaled(uint32_t *x, size_t xlen,
+ const uint32_t *y, size_t ylen, uint32_t sch, uint32_t scl) {
+ size_t u;
+ uint32_t ysign, tw;
+ uint32_t cc;
+
+ if (ylen == 0) {
+ return;
+ }
+
+ ysign = -(y[ylen - 1] >> 30) >> 1;
+ tw = 0;
+ cc = 0;
+ for (u = sch; u < xlen; u ++) {
+ size_t v;
+ uint32_t w, wy, wys;
+
+ /*
+ * Get the next word of y (scaled).
+ */
+ v = u - sch;
+ if (v < ylen) {
+ wy = y[v];
+ } else {
+ wy = ysign;
+ }
+ wys = ((wy << scl) & 0x7FFFFFFF) | tw;
+ tw = wy >> (31 - scl);
+
+ w = x[u] - wys - cc;
+ x[u] = w & 0x7FFFFFFF;
+ cc = w >> 31;
+ }
+}
+
+/*
+ * Convert a one-word signed big integer into a signed value.
+ */
+static inline int32_t
+zint_one_to_plain(const uint32_t *x) {
+ uint32_t w;
+
+ w = x[0];
+ w |= (w & 0x40000000) << 1;
+ return *(int32_t *)&w;
+}
+
+/* ==================================================================== */
+
+/*
+ * Convert a polynomial to floating-point values.
+ *
+ * Each coefficient has length flen words, and starts fstride words after
+ * the previous.
+ *
+ * IEEE-754 binary64 values can represent values in a finite range,
+ * roughly 2^(-1023) to 2^(+1023); thus, if coefficients are too large,
+ * they should be "trimmed" by pointing not to the lowest word of each,
+ * but upper.
+ */
+static void
+poly_big_to_fp(fpr *d, const uint32_t *f, size_t flen, size_t fstride,
+ unsigned logn) {
+ size_t n, u;
+
+ n = MKN(logn);
+ if (flen == 0) {
+ for (u = 0; u < n; u ++) {
+ d[u] = fpr_zero;
+ }
+ return;
+ }
+ for (u = 0; u < n; u ++, f += fstride) {
+ size_t v;
+ uint32_t neg, cc, xm;
+ fpr x, fsc;
+
+ /*
+ * Get sign of the integer; if it is negative, then we
+ * will load its absolute value instead, and negate the
+ * result.
+ */
+ neg = -(f[flen - 1] >> 30);
+ xm = neg >> 1;
+ cc = neg & 1;
+ x = fpr_zero;
+ fsc = fpr_one;
+ for (v = 0; v < flen; v ++, fsc = fpr_mul(fsc, fpr_ptwo31)) {
+ uint32_t w;
+
+ w = (f[v] ^ xm) + cc;
+ cc = w >> 31;
+ w &= 0x7FFFFFFF;
+ w -= (w << 1) & neg;
+ x = fpr_add(x, fpr_mul(fpr_of(*(int32_t *)&w), fsc));
+ }
+ d[u] = x;
+ }
+}
+
+/*
+ * Convert a polynomial to small integers. Source values are supposed
+ * to be one-word integers, signed over 31 bits. Returned value is 0
+ * if any of the coefficients exceeds the provided limit (in absolute
+ * value), or 1 on success.
+ *
+ * This is not constant-time; this is not a problem here, because on
+ * any failure, the NTRU-solving process will be deemed to have failed
+ * and the (f,g) polynomials will be discarded.
+ */
+static int
+poly_big_to_small(int8_t *d, const uint32_t *s, int lim, unsigned logn) {
+ size_t n, u;
+
+ n = MKN(logn);
+ for (u = 0; u < n; u ++) {
+ int32_t z;
+
+ z = zint_one_to_plain(s + u);
+ if (z < -lim || z > lim) {
+ return 0;
+ }
+ d[u] = (int8_t)z;
+ }
+ return 1;
+}
+
+/*
+ * Subtract k*f from F, where F, f and k are polynomials modulo X^N+1.
+ * Coefficients of polynomial k are small integers (signed values in the
+ * -2^31..2^31 range) scaled by 2^sc. Value sc is provided as sch = sc / 31
+ * and scl = sc % 31.
+ *
+ * This function implements the basic quadratic multiplication algorithm,
+ * which is efficient in space (no extra buffer needed) but slow at
+ * high degree.
+ */
+static void
+poly_sub_scaled(uint32_t *F, size_t Flen, size_t Fstride,
+ const uint32_t *f, size_t flen, size_t fstride,
+ const int32_t *k, uint32_t sch, uint32_t scl, unsigned logn) {
+ size_t n, u;
+
+ n = MKN(logn);
+ for (u = 0; u < n; u ++) {
+ int32_t kf;
+ size_t v;
+ uint32_t *x;
+ const uint32_t *y;
+
+ kf = -k[u];
+ x = F + u * Fstride;
+ y = f;
+ for (v = 0; v < n; v ++) {
+ zint_add_scaled_mul_small(
+ x, Flen, y, flen, kf, sch, scl);
+ if (u + v == n - 1) {
+ x = F;
+ kf = -kf;
+ } else {
+ x += Fstride;
+ }
+ y += fstride;
+ }
+ }
+}
+
+/*
+ * Subtract k*f from F. Coefficients of polynomial k are small integers
+ * (signed values in the -2^31..2^31 range) scaled by 2^sc. This function
+ * assumes that the degree is large, and integers relatively small.
+ * The value sc is provided as sch = sc / 31 and scl = sc % 31.
+ */
+static void
+poly_sub_scaled_ntt(uint32_t *F, size_t Flen, size_t Fstride,
+ const uint32_t *f, size_t flen, size_t fstride,
+ const int32_t *k, uint32_t sch, uint32_t scl, unsigned logn,
+ uint32_t *tmp) {
+ uint32_t *gm, *igm, *fk, *t1, *x;
+ const uint32_t *y;
+ size_t n, u, tlen;
+ const small_prime *primes;
+
+ n = MKN(logn);
+ tlen = flen + 1;
+ gm = tmp;
+ igm = gm + MKN(logn);
+ fk = igm + MKN(logn);
+ t1 = fk + n * tlen;
+
+ primes = PRIMES;
+
+ /*
+ * Compute k*f in fk[], in RNS notation.
+ */
+ for (u = 0; u < tlen; u ++) {
+ uint32_t p, p0i, R2, Rx;
+ size_t v;
+
+ p = primes[u].p;
+ p0i = modp_ninv31(p);
+ R2 = modp_R2(p, p0i);
+ Rx = modp_Rx((unsigned)flen, p, p0i, R2);
+ modp_mkgm2(gm, igm, logn, primes[u].g, p, p0i);
+
+ for (v = 0; v < n; v ++) {
+ t1[v] = modp_set(k[v], p);
+ }
+ modp_NTT2(t1, gm, logn, p, p0i);
+ for (v = 0, y = f, x = fk + u;
+ v < n; v ++, y += fstride, x += tlen) {
+ *x = zint_mod_small_signed(y, flen, p, p0i, R2, Rx);
+ }
+ modp_NTT2_ext(fk + u, tlen, gm, logn, p, p0i);
+ for (v = 0, x = fk + u; v < n; v ++, x += tlen) {
+ *x = modp_montymul(
+ modp_montymul(t1[v], *x, p, p0i), R2, p, p0i);
+ }
+ modp_iNTT2_ext(fk + u, tlen, igm, logn, p, p0i);
+ }
+
+ /*
+ * Rebuild k*f.
+ */
+ zint_rebuild_CRT(fk, tlen, tlen, n, primes, 1, t1);
+
+ /*
+ * Subtract k*f, scaled, from F.
+ */
+ for (u = 0, x = F, y = fk; u < n; u ++, x += Fstride, y += tlen) {
+ zint_sub_scaled(x, Flen, y, tlen, sch, scl);
+ }
+}
+
+/* ==================================================================== */
+
+
+#define RNG_CONTEXT inner_shake256_context
+
+/*
+ * Get a random 8-byte integer from a SHAKE-based RNG. This function
+ * ensures consistent interpretation of the SHAKE output so that
+ * the same values will be obtained over different platforms, in case
+ * a known seed is used.
+ */
+static inline uint64_t
+get_rng_u64(inner_shake256_context *rng) {
+ /*
+ * We enforce little-endian representation.
+ */
+
+ uint8_t tmp[8];
+
+ inner_shake256_extract(rng, tmp, sizeof tmp);
+ return (uint64_t)tmp[0]
+ | ((uint64_t)tmp[1] << 8)
+ | ((uint64_t)tmp[2] << 16)
+ | ((uint64_t)tmp[3] << 24)
+ | ((uint64_t)tmp[4] << 32)
+ | ((uint64_t)tmp[5] << 40)
+ | ((uint64_t)tmp[6] << 48)
+ | ((uint64_t)tmp[7] << 56);
+}
+
+/*
+ * Table below incarnates a discrete Gaussian distribution:
+ * D(x) = exp(-(x^2)/(2*sigma^2))
+ * where sigma = 1.17*sqrt(q/(2*N)), q = 12289, and N = 1024.
+ * Element 0 of the table is P(x = 0).
+ * For k > 0, element k is P(x >= k+1 | x > 0).
+ * Probabilities are scaled up by 2^63.
+ */
+static const uint64_t gauss_1024_12289[] = {
+ 1283868770400643928u, 6416574995475331444u, 4078260278032692663u,
+ 2353523259288686585u, 1227179971273316331u, 575931623374121527u,
+ 242543240509105209u, 91437049221049666u, 30799446349977173u,
+ 9255276791179340u, 2478152334826140u, 590642893610164u,
+ 125206034929641u, 23590435911403u, 3948334035941u,
+ 586753615614u, 77391054539u, 9056793210u,
+ 940121950u, 86539696u, 7062824u,
+ 510971u, 32764u, 1862u,
+ 94u, 4u, 0u
+};
+
+/*
+ * Generate a random value with a Gaussian distribution centered on 0.
+ * The RNG must be ready for extraction (already flipped).
+ *
+ * Distribution has standard deviation 1.17*sqrt(q/(2*N)). The
+ * precomputed table is for N = 1024. Since the sum of two independent
+ * values of standard deviation sigma has standard deviation
+ * sigma*sqrt(2), then we can just generate more values and add them
+ * together for lower dimensions.
+ */
+static int
+mkgauss(RNG_CONTEXT *rng, unsigned logn) {
+ unsigned u, g;
+ int val;
+
+ g = 1U << (10 - logn);
+ val = 0;
+ for (u = 0; u < g; u ++) {
+ /*
+ * Each iteration generates one value with the
+ * Gaussian distribution for N = 1024.
+ *
+ * We use two random 64-bit values. First value
+ * decides on whether the generated value is 0, and,
+ * if not, the sign of the value. Second random 64-bit
+ * word is used to generate the non-zero value.
+ *
+ * For constant-time code we have to read the complete
+ * table. This has negligible cost, compared with the
+ * remainder of the keygen process (solving the NTRU
+ * equation).
+ */
+ uint64_t r;
+ uint32_t f, v, k, neg;
+
+ /*
+ * First value:
+ * - flag 'neg' is randomly selected to be 0 or 1.
+ * - flag 'f' is set to 1 if the generated value is zero,
+ * or set to 0 otherwise.
+ */
+ r = get_rng_u64(rng);
+ neg = (uint32_t)(r >> 63);
+ r &= ~((uint64_t)1 << 63);
+ f = (uint32_t)((r - gauss_1024_12289[0]) >> 63);
+
+ /*
+ * We produce a new random 63-bit integer r, and go over
+ * the array, starting at index 1. We store in v the
+ * index of the first array element which is not greater
+ * than r, unless the flag f was already 1.
+ */
+ v = 0;
+ r = get_rng_u64(rng);
+ r &= ~((uint64_t)1 << 63);
+ for (k = 1; k < (uint32_t)((sizeof gauss_1024_12289)
+ / (sizeof gauss_1024_12289[0])); k ++) {
+ uint32_t t;
+
+ t = (uint32_t)((r - gauss_1024_12289[k]) >> 63) ^ 1;
+ v |= k & -(t & (f ^ 1));
+ f |= t;
+ }
+
+ /*
+ * We apply the sign ('neg' flag). If the value is zero,
+ * the sign has no effect.
+ */
+ v = (v ^ -neg) + neg;
+
+ /*
+ * Generated value is added to val.
+ */
+ val += *(int32_t *)&v;
+ }
+ return val;
+}
+
+/*
+ * The MAX_BL_SMALL[] and MAX_BL_LARGE[] contain the lengths, in 31-bit
+ * words, of intermediate values in the computation:
+ *
+ * MAX_BL_SMALL[depth]: length for the input f and g at that depth
+ * MAX_BL_LARGE[depth]: length for the unreduced F and G at that depth
+ *
+ * Rules:
+ *
+ * - Within an array, values grow.
+ *
+ * - The 'SMALL' array must have an entry for maximum depth, corresponding
+ * to the size of values used in the binary GCD. There is no such value
+ * for the 'LARGE' array (the binary GCD yields already reduced
+ * coefficients).
+ *
+ * - MAX_BL_LARGE[depth] >= MAX_BL_SMALL[depth + 1].
+ *
+ * - Values must be large enough to handle the common cases, with some
+ * margins.
+ *
+ * - Values must not be "too large" either because we will convert some
+ * integers into floating-point values by considering the top 10 words,
+ * i.e. 310 bits; hence, for values of length more than 10 words, we
+ * should take care to have the length centered on the expected size.
+ *
+ * The following average lengths, in bits, have been measured on thousands
+ * of random keys (fg = max length of the absolute value of coefficients
+ * of f and g at that depth; FG = idem for the unreduced F and G; for the
+ * maximum depth, F and G are the output of binary GCD, multiplied by q;
+ * for each value, the average and standard deviation are provided).
+ *
+ * Binary case:
+ * depth: 10 fg: 6307.52 (24.48) FG: 6319.66 (24.51)
+ * depth: 9 fg: 3138.35 (12.25) FG: 9403.29 (27.55)
+ * depth: 8 fg: 1576.87 ( 7.49) FG: 4703.30 (14.77)
+ * depth: 7 fg: 794.17 ( 4.98) FG: 2361.84 ( 9.31)
+ * depth: 6 fg: 400.67 ( 3.10) FG: 1188.68 ( 6.04)
+ * depth: 5 fg: 202.22 ( 1.87) FG: 599.81 ( 3.87)
+ * depth: 4 fg: 101.62 ( 1.02) FG: 303.49 ( 2.38)
+ * depth: 3 fg: 50.37 ( 0.53) FG: 153.65 ( 1.39)
+ * depth: 2 fg: 24.07 ( 0.25) FG: 78.20 ( 0.73)
+ * depth: 1 fg: 10.99 ( 0.08) FG: 39.82 ( 0.41)
+ * depth: 0 fg: 4.00 ( 0.00) FG: 19.61 ( 0.49)
+ *
+ * Integers are actually represented either in binary notation over
+ * 31-bit words (signed, using two's complement), or in RNS, modulo
+ * many small primes. These small primes are close to, but slightly
+ * lower than, 2^31. Use of RNS loses less than two bits, even for
+ * the largest values.
+ *
+ * IMPORTANT: if these values are modified, then the temporary buffer
+ * sizes (FALCON_KEYGEN_TEMP_*, in inner.h) must be recomputed
+ * accordingly.
+ */
+
+static const size_t MAX_BL_SMALL[] = {
+ 1, 1, 2, 2, 4, 7, 14, 27, 53, 106, 209
+};
+
+static const size_t MAX_BL_LARGE[] = {
+ 2, 2, 5, 7, 12, 21, 40, 78, 157, 308
+};
+
+/*
+ * Average and standard deviation for the maximum size (in bits) of
+ * coefficients of (f,g), depending on depth. These values are used
+ * to compute bounds for Babai's reduction.
+ */
+static const struct {
+ int avg;
+ int std;
+} BITLENGTH[] = {
+ { 4, 0 },
+ { 11, 1 },
+ { 24, 1 },
+ { 50, 1 },
+ { 102, 1 },
+ { 202, 2 },
+ { 401, 4 },
+ { 794, 5 },
+ { 1577, 8 },
+ { 3138, 13 },
+ { 6308, 25 }
+};
+
+/*
+ * Minimal recursion depth at which we rebuild intermediate values
+ * when reconstructing f and g.
+ */
+#define DEPTH_INT_FG 4
+
+/*
+ * Compute squared norm of a short vector. Returned value is saturated to
+ * 2^32-1 if it is not lower than 2^31.
+ */
+static uint32_t
+poly_small_sqnorm(const int8_t *f, unsigned logn) {
+ size_t n, u;
+ uint32_t s, ng;
+
+ n = MKN(logn);
+ s = 0;
+ ng = 0;
+ for (u = 0; u < n; u ++) {
+ int32_t z;
+
+ z = f[u];
+ s += (uint32_t)(z * z);
+ ng |= s;
+ }
+ return s | -(ng >> 31);
+}
+
+/*
+ * Align (upwards) the provided 'data' pointer with regards to 'base'
+ * so that the offset is a multiple of the size of 'fpr'.
+ */
+static fpr *
+align_fpr(void *base, void *data) {
+ uint8_t *cb, *cd;
+ size_t k, km;
+
+ cb = base;
+ cd = data;
+ k = (size_t)(cd - cb);
+ km = k % sizeof(fpr);
+ if (km) {
+ k += (sizeof(fpr)) - km;
+ }
+ return (fpr *)(cb + k);
+}
+
+/*
+ * Align (upwards) the provided 'data' pointer with regards to 'base'
+ * so that the offset is a multiple of the size of 'uint32_t'.
+ */
+static uint32_t *
+align_u32(void *base, void *data) {
+ uint8_t *cb, *cd;
+ size_t k, km;
+
+ cb = base;
+ cd = data;
+ k = (size_t)(cd - cb);
+ km = k % sizeof(uint32_t);
+ if (km) {
+ k += (sizeof(uint32_t)) - km;
+ }
+ return (uint32_t *)(cb + k);
+}
+
+/*
+ * Convert a small vector to floating point.
+ */
+static void
+poly_small_to_fp(fpr *x, const int8_t *f, unsigned logn) {
+ size_t n, u;
+
+ n = MKN(logn);
+ for (u = 0; u < n; u ++) {
+ x[u] = fpr_of(f[u]);
+ }
+}
+
+/*
+ * Input: f,g of degree N = 2^logn; 'depth' is used only to get their
+ * individual length.
+ *
+ * Output: f',g' of degree N/2, with the length for 'depth+1'.
+ *
+ * Values are in RNS; input and/or output may also be in NTT.
+ */
+static void
+make_fg_step(uint32_t *data, unsigned logn, unsigned depth,
+ int in_ntt, int out_ntt) {
+ size_t n, hn, u;
+ size_t slen, tlen;
+ uint32_t *fd, *gd, *fs, *gs, *gm, *igm, *t1;
+ const small_prime *primes;
+
+ n = (size_t)1 << logn;
+ hn = n >> 1;
+ slen = MAX_BL_SMALL[depth];
+ tlen = MAX_BL_SMALL[depth + 1];
+ primes = PRIMES;
+
+ /*
+ * Prepare room for the result.
+ */
+ fd = data;
+ gd = fd + hn * tlen;
+ fs = gd + hn * tlen;
+ gs = fs + n * slen;
+ gm = gs + n * slen;
+ igm = gm + n;
+ t1 = igm + n;
+ memmove(fs, data, 2 * n * slen * sizeof * data);
+
+ /*
+ * First slen words: we use the input values directly, and apply
+ * inverse NTT as we go.
+ */
+ for (u = 0; u < slen; u ++) {
+ uint32_t p, p0i, R2;
+ size_t v;
+ uint32_t *x;
+
+ p = primes[u].p;
+ p0i = modp_ninv31(p);
+ R2 = modp_R2(p, p0i);
+ modp_mkgm2(gm, igm, logn, primes[u].g, p, p0i);
+
+ for (v = 0, x = fs + u; v < n; v ++, x += slen) {
+ t1[v] = *x;
+ }
+ if (!in_ntt) {
+ modp_NTT2(t1, gm, logn, p, p0i);
+ }
+ for (v = 0, x = fd + u; v < hn; v ++, x += tlen) {
+ uint32_t w0, w1;
+
+ w0 = t1[(v << 1) + 0];
+ w1 = t1[(v << 1) + 1];
+ *x = modp_montymul(
+ modp_montymul(w0, w1, p, p0i), R2, p, p0i);
+ }
+ if (in_ntt) {
+ modp_iNTT2_ext(fs + u, slen, igm, logn, p, p0i);
+ }
+
+ for (v = 0, x = gs + u; v < n; v ++, x += slen) {
+ t1[v] = *x;
+ }
+ if (!in_ntt) {
+ modp_NTT2(t1, gm, logn, p, p0i);
+ }
+ for (v = 0, x = gd + u; v < hn; v ++, x += tlen) {
+ uint32_t w0, w1;
+
+ w0 = t1[(v << 1) + 0];
+ w1 = t1[(v << 1) + 1];
+ *x = modp_montymul(
+ modp_montymul(w0, w1, p, p0i), R2, p, p0i);
+ }
+ if (in_ntt) {
+ modp_iNTT2_ext(gs + u, slen, igm, logn, p, p0i);
+ }
+
+ if (!out_ntt) {
+ modp_iNTT2_ext(fd + u, tlen, igm, logn - 1, p, p0i);
+ modp_iNTT2_ext(gd + u, tlen, igm, logn - 1, p, p0i);
+ }
+ }
+
+ /*
+ * Since the fs and gs words have been de-NTTized, we can use the
+ * CRT to rebuild the values.
+ */
+ zint_rebuild_CRT(fs, slen, slen, n, primes, 1, gm);
+ zint_rebuild_CRT(gs, slen, slen, n, primes, 1, gm);
+
+ /*
+ * Remaining words: use modular reductions to extract the values.
+ */
+ for (u = slen; u < tlen; u ++) {
+ uint32_t p, p0i, R2, Rx;
+ size_t v;
+ uint32_t *x;
+
+ p = primes[u].p;
+ p0i = modp_ninv31(p);
+ R2 = modp_R2(p, p0i);
+ Rx = modp_Rx((unsigned)slen, p, p0i, R2);
+ modp_mkgm2(gm, igm, logn, primes[u].g, p, p0i);
+ for (v = 0, x = fs; v < n; v ++, x += slen) {
+ t1[v] = zint_mod_small_signed(x, slen, p, p0i, R2, Rx);
+ }
+ modp_NTT2(t1, gm, logn, p, p0i);
+ for (v = 0, x = fd + u; v < hn; v ++, x += tlen) {
+ uint32_t w0, w1;
+
+ w0 = t1[(v << 1) + 0];
+ w1 = t1[(v << 1) + 1];
+ *x = modp_montymul(
+ modp_montymul(w0, w1, p, p0i), R2, p, p0i);
+ }
+ for (v = 0, x = gs; v < n; v ++, x += slen) {
+ t1[v] = zint_mod_small_signed(x, slen, p, p0i, R2, Rx);
+ }
+ modp_NTT2(t1, gm, logn, p, p0i);
+ for (v = 0, x = gd + u; v < hn; v ++, x += tlen) {
+ uint32_t w0, w1;
+
+ w0 = t1[(v << 1) + 0];
+ w1 = t1[(v << 1) + 1];
+ *x = modp_montymul(
+ modp_montymul(w0, w1, p, p0i), R2, p, p0i);
+ }
+
+ if (!out_ntt) {
+ modp_iNTT2_ext(fd + u, tlen, igm, logn - 1, p, p0i);
+ modp_iNTT2_ext(gd + u, tlen, igm, logn - 1, p, p0i);
+ }
+ }
+}
+
+/*
+ * Compute f and g at a specific depth, in RNS notation.
+ *
+ * Returned values are stored in the data[] array, at slen words per integer.
+ *
+ * Conditions:
+ * 0 <= depth <= logn
+ *
+ * Space use in data[]: enough room for any two successive values (f', g',
+ * f and g).
+ */
+static void
+make_fg(uint32_t *data, const int8_t *f, const int8_t *g,
+ unsigned logn, unsigned depth, int out_ntt) {
+ size_t n, u;
+ uint32_t *ft, *gt, p0;
+ unsigned d;
+ const small_prime *primes;
+
+ n = MKN(logn);
+ ft = data;
+ gt = ft + n;
+ primes = PRIMES;
+ p0 = primes[0].p;
+ for (u = 0; u < n; u ++) {
+ ft[u] = modp_set(f[u], p0);
+ gt[u] = modp_set(g[u], p0);
+ }
+
+ if (depth == 0 && out_ntt) {
+ uint32_t *gm, *igm;
+ uint32_t p, p0i;
+
+ p = primes[0].p;
+ p0i = modp_ninv31(p);
+ gm = gt + n;
+ igm = gm + MKN(logn);
+ modp_mkgm2(gm, igm, logn, primes[0].g, p, p0i);
+ modp_NTT2(ft, gm, logn, p, p0i);
+ modp_NTT2(gt, gm, logn, p, p0i);
+ return;
+ }
+
+ if (depth == 0) {
+ return;
+ }
+ if (depth == 1) {
+ make_fg_step(data, logn, 0, 0, out_ntt);
+ return;
+ }
+ make_fg_step(data, logn, 0, 0, 1);
+ for (d = 1; d + 1 < depth; d ++) {
+ make_fg_step(data, logn - d, d, 1, 1);
+ }
+ make_fg_step(data, logn - depth + 1, depth - 1, 1, out_ntt);
+}
+
+/*
+ * Solving the NTRU equation, deepest level: compute the resultants of
+ * f and g with X^N+1, and use binary GCD. The F and G values are
+ * returned in tmp[].
+ *
+ * Returned value: 1 on success, 0 on error.
+ */
+static int
+solve_NTRU_deepest(unsigned logn_top,
+ const int8_t *f, const int8_t *g, uint32_t *tmp) {
+ size_t len;
+ uint32_t *Fp, *Gp, *fp, *gp, *t1, q;
+ const small_prime *primes;
+
+ len = MAX_BL_SMALL[logn_top];
+ primes = PRIMES;
+
+ Fp = tmp;
+ Gp = Fp + len;
+ fp = Gp + len;
+ gp = fp + len;
+ t1 = gp + len;
+
+ make_fg(fp, f, g, logn_top, logn_top, 0);
+
+ /*
+ * We use the CRT to rebuild the resultants as big integers.
+ * There are two such big integers. The resultants are always
+ * nonnegative.
+ */
+ zint_rebuild_CRT(fp, len, len, 2, primes, 0, t1);
+
+ /*
+ * Apply the binary GCD. The zint_bezout() function works only
+ * if both inputs are odd.
+ *
+ * We can test on the result and return 0 because that would
+ * imply failure of the NTRU solving equation, and the (f,g)
+ * values will be abandoned in that case.
+ */
+ if (!zint_bezout(Gp, Fp, fp, gp, len, t1)) {
+ return 0;
+ }
+
+ /*
+ * Multiply the two values by the target value q. Values must
+ * fit in the destination arrays.
+ * We can again test on the returned words: a non-zero output
+ * of zint_mul_small() means that we exceeded our array
+ * capacity, and that implies failure and rejection of (f,g).
+ */
+ q = 12289;
+ if (zint_mul_small(Fp, len, q) != 0
+ || zint_mul_small(Gp, len, q) != 0) {
+ return 0;
+ }
+
+ return 1;
+}
+
+/*
+ * Solving the NTRU equation, intermediate level. Upon entry, the F and G
+ * from the previous level should be in the tmp[] array.
+ * This function MAY be invoked for the top-level (in which case depth = 0).
+ *
+ * Returned value: 1 on success, 0 on error.
+ */
+static int
+solve_NTRU_intermediate(unsigned logn_top,
+ const int8_t *f, const int8_t *g, unsigned depth, uint32_t *tmp) {
+ /*
+ * In this function, 'logn' is the log2 of the degree for
+ * this step. If N = 2^logn, then:
+ * - the F and G values already in fk->tmp (from the deeper
+ * levels) have degree N/2;
+ * - this function should return F and G of degree N.
+ */
+ unsigned logn;
+ size_t n, hn, slen, dlen, llen, rlen, FGlen, u;
+ uint32_t *Fd, *Gd, *Ft, *Gt, *ft, *gt, *t1;
+ fpr *rt1, *rt2, *rt3, *rt4, *rt5;
+ int scale_fg, minbl_fg, maxbl_fg, maxbl_FG, scale_k;
+ uint32_t *x, *y;
+ int32_t *k;
+ const small_prime *primes;
+
+ logn = logn_top - depth;
+ n = (size_t)1 << logn;
+ hn = n >> 1;
+
+ /*
+ * slen = size for our input f and g; also size of the reduced
+ * F and G we return (degree N)
+ *
+ * dlen = size of the F and G obtained from the deeper level
+ * (degree N/2 or N/3)
+ *
+ * llen = size for intermediary F and G before reduction (degree N)
+ *
+ * We build our non-reduced F and G as two independent halves each,
+ * of degree N/2 (F = F0 + X*F1, G = G0 + X*G1).
+ */
+ slen = MAX_BL_SMALL[depth];
+ dlen = MAX_BL_SMALL[depth + 1];
+ llen = MAX_BL_LARGE[depth];
+ primes = PRIMES;
+
+ /*
+ * Fd and Gd are the F and G from the deeper level.
+ */
+ Fd = tmp;
+ Gd = Fd + dlen * hn;
+
+ /*
+ * Compute the input f and g for this level. Note that we get f
+ * and g in RNS + NTT representation.
+ */
+ ft = Gd + dlen * hn;
+ make_fg(ft, f, g, logn_top, depth, 1);
+
+ /*
+ * Move the newly computed f and g to make room for our candidate
+ * F and G (unreduced).
+ */
+ Ft = tmp;
+ Gt = Ft + n * llen;
+ t1 = Gt + n * llen;
+ memmove(t1, ft, 2 * n * slen * sizeof * ft);
+ ft = t1;
+ gt = ft + slen * n;
+ t1 = gt + slen * n;
+
+ /*
+ * Move Fd and Gd _after_ f and g.
+ */
+ memmove(t1, Fd, 2 * hn * dlen * sizeof * Fd);
+ Fd = t1;
+ Gd = Fd + hn * dlen;
+
+ /*
+ * We reduce Fd and Gd modulo all the small primes we will need,
+ * and store the values in Ft and Gt (only n/2 values in each).
+ */
+ for (u = 0; u < llen; u ++) {
+ uint32_t p, p0i, R2, Rx;
+ size_t v;
+ uint32_t *xs, *ys, *xd, *yd;
+
+ p = primes[u].p;
+ p0i = modp_ninv31(p);
+ R2 = modp_R2(p, p0i);
+ Rx = modp_Rx((unsigned)dlen, p, p0i, R2);
+ for (v = 0, xs = Fd, ys = Gd, xd = Ft + u, yd = Gt + u;
+ v < hn;
+ v ++, xs += dlen, ys += dlen, xd += llen, yd += llen) {
+ *xd = zint_mod_small_signed(xs, dlen, p, p0i, R2, Rx);
+ *yd = zint_mod_small_signed(ys, dlen, p, p0i, R2, Rx);
+ }
+ }
+
+ /*
+ * We do not need Fd and Gd after that point.
+ */
+
+ /*
+ * Compute our F and G modulo sufficiently many small primes.
+ */
+ for (u = 0; u < llen; u ++) {
+ uint32_t p, p0i, R2;
+ uint32_t *gm, *igm, *fx, *gx, *Fp, *Gp;
+ size_t v;
+
+ /*
+ * All computations are done modulo p.
+ */
+ p = primes[u].p;
+ p0i = modp_ninv31(p);
+ R2 = modp_R2(p, p0i);
+
+ /*
+ * If we processed slen words, then f and g have been
+ * de-NTTized, and are in RNS; we can rebuild them.
+ */
+ if (u == slen) {
+ zint_rebuild_CRT(ft, slen, slen, n, primes, 1, t1);
+ zint_rebuild_CRT(gt, slen, slen, n, primes, 1, t1);
+ }
+
+ gm = t1;
+ igm = gm + n;
+ fx = igm + n;
+ gx = fx + n;
+
+ modp_mkgm2(gm, igm, logn, primes[u].g, p, p0i);
+
+ if (u < slen) {
+ for (v = 0, x = ft + u, y = gt + u;
+ v < n; v ++, x += slen, y += slen) {
+ fx[v] = *x;
+ gx[v] = *y;
+ }
+ modp_iNTT2_ext(ft + u, slen, igm, logn, p, p0i);
+ modp_iNTT2_ext(gt + u, slen, igm, logn, p, p0i);
+ } else {
+ uint32_t Rx;
+
+ Rx = modp_Rx((unsigned)slen, p, p0i, R2);
+ for (v = 0, x = ft, y = gt;
+ v < n; v ++, x += slen, y += slen) {
+ fx[v] = zint_mod_small_signed(x, slen,
+ p, p0i, R2, Rx);
+ gx[v] = zint_mod_small_signed(y, slen,
+ p, p0i, R2, Rx);
+ }
+ modp_NTT2(fx, gm, logn, p, p0i);
+ modp_NTT2(gx, gm, logn, p, p0i);
+ }
+
+ /*
+ * Get F' and G' modulo p and in NTT representation
+ * (they have degree n/2). These values were computed in
+ * a previous step, and stored in Ft and Gt.
+ */
+ Fp = gx + n;
+ Gp = Fp + hn;
+ for (v = 0, x = Ft + u, y = Gt + u;
+ v < hn; v ++, x += llen, y += llen) {
+ Fp[v] = *x;
+ Gp[v] = *y;
+ }
+ modp_NTT2(Fp, gm, logn - 1, p, p0i);
+ modp_NTT2(Gp, gm, logn - 1, p, p0i);
+
+ /*
+ * Compute our F and G modulo p.
+ *
+ * General case:
+ *
+ * we divide degree by d = 2 or 3
+ * f'(x^d) = N(f)(x^d) = f * adj(f)
+ * g'(x^d) = N(g)(x^d) = g * adj(g)
+ * f'*G' - g'*F' = q
+ * F = F'(x^d) * adj(g)
+ * G = G'(x^d) * adj(f)
+ *
+ * We compute things in the NTT. We group roots of phi
+ * such that all roots x in a group share the same x^d.
+ * If the roots in a group are x_1, x_2... x_d, then:
+ *
+ * N(f)(x_1^d) = f(x_1)*f(x_2)*...*f(x_d)
+ *
+ * Thus, we have:
+ *
+ * G(x_1) = f(x_2)*f(x_3)*...*f(x_d)*G'(x_1^d)
+ * G(x_2) = f(x_1)*f(x_3)*...*f(x_d)*G'(x_1^d)
+ * ...
+ * G(x_d) = f(x_1)*f(x_2)*...*f(x_{d-1})*G'(x_1^d)
+ *
+ * In all cases, we can thus compute F and G in NTT
+ * representation by a few simple multiplications.
+ * Moreover, in our chosen NTT representation, roots
+ * from the same group are consecutive in RAM.
+ */
+ for (v = 0, x = Ft + u, y = Gt + u; v < hn;
+ v ++, x += (llen << 1), y += (llen << 1)) {
+ uint32_t ftA, ftB, gtA, gtB;
+ uint32_t mFp, mGp;
+
+ ftA = fx[(v << 1) + 0];
+ ftB = fx[(v << 1) + 1];
+ gtA = gx[(v << 1) + 0];
+ gtB = gx[(v << 1) + 1];
+ mFp = modp_montymul(Fp[v], R2, p, p0i);
+ mGp = modp_montymul(Gp[v], R2, p, p0i);
+ x[0] = modp_montymul(gtB, mFp, p, p0i);
+ x[llen] = modp_montymul(gtA, mFp, p, p0i);
+ y[0] = modp_montymul(ftB, mGp, p, p0i);
+ y[llen] = modp_montymul(ftA, mGp, p, p0i);
+ }
+ modp_iNTT2_ext(Ft + u, llen, igm, logn, p, p0i);
+ modp_iNTT2_ext(Gt + u, llen, igm, logn, p, p0i);
+ }
+
+ /*
+ * Rebuild F and G with the CRT.
+ */
+ zint_rebuild_CRT(Ft, llen, llen, n, primes, 1, t1);
+ zint_rebuild_CRT(Gt, llen, llen, n, primes, 1, t1);
+
+ /*
+ * At that point, Ft, Gt, ft and gt are consecutive in RAM (in that
+ * order).
+ */
+
+ /*
+ * Apply Babai reduction to bring back F and G to size slen.
+ *
+ * We use the FFT to compute successive approximations of the
+ * reduction coefficient. We first isolate the top bits of
+ * the coefficients of f and g, and convert them to floating
+ * point; with the FFT, we compute adj(f), adj(g), and
+ * 1/(f*adj(f)+g*adj(g)).
+ *
+ * Then, we repeatedly apply the following:
+ *
+ * - Get the top bits of the coefficients of F and G into
+ * floating point, and use the FFT to compute:
+ * (F*adj(f)+G*adj(g))/(f*adj(f)+g*adj(g))
+ *
+ * - Convert back that value into normal representation, and
+ * round it to the nearest integers, yielding a polynomial k.
+ * Proper scaling is applied to f, g, F and G so that the
+ * coefficients fit on 32 bits (signed).
+ *
+ * - Subtract k*f from F and k*g from G.
+ *
+ * Under normal conditions, this process reduces the size of F
+ * and G by some bits at each iteration. For constant-time
+ * operation, we do not want to measure the actual length of
+ * F and G; instead, we do the following:
+ *
+ * - f and g are converted to floating-point, with some scaling
+ * if necessary to keep values in the representable range.
+ *
+ * - For each iteration, we _assume_ a maximum size for F and G,
+ * and use the values at that size. If we overreach, then
+ * we get zeros, which is harmless: the resulting coefficients
+ * of k will be 0 and the value won't be reduced.
+ *
+ * - We conservatively assume that F and G will be reduced by
+ * at least 25 bits at each iteration.
+ *
+ * Even when reaching the bottom of the reduction, reduction
+ * coefficient will remain low. If it goes out-of-range, then
+ * something wrong occurred and the whole NTRU solving fails.
+ */
+
+ /*
+ * Memory layout:
+ * - We need to compute and keep adj(f), adj(g), and
+ * 1/(f*adj(f)+g*adj(g)) (sizes N, N and N/2 fp numbers,
+ * respectively).
+ * - At each iteration we need two extra fp buffer (N fp values),
+ * and produce a k (N 32-bit words). k will be shared with one
+ * of the fp buffers.
+ * - To compute k*f and k*g efficiently (with the NTT), we need
+ * some extra room; we reuse the space of the temporary buffers.
+ *
+ * Arrays of 'fpr' are obtained from the temporary array itself.
+ * We ensure that the base is at a properly aligned offset (the
+ * source array tmp[] is supposed to be already aligned).
+ */
+
+ rt3 = align_fpr(tmp, t1);
+ rt4 = rt3 + n;
+ rt5 = rt4 + n;
+ rt1 = rt5 + (n >> 1);
+ k = (int32_t *)align_u32(tmp, rt1);
+ rt2 = align_fpr(tmp, k + n);
+ if (rt2 < (rt1 + n)) {
+ rt2 = rt1 + n;
+ }
+ t1 = (uint32_t *)k + n;
+
+ /*
+ * Get f and g into rt3 and rt4 as floating-point approximations.
+ *
+ * We need to "scale down" the floating-point representation of
+ * coefficients when they are too big. We want to keep the value
+ * below 2^310 or so. Thus, when values are larger than 10 words,
+ * we consider only the top 10 words. Array lengths have been
+ * computed so that average maximum length will fall in the
+ * middle or the upper half of these top 10 words.
+ */
+ rlen = slen;
+ if (rlen > 10) {
+ rlen = 10;
+ }
+ poly_big_to_fp(rt3, ft + slen - rlen, rlen, slen, logn);
+ poly_big_to_fp(rt4, gt + slen - rlen, rlen, slen, logn);
+
+ /*
+ * Values in rt3 and rt4 are downscaled by 2^(scale_fg).
+ */
+ scale_fg = 31 * (int)(slen - rlen);
+
+ /*
+ * Estimated boundaries for the maximum size (in bits) of the
+ * coefficients of (f,g). We use the measured average, and
+ * allow for a deviation of at most six times the standard
+ * deviation.
+ */
+ minbl_fg = BITLENGTH[depth].avg - 6 * BITLENGTH[depth].std;
+ maxbl_fg = BITLENGTH[depth].avg + 6 * BITLENGTH[depth].std;
+
+ /*
+ * Compute 1/(f*adj(f)+g*adj(g)) in rt5. We also keep adj(f)
+ * and adj(g) in rt3 and rt4, respectively.
+ */
+ PQCLEAN_FALCON512_CLEAN_FFT(rt3, logn);
+ PQCLEAN_FALCON512_CLEAN_FFT(rt4, logn);
+ PQCLEAN_FALCON512_CLEAN_poly_invnorm2_fft(rt5, rt3, rt4, logn);
+ PQCLEAN_FALCON512_CLEAN_poly_adj_fft(rt3, logn);
+ PQCLEAN_FALCON512_CLEAN_poly_adj_fft(rt4, logn);
+
+ /*
+ * Reduce F and G repeatedly.
+ *
+ * The expected maximum bit length of coefficients of F and G
+ * is kept in maxbl_FG, with the corresponding word length in
+ * FGlen.
+ */
+ FGlen = llen;
+ maxbl_FG = 31 * (int)llen;
+
+ /*
+ * Each reduction operation computes the reduction polynomial
+ * "k". We need that polynomial to have coefficients that fit
+ * on 32-bit signed integers, with some scaling; thus, we use
+ * a descending sequence of scaling values, down to zero.
+ *
+ * The size of the coefficients of k is (roughly) the difference
+ * between the size of the coefficients of (F,G) and the size
+ * of the coefficients of (f,g). Thus, the maximum size of the
+ * coefficients of k is, at the start, maxbl_FG - minbl_fg;
+ * this is our starting scale value for k.
+ *
+ * We need to estimate the size of (F,G) during the execution of
+ * the algorithm; we are allowed some overestimation but not too
+ * much (poly_big_to_fp() uses a 310-bit window). Generally
+ * speaking, after applying a reduction with k scaled to
+ * scale_k, the size of (F,G) will be size(f,g) + scale_k + dd,
+ * where 'dd' is a few bits to account for the fact that the
+ * reduction is never perfect (intuitively, dd is on the order
+ * of sqrt(N), so at most 5 bits; we here allow for 10 extra
+ * bits).
+ *
+ * The size of (f,g) is not known exactly, but maxbl_fg is an
+ * upper bound.
+ */
+ scale_k = maxbl_FG - minbl_fg;
+
+ for (;;) {
+ int scale_FG, dc, new_maxbl_FG;
+ uint32_t scl, sch;
+ fpr pdc, pt;
+
+ /*
+ * Convert current F and G into floating-point. We apply
+ * scaling if the current length is more than 10 words.
+ */
+ rlen = FGlen;
+ if (rlen > 10) {
+ rlen = 10;
+ }
+ scale_FG = 31 * (int)(FGlen - rlen);
+ poly_big_to_fp(rt1, Ft + FGlen - rlen, rlen, llen, logn);
+ poly_big_to_fp(rt2, Gt + FGlen - rlen, rlen, llen, logn);
+
+ /*
+ * Compute (F*adj(f)+G*adj(g))/(f*adj(f)+g*adj(g)) in rt2.
+ */
+ PQCLEAN_FALCON512_CLEAN_FFT(rt1, logn);
+ PQCLEAN_FALCON512_CLEAN_FFT(rt2, logn);
+ PQCLEAN_FALCON512_CLEAN_poly_mul_fft(rt1, rt3, logn);
+ PQCLEAN_FALCON512_CLEAN_poly_mul_fft(rt2, rt4, logn);
+ PQCLEAN_FALCON512_CLEAN_poly_add(rt2, rt1, logn);
+ PQCLEAN_FALCON512_CLEAN_poly_mul_autoadj_fft(rt2, rt5, logn);
+ PQCLEAN_FALCON512_CLEAN_iFFT(rt2, logn);
+
+ /*
+ * (f,g) are scaled by 'scale_fg', meaning that the
+ * numbers in rt3/rt4 should be multiplied by 2^(scale_fg)
+ * to have their true mathematical value.
+ *
+ * (F,G) are similarly scaled by 'scale_FG'. Therefore,
+ * the value we computed in rt2 is scaled by
+ * 'scale_FG-scale_fg'.
+ *
+ * We want that value to be scaled by 'scale_k', hence we
+ * apply a corrective scaling. After scaling, the values
+ * should fit in -2^31-1..+2^31-1.
+ */
+ dc = scale_k - scale_FG + scale_fg;
+
+ /*
+ * We will need to multiply values by 2^(-dc). The value
+ * 'dc' is not secret, so we can compute 2^(-dc) with a
+ * non-constant-time process.
+ * (We could use ldexp(), but we prefer to avoid any
+ * dependency on libm. When using FP emulation, we could
+ * use our fpr_ldexp(), which is constant-time.)
+ */
+ if (dc < 0) {
+ dc = -dc;
+ pt = fpr_two;
+ } else {
+ pt = fpr_onehalf;
+ }
+ pdc = fpr_one;
+ while (dc != 0) {
+ if ((dc & 1) != 0) {
+ pdc = fpr_mul(pdc, pt);
+ }
+ dc >>= 1;
+ pt = fpr_sqr(pt);
+ }
+
+ for (u = 0; u < n; u ++) {
+ fpr xv;
+
+ xv = fpr_mul(rt2[u], pdc);
+
+ /*
+ * Sometimes the values can be out-of-bounds if
+ * the algorithm fails; we must not call
+ * fpr_rint() (and cast to int32_t) if the value
+ * is not in-bounds. Note that the test does not
+ * break constant-time discipline, since any
+ * failure here implies that we discard the current
+ * secret key (f,g).
+ */
+ if (!fpr_lt(fpr_mtwo31m1, xv)
+ || !fpr_lt(xv, fpr_ptwo31m1)) {
+ return 0;
+ }
+ k[u] = (int32_t)fpr_rint(xv);
+ }
+
+ /*
+ * Values in k[] are integers. They really are scaled
+ * down by maxbl_FG - minbl_fg bits.
+ *
+ * If we are at low depth, then we use the NTT to
+ * compute k*f and k*g.
+ */
+ sch = (uint32_t)(scale_k / 31);
+ scl = (uint32_t)(scale_k % 31);
+ if (depth <= DEPTH_INT_FG) {
+ poly_sub_scaled_ntt(Ft, FGlen, llen, ft, slen, slen,
+ k, sch, scl, logn, t1);
+ poly_sub_scaled_ntt(Gt, FGlen, llen, gt, slen, slen,
+ k, sch, scl, logn, t1);
+ } else {
+ poly_sub_scaled(Ft, FGlen, llen, ft, slen, slen,
+ k, sch, scl, logn);
+ poly_sub_scaled(Gt, FGlen, llen, gt, slen, slen,
+ k, sch, scl, logn);
+ }
+
+ /*
+ * We compute the new maximum size of (F,G), assuming that
+ * (f,g) has _maximal_ length (i.e. that reduction is
+ * "late" instead of "early". We also adjust FGlen
+ * accordingly.
+ */
+ new_maxbl_FG = scale_k + maxbl_fg + 10;
+ if (new_maxbl_FG < maxbl_FG) {
+ maxbl_FG = new_maxbl_FG;
+ if ((int)FGlen * 31 >= maxbl_FG + 31) {
+ FGlen --;
+ }
+ }
+
+ /*
+ * We suppose that scaling down achieves a reduction by
+ * at least 25 bits per iteration. We stop when we have
+ * done the loop with an unscaled k.
+ */
+ if (scale_k <= 0) {
+ break;
+ }
+ scale_k -= 25;
+ if (scale_k < 0) {
+ scale_k = 0;
+ }
+ }
+
+ /*
+ * If (F,G) length was lowered below 'slen', then we must take
+ * care to re-extend the sign.
+ */
+ if (FGlen < slen) {
+ for (u = 0; u < n; u ++, Ft += llen, Gt += llen) {
+ size_t v;
+ uint32_t sw;
+
+ sw = -(Ft[FGlen - 1] >> 30) >> 1;
+ for (v = FGlen; v < slen; v ++) {
+ Ft[v] = sw;
+ }
+ sw = -(Gt[FGlen - 1] >> 30) >> 1;
+ for (v = FGlen; v < slen; v ++) {
+ Gt[v] = sw;
+ }
+ }
+ }
+
+ /*
+ * Compress encoding of all values to 'slen' words (this is the
+ * expected output format).
+ */
+ for (u = 0, x = tmp, y = tmp;
+ u < (n << 1); u ++, x += slen, y += llen) {
+ memmove(x, y, slen * sizeof * y);
+ }
+ return 1;
+}
+
+/*
+ * Solving the NTRU equation, binary case, depth = 1. Upon entry, the
+ * F and G from the previous level should be in the tmp[] array.
+ *
+ * Returned value: 1 on success, 0 on error.
+ */
+static int
+solve_NTRU_binary_depth1(unsigned logn_top,
+ const int8_t *f, const int8_t *g, uint32_t *tmp) {
+ /*
+ * The first half of this function is a copy of the corresponding
+ * part in solve_NTRU_intermediate(), for the reconstruction of
+ * the unreduced F and G. The second half (Babai reduction) is
+ * done differently, because the unreduced F and G fit in 53 bits
+ * of precision, allowing a much simpler process with lower RAM
+ * usage.
+ */
+ unsigned depth, logn;
+ size_t n_top, n, hn, slen, dlen, llen, u;
+ uint32_t *Fd, *Gd, *Ft, *Gt, *ft, *gt, *t1;
+ fpr *rt1, *rt2, *rt3, *rt4, *rt5, *rt6;
+ uint32_t *x, *y;
+
+ depth = 1;
+ n_top = (size_t)1 << logn_top;
+ logn = logn_top - depth;
+ n = (size_t)1 << logn;
+ hn = n >> 1;
+
+ /*
+ * Equations are:
+ *
+ * f' = f0^2 - X^2*f1^2
+ * g' = g0^2 - X^2*g1^2
+ * F' and G' are a solution to f'G' - g'F' = q (from deeper levels)
+ * F = F'*(g0 - X*g1)
+ * G = G'*(f0 - X*f1)
+ *
+ * f0, f1, g0, g1, f', g', F' and G' are all "compressed" to
+ * degree N/2 (their odd-indexed coefficients are all zero).
+ */
+
+ /*
+ * slen = size for our input f and g; also size of the reduced
+ * F and G we return (degree N)
+ *
+ * dlen = size of the F and G obtained from the deeper level
+ * (degree N/2)
+ *
+ * llen = size for intermediary F and G before reduction (degree N)
+ *
+ * We build our non-reduced F and G as two independent halves each,
+ * of degree N/2 (F = F0 + X*F1, G = G0 + X*G1).
+ */
+ slen = MAX_BL_SMALL[depth];
+ dlen = MAX_BL_SMALL[depth + 1];
+ llen = MAX_BL_LARGE[depth];
+
+ /*
+ * Fd and Gd are the F and G from the deeper level. Ft and Gt
+ * are the destination arrays for the unreduced F and G.
+ */
+ Fd = tmp;
+ Gd = Fd + dlen * hn;
+ Ft = Gd + dlen * hn;
+ Gt = Ft + llen * n;
+
+ /*
+ * We reduce Fd and Gd modulo all the small primes we will need,
+ * and store the values in Ft and Gt.
+ */
+ for (u = 0; u < llen; u ++) {
+ uint32_t p, p0i, R2, Rx;
+ size_t v;
+ uint32_t *xs, *ys, *xd, *yd;
+
+ p = PRIMES[u].p;
+ p0i = modp_ninv31(p);
+ R2 = modp_R2(p, p0i);
+ Rx = modp_Rx((unsigned)dlen, p, p0i, R2);
+ for (v = 0, xs = Fd, ys = Gd, xd = Ft + u, yd = Gt + u;
+ v < hn;
+ v ++, xs += dlen, ys += dlen, xd += llen, yd += llen) {
+ *xd = zint_mod_small_signed(xs, dlen, p, p0i, R2, Rx);
+ *yd = zint_mod_small_signed(ys, dlen, p, p0i, R2, Rx);
+ }
+ }
+
+ /*
+ * Now Fd and Gd are not needed anymore; we can squeeze them out.
+ */
+ memmove(tmp, Ft, llen * n * sizeof(uint32_t));
+ Ft = tmp;
+ memmove(Ft + llen * n, Gt, llen * n * sizeof(uint32_t));
+ Gt = Ft + llen * n;
+ ft = Gt + llen * n;
+ gt = ft + slen * n;
+
+ t1 = gt + slen * n;
+
+ /*
+ * Compute our F and G modulo sufficiently many small primes.
+ */
+ for (u = 0; u < llen; u ++) {
+ uint32_t p, p0i, R2;
+ uint32_t *gm, *igm, *fx, *gx, *Fp, *Gp;
+ unsigned e;
+ size_t v;
+
+ /*
+ * All computations are done modulo p.
+ */
+ p = PRIMES[u].p;
+ p0i = modp_ninv31(p);
+ R2 = modp_R2(p, p0i);
+
+ /*
+ * We recompute things from the source f and g, of full
+ * degree. However, we will need only the n first elements
+ * of the inverse NTT table (igm); the call to modp_mkgm()
+ * below will fill n_top elements in igm[] (thus overflowing
+ * into fx[]) but later code will overwrite these extra
+ * elements.
+ */
+ gm = t1;
+ igm = gm + n_top;
+ fx = igm + n;
+ gx = fx + n_top;
+ modp_mkgm2(gm, igm, logn_top, PRIMES[u].g, p, p0i);
+
+ /*
+ * Set ft and gt to f and g modulo p, respectively.
+ */
+ for (v = 0; v < n_top; v ++) {
+ fx[v] = modp_set(f[v], p);
+ gx[v] = modp_set(g[v], p);
+ }
+
+ /*
+ * Convert to NTT and compute our f and g.
+ */
+ modp_NTT2(fx, gm, logn_top, p, p0i);
+ modp_NTT2(gx, gm, logn_top, p, p0i);
+ for (e = logn_top; e > logn; e --) {
+ modp_poly_rec_res(fx, e, p, p0i, R2);
+ modp_poly_rec_res(gx, e, p, p0i, R2);
+ }
+
+ /*
+ * From that point onward, we only need tables for
+ * degree n, so we can save some space.
+ */
+ if (depth > 0) { /* always true */
+ memmove(gm + n, igm, n * sizeof * igm);
+ igm = gm + n;
+ memmove(igm + n, fx, n * sizeof * ft);
+ fx = igm + n;
+ memmove(fx + n, gx, n * sizeof * gt);
+ gx = fx + n;
+ }
+
+ /*
+ * Get F' and G' modulo p and in NTT representation
+ * (they have degree n/2). These values were computed
+ * in a previous step, and stored in Ft and Gt.
+ */
+ Fp = gx + n;
+ Gp = Fp + hn;
+ for (v = 0, x = Ft + u, y = Gt + u;
+ v < hn; v ++, x += llen, y += llen) {
+ Fp[v] = *x;
+ Gp[v] = *y;
+ }
+ modp_NTT2(Fp, gm, logn - 1, p, p0i);
+ modp_NTT2(Gp, gm, logn - 1, p, p0i);
+
+ /*
+ * Compute our F and G modulo p.
+ *
+ * Equations are:
+ *
+ * f'(x^2) = N(f)(x^2) = f * adj(f)
+ * g'(x^2) = N(g)(x^2) = g * adj(g)
+ *
+ * f'*G' - g'*F' = q
+ *
+ * F = F'(x^2) * adj(g)
+ * G = G'(x^2) * adj(f)
+ *
+ * The NTT representation of f is f(w) for all w which
+ * are roots of phi. In the binary case, as well as in
+ * the ternary case for all depth except the deepest,
+ * these roots can be grouped in pairs (w,-w), and we
+ * then have:
+ *
+ * f(w) = adj(f)(-w)
+ * f(-w) = adj(f)(w)
+ *
+ * and w^2 is then a root for phi at the half-degree.
+ *
+ * At the deepest level in the ternary case, this still
+ * holds, in the following sense: the roots of x^2-x+1
+ * are (w,-w^2) (for w^3 = -1, and w != -1), and we
+ * have:
+ *
+ * f(w) = adj(f)(-w^2)
+ * f(-w^2) = adj(f)(w)
+ *
+ * In all case, we can thus compute F and G in NTT
+ * representation by a few simple multiplications.
+ * Moreover, the two roots for each pair are consecutive
+ * in our bit-reversal encoding.
+ */
+ for (v = 0, x = Ft + u, y = Gt + u;
+ v < hn; v ++, x += (llen << 1), y += (llen << 1)) {
+ uint32_t ftA, ftB, gtA, gtB;
+ uint32_t mFp, mGp;
+
+ ftA = fx[(v << 1) + 0];
+ ftB = fx[(v << 1) + 1];
+ gtA = gx[(v << 1) + 0];
+ gtB = gx[(v << 1) + 1];
+ mFp = modp_montymul(Fp[v], R2, p, p0i);
+ mGp = modp_montymul(Gp[v], R2, p, p0i);
+ x[0] = modp_montymul(gtB, mFp, p, p0i);
+ x[llen] = modp_montymul(gtA, mFp, p, p0i);
+ y[0] = modp_montymul(ftB, mGp, p, p0i);
+ y[llen] = modp_montymul(ftA, mGp, p, p0i);
+ }
+ modp_iNTT2_ext(Ft + u, llen, igm, logn, p, p0i);
+ modp_iNTT2_ext(Gt + u, llen, igm, logn, p, p0i);
+
+ /*
+ * Also save ft and gt (only up to size slen).
+ */
+ if (u < slen) {
+ modp_iNTT2(fx, igm, logn, p, p0i);
+ modp_iNTT2(gx, igm, logn, p, p0i);
+ for (v = 0, x = ft + u, y = gt + u;
+ v < n; v ++, x += slen, y += slen) {
+ *x = fx[v];
+ *y = gx[v];
+ }
+ }
+ }
+
+ /*
+ * Rebuild f, g, F and G with the CRT. Note that the elements of F
+ * and G are consecutive, and thus can be rebuilt in a single
+ * loop; similarly, the elements of f and g are consecutive.
+ */
+ zint_rebuild_CRT(Ft, llen, llen, n << 1, PRIMES, 1, t1);
+ zint_rebuild_CRT(ft, slen, slen, n << 1, PRIMES, 1, t1);
+
+ /*
+ * Here starts the Babai reduction, specialized for depth = 1.
+ *
+ * Candidates F and G (from Ft and Gt), and base f and g (ft and gt),
+ * are converted to floating point. There is no scaling, and a
+ * single pass is sufficient.
+ */
+
+ /*
+ * Convert F and G into floating point (rt1 and rt2).
+ */
+ rt1 = align_fpr(tmp, gt + slen * n);
+ rt2 = rt1 + n;
+ poly_big_to_fp(rt1, Ft, llen, llen, logn);
+ poly_big_to_fp(rt2, Gt, llen, llen, logn);
+
+ /*
+ * Integer representation of F and G is no longer needed, we
+ * can remove it.
+ */
+ memmove(tmp, ft, 2 * slen * n * sizeof * ft);
+ ft = tmp;
+ gt = ft + slen * n;
+ rt3 = align_fpr(tmp, gt + slen * n);
+ memmove(rt3, rt1, 2 * n * sizeof * rt1);
+ rt1 = rt3;
+ rt2 = rt1 + n;
+ rt3 = rt2 + n;
+ rt4 = rt3 + n;
+
+ /*
+ * Convert f and g into floating point (rt3 and rt4).
+ */
+ poly_big_to_fp(rt3, ft, slen, slen, logn);
+ poly_big_to_fp(rt4, gt, slen, slen, logn);
+
+ /*
+ * Remove unneeded ft and gt.
+ */
+ memmove(tmp, rt1, 4 * n * sizeof * rt1);
+ rt1 = (fpr *)tmp;
+ rt2 = rt1 + n;
+ rt3 = rt2 + n;
+ rt4 = rt3 + n;
+
+ /*
+ * We now have:
+ * rt1 = F
+ * rt2 = G
+ * rt3 = f
+ * rt4 = g
+ * in that order in RAM. We convert all of them to FFT.
+ */
+ PQCLEAN_FALCON512_CLEAN_FFT(rt1, logn);
+ PQCLEAN_FALCON512_CLEAN_FFT(rt2, logn);
+ PQCLEAN_FALCON512_CLEAN_FFT(rt3, logn);
+ PQCLEAN_FALCON512_CLEAN_FFT(rt4, logn);
+
+ /*
+ * Compute:
+ * rt5 = F*adj(f) + G*adj(g)
+ * rt6 = 1 / (f*adj(f) + g*adj(g))
+ * (Note that rt6 is half-length.)
+ */
+ rt5 = rt4 + n;
+ rt6 = rt5 + n;
+ PQCLEAN_FALCON512_CLEAN_poly_add_muladj_fft(rt5, rt1, rt2, rt3, rt4, logn);
+ PQCLEAN_FALCON512_CLEAN_poly_invnorm2_fft(rt6, rt3, rt4, logn);
+
+ /*
+ * Compute:
+ * rt5 = (F*adj(f)+G*adj(g)) / (f*adj(f)+g*adj(g))
+ */
+ PQCLEAN_FALCON512_CLEAN_poly_mul_autoadj_fft(rt5, rt6, logn);
+
+ /*
+ * Compute k as the rounded version of rt5. Check that none of
+ * the values is larger than 2^63-1 (in absolute value)
+ * because that would make the fpr_rint() do something undefined;
+ * note that any out-of-bounds value here implies a failure and
+ * (f,g) will be discarded, so we can make a simple test.
+ */
+ PQCLEAN_FALCON512_CLEAN_iFFT(rt5, logn);
+ for (u = 0; u < n; u ++) {
+ fpr z;
+
+ z = rt5[u];
+ if (!fpr_lt(z, fpr_ptwo63m1) || !fpr_lt(fpr_mtwo63m1, z)) {
+ return 0;
+ }
+ rt5[u] = fpr_of(fpr_rint(z));
+ }
+ PQCLEAN_FALCON512_CLEAN_FFT(rt5, logn);
+
+ /*
+ * Subtract k*f from F, and k*g from G.
+ */
+ PQCLEAN_FALCON512_CLEAN_poly_mul_fft(rt3, rt5, logn);
+ PQCLEAN_FALCON512_CLEAN_poly_mul_fft(rt4, rt5, logn);
+ PQCLEAN_FALCON512_CLEAN_poly_sub(rt1, rt3, logn);
+ PQCLEAN_FALCON512_CLEAN_poly_sub(rt2, rt4, logn);
+ PQCLEAN_FALCON512_CLEAN_iFFT(rt1, logn);
+ PQCLEAN_FALCON512_CLEAN_iFFT(rt2, logn);
+
+ /*
+ * Convert back F and G to integers, and return.
+ */
+ Ft = tmp;
+ Gt = Ft + n;
+ rt3 = align_fpr(tmp, Gt + n);
+ memmove(rt3, rt1, 2 * n * sizeof * rt1);
+ rt1 = rt3;
+ rt2 = rt1 + n;
+ for (u = 0; u < n; u ++) {
+ Ft[u] = (uint32_t)fpr_rint(rt1[u]);
+ Gt[u] = (uint32_t)fpr_rint(rt2[u]);
+ }
+
+ return 1;
+}
+
+/*
+ * Solving the NTRU equation, top level. Upon entry, the F and G
+ * from the previous level should be in the tmp[] array.
+ *
+ * Returned value: 1 on success, 0 on error.
+ */
+static int
+solve_NTRU_binary_depth0(unsigned logn,
+ const int8_t *f, const int8_t *g, uint32_t *tmp) {
+ size_t n, hn, u;
+ uint32_t p, p0i, R2;
+ uint32_t *Fp, *Gp, *t1, *t2, *t3, *t4, *t5;
+ uint32_t *gm, *igm, *ft, *gt;
+ fpr *rt2, *rt3;
+
+ n = (size_t)1 << logn;
+ hn = n >> 1;
+
+ /*
+ * Equations are:
+ *
+ * f' = f0^2 - X^2*f1^2
+ * g' = g0^2 - X^2*g1^2
+ * F' and G' are a solution to f'G' - g'F' = q (from deeper levels)
+ * F = F'*(g0 - X*g1)
+ * G = G'*(f0 - X*f1)
+ *
+ * f0, f1, g0, g1, f', g', F' and G' are all "compressed" to
+ * degree N/2 (their odd-indexed coefficients are all zero).
+ *
+ * Everything should fit in 31-bit integers, hence we can just use
+ * the first small prime p = 2147473409.
+ */
+ p = PRIMES[0].p;
+ p0i = modp_ninv31(p);
+ R2 = modp_R2(p, p0i);
+
+ Fp = tmp;
+ Gp = Fp + hn;
+ ft = Gp + hn;
+ gt = ft + n;
+ gm = gt + n;
+ igm = gm + n;
+
+ modp_mkgm2(gm, igm, logn, PRIMES[0].g, p, p0i);
+
+ /*
+ * Convert F' anf G' in NTT representation.
+ */
+ for (u = 0; u < hn; u ++) {
+ Fp[u] = modp_set(zint_one_to_plain(Fp + u), p);
+ Gp[u] = modp_set(zint_one_to_plain(Gp + u), p);
+ }
+ modp_NTT2(Fp, gm, logn - 1, p, p0i);
+ modp_NTT2(Gp, gm, logn - 1, p, p0i);
+
+ /*
+ * Load f and g and convert them to NTT representation.
+ */
+ for (u = 0; u < n; u ++) {
+ ft[u] = modp_set(f[u], p);
+ gt[u] = modp_set(g[u], p);
+ }
+ modp_NTT2(ft, gm, logn, p, p0i);
+ modp_NTT2(gt, gm, logn, p, p0i);
+
+ /*
+ * Build the unreduced F,G in ft and gt.
+ */
+ for (u = 0; u < n; u += 2) {
+ uint32_t ftA, ftB, gtA, gtB;
+ uint32_t mFp, mGp;
+
+ ftA = ft[u + 0];
+ ftB = ft[u + 1];
+ gtA = gt[u + 0];
+ gtB = gt[u + 1];
+ mFp = modp_montymul(Fp[u >> 1], R2, p, p0i);
+ mGp = modp_montymul(Gp[u >> 1], R2, p, p0i);
+ ft[u + 0] = modp_montymul(gtB, mFp, p, p0i);
+ ft[u + 1] = modp_montymul(gtA, mFp, p, p0i);
+ gt[u + 0] = modp_montymul(ftB, mGp, p, p0i);
+ gt[u + 1] = modp_montymul(ftA, mGp, p, p0i);
+ }
+ modp_iNTT2(ft, igm, logn, p, p0i);
+ modp_iNTT2(gt, igm, logn, p, p0i);
+
+ Gp = Fp + n;
+ t1 = Gp + n;
+ memmove(Fp, ft, 2 * n * sizeof * ft);
+
+ /*
+ * We now need to apply the Babai reduction. At that point,
+ * we have F and G in two n-word arrays.
+ *
+ * We can compute F*adj(f)+G*adj(g) and f*adj(f)+g*adj(g)
+ * modulo p, using the NTT. We still move memory around in
+ * order to save RAM.
+ */
+ t2 = t1 + n;
+ t3 = t2 + n;
+ t4 = t3 + n;
+ t5 = t4 + n;
+
+ /*
+ * Compute the NTT tables in t1 and t2. We do not keep t2
+ * (we'll recompute it later on).
+ */
+ modp_mkgm2(t1, t2, logn, PRIMES[0].g, p, p0i);
+
+ /*
+ * Convert F and G to NTT.
+ */
+ modp_NTT2(Fp, t1, logn, p, p0i);
+ modp_NTT2(Gp, t1, logn, p, p0i);
+
+ /*
+ * Load f and adj(f) in t4 and t5, and convert them to NTT
+ * representation.
+ */
+ t4[0] = t5[0] = modp_set(f[0], p);
+ for (u = 1; u < n; u ++) {
+ t4[u] = modp_set(f[u], p);
+ t5[n - u] = modp_set(-f[u], p);
+ }
+ modp_NTT2(t4, t1, logn, p, p0i);
+ modp_NTT2(t5, t1, logn, p, p0i);
+
+ /*
+ * Compute F*adj(f) in t2, and f*adj(f) in t3.
+ */
+ for (u = 0; u < n; u ++) {
+ uint32_t w;
+
+ w = modp_montymul(t5[u], R2, p, p0i);
+ t2[u] = modp_montymul(w, Fp[u], p, p0i);
+ t3[u] = modp_montymul(w, t4[u], p, p0i);
+ }
+
+ /*
+ * Load g and adj(g) in t4 and t5, and convert them to NTT
+ * representation.
+ */
+ t4[0] = t5[0] = modp_set(g[0], p);
+ for (u = 1; u < n; u ++) {
+ t4[u] = modp_set(g[u], p);
+ t5[n - u] = modp_set(-g[u], p);
+ }
+ modp_NTT2(t4, t1, logn, p, p0i);
+ modp_NTT2(t5, t1, logn, p, p0i);
+
+ /*
+ * Add G*adj(g) to t2, and g*adj(g) to t3.
+ */
+ for (u = 0; u < n; u ++) {
+ uint32_t w;
+
+ w = modp_montymul(t5[u], R2, p, p0i);
+ t2[u] = modp_add(t2[u],
+ modp_montymul(w, Gp[u], p, p0i), p);
+ t3[u] = modp_add(t3[u],
+ modp_montymul(w, t4[u], p, p0i), p);
+ }
+
+ /*
+ * Convert back t2 and t3 to normal representation (normalized
+ * around 0), and then
+ * move them to t1 and t2. We first need to recompute the
+ * inverse table for NTT.
+ */
+ modp_mkgm2(t1, t4, logn, PRIMES[0].g, p, p0i);
+ modp_iNTT2(t2, t4, logn, p, p0i);
+ modp_iNTT2(t3, t4, logn, p, p0i);
+ for (u = 0; u < n; u ++) {
+ t1[u] = (uint32_t)modp_norm(t2[u], p);
+ t2[u] = (uint32_t)modp_norm(t3[u], p);
+ }
+
+ /*
+ * At that point, array contents are:
+ *
+ * F (NTT representation) (Fp)
+ * G (NTT representation) (Gp)
+ * F*adj(f)+G*adj(g) (t1)
+ * f*adj(f)+g*adj(g) (t2)
+ *
+ * We want to divide t1 by t2. The result is not integral; it
+ * must be rounded. We thus need to use the FFT.
+ */
+
+ /*
+ * Get f*adj(f)+g*adj(g) in FFT representation. Since this
+ * polynomial is auto-adjoint, all its coordinates in FFT
+ * representation are actually real, so we can truncate off
+ * the imaginary parts.
+ */
+ rt3 = align_fpr(tmp, t3);
+ for (u = 0; u < n; u ++) {
+ rt3[u] = fpr_of(((int32_t *)t2)[u]);
+ }
+ PQCLEAN_FALCON512_CLEAN_FFT(rt3, logn);
+ rt2 = align_fpr(tmp, t2);
+ memmove(rt2, rt3, hn * sizeof * rt3);
+
+ /*
+ * Convert F*adj(f)+G*adj(g) in FFT representation.
+ */
+ rt3 = rt2 + hn;
+ for (u = 0; u < n; u ++) {
+ rt3[u] = fpr_of(((int32_t *)t1)[u]);
+ }
+ PQCLEAN_FALCON512_CLEAN_FFT(rt3, logn);
+
+ /*
+ * Compute (F*adj(f)+G*adj(g))/(f*adj(f)+g*adj(g)) and get
+ * its rounded normal representation in t1.
+ */
+ PQCLEAN_FALCON512_CLEAN_poly_div_autoadj_fft(rt3, rt2, logn);
+ PQCLEAN_FALCON512_CLEAN_iFFT(rt3, logn);
+ for (u = 0; u < n; u ++) {
+ t1[u] = modp_set((int32_t)fpr_rint(rt3[u]), p);
+ }
+
+ /*
+ * RAM contents are now:
+ *
+ * F (NTT representation) (Fp)
+ * G (NTT representation) (Gp)
+ * k (t1)
+ *
+ * We want to compute F-k*f, and G-k*g.
+ */
+ t2 = t1 + n;
+ t3 = t2 + n;
+ t4 = t3 + n;
+ t5 = t4 + n;
+ modp_mkgm2(t2, t3, logn, PRIMES[0].g, p, p0i);
+ for (u = 0; u < n; u ++) {
+ t4[u] = modp_set(f[u], p);
+ t5[u] = modp_set(g[u], p);
+ }
+ modp_NTT2(t1, t2, logn, p, p0i);
+ modp_NTT2(t4, t2, logn, p, p0i);
+ modp_NTT2(t5, t2, logn, p, p0i);
+ for (u = 0; u < n; u ++) {
+ uint32_t kw;
+
+ kw = modp_montymul(t1[u], R2, p, p0i);
+ Fp[u] = modp_sub(Fp[u],
+ modp_montymul(kw, t4[u], p, p0i), p);
+ Gp[u] = modp_sub(Gp[u],
+ modp_montymul(kw, t5[u], p, p0i), p);
+ }
+ modp_iNTT2(Fp, t3, logn, p, p0i);
+ modp_iNTT2(Gp, t3, logn, p, p0i);
+ for (u = 0; u < n; u ++) {
+ Fp[u] = (uint32_t)modp_norm(Fp[u], p);
+ Gp[u] = (uint32_t)modp_norm(Gp[u], p);
+ }
+
+ return 1;
+}
+
+/*
+ * Solve the NTRU equation. Returned value is 1 on success, 0 on error.
+ * G can be NULL, in which case that value is computed but not returned.
+ * If any of the coefficients of F and G exceeds lim (in absolute value),
+ * then 0 is returned.
+ */
+static int
+solve_NTRU(unsigned logn, int8_t *F, int8_t *G,
+ const int8_t *f, const int8_t *g, int lim, uint32_t *tmp) {
+ size_t n, u;
+ uint32_t *ft, *gt, *Ft, *Gt, *gm;
+ uint32_t p, p0i, r;
+ const small_prime *primes;
+
+ n = MKN(logn);
+
+ if (!solve_NTRU_deepest(logn, f, g, tmp)) {
+ return 0;
+ }
+
+ /*
+ * For logn <= 2, we need to use solve_NTRU_intermediate()
+ * directly, because coefficients are a bit too large and
+ * do not fit the hypotheses in solve_NTRU_binary_depth0().
+ */
+ if (logn <= 2) {
+ unsigned depth;
+
+ depth = logn;
+ while (depth -- > 0) {
+ if (!solve_NTRU_intermediate(logn, f, g, depth, tmp)) {
+ return 0;
+ }
+ }
+ } else {
+ unsigned depth;
+
+ depth = logn;
+ while (depth -- > 2) {
+ if (!solve_NTRU_intermediate(logn, f, g, depth, tmp)) {
+ return 0;
+ }
+ }
+ if (!solve_NTRU_binary_depth1(logn, f, g, tmp)) {
+ return 0;
+ }
+ if (!solve_NTRU_binary_depth0(logn, f, g, tmp)) {
+ return 0;
+ }
+ }
+
+ /*
+ * If no buffer has been provided for G, use a temporary one.
+ */
+ if (G == NULL) {
+ G = (int8_t *)(tmp + 2 * n);
+ }
+
+ /*
+ * Final F and G are in fk->tmp, one word per coefficient
+ * (signed value over 31 bits).
+ */
+ if (!poly_big_to_small(F, tmp, lim, logn)
+ || !poly_big_to_small(G, tmp + n, lim, logn)) {
+ return 0;
+ }
+
+ /*
+ * Verify that the NTRU equation is fulfilled. Since all elements
+ * have short lengths, verifying modulo a small prime p works, and
+ * allows using the NTT.
+ *
+ * We put Gt[] first in tmp[], and process it first, so that it does
+ * not overlap with G[] in case we allocated it ourselves.
+ */
+ Gt = tmp;
+ ft = Gt + n;
+ gt = ft + n;
+ Ft = gt + n;
+ gm = Ft + n;
+
+ primes = PRIMES;
+ p = primes[0].p;
+ p0i = modp_ninv31(p);
+ modp_mkgm2(gm, tmp, logn, primes[0].g, p, p0i);
+ for (u = 0; u < n; u ++) {
+ Gt[u] = modp_set(G[u], p);
+ }
+ for (u = 0; u < n; u ++) {
+ ft[u] = modp_set(f[u], p);
+ gt[u] = modp_set(g[u], p);
+ Ft[u] = modp_set(F[u], p);
+ }
+ modp_NTT2(ft, gm, logn, p, p0i);
+ modp_NTT2(gt, gm, logn, p, p0i);
+ modp_NTT2(Ft, gm, logn, p, p0i);
+ modp_NTT2(Gt, gm, logn, p, p0i);
+ r = modp_montymul(12289, 1, p, p0i);
+ for (u = 0; u < n; u ++) {
+ uint32_t z;
+
+ z = modp_sub(modp_montymul(ft[u], Gt[u], p, p0i),
+ modp_montymul(gt[u], Ft[u], p, p0i), p);
+ if (z != r) {
+ return 0;
+ }
+ }
+
+ return 1;
+}
+
+/*
+ * Generate a random polynomial with a Gaussian distribution. This function
+ * also makes sure that the resultant of the polynomial with phi is odd.
+ */
+static void
+poly_small_mkgauss(RNG_CONTEXT *rng, int8_t *f, unsigned logn) {
+ size_t n, u;
+ unsigned mod2;
+
+ n = MKN(logn);
+ mod2 = 0;
+ for (u = 0; u < n; u ++) {
+ int s;
+
+restart:
+ s = mkgauss(rng, logn);
+
+ /*
+ * We need the coefficient to fit within -127..+127;
+ * realistically, this is always the case except for
+ * the very low degrees (N = 2 or 4), for which there
+ * is no real security anyway.
+ */
+ if (s < -127 || s > 127) {
+ goto restart;
+ }
+
+ /*
+ * We need the sum of all coefficients to be 1; otherwise,
+ * the resultant of the polynomial with X^N+1 will be even,
+ * and the binary GCD will fail.
+ */
+ if (u == n - 1) {
+ if ((mod2 ^ (unsigned)(s & 1)) == 0) {
+ goto restart;
+ }
+ } else {
+ mod2 ^= (unsigned)(s & 1);
+ }
+ f[u] = (int8_t)s;
+ }
+}
+
+/* see falcon.h */
+void
+PQCLEAN_FALCON512_CLEAN_keygen(inner_shake256_context *rng,
+ int8_t *f, int8_t *g, int8_t *F, int8_t *G, uint16_t *h,
+ unsigned logn, uint8_t *tmp) {
+ /*
+ * Algorithm is the following:
+ *
+ * - Generate f and g with the Gaussian distribution.
+ *
+ * - If either Res(f,phi) or Res(g,phi) is even, try again.
+ *
+ * - If ||(f,g)|| is too large, try again.
+ *
+ * - If ||B~_{f,g}|| is too large, try again.
+ *
+ * - If f is not invertible mod phi mod q, try again.
+ *
+ * - Compute h = g/f mod phi mod q.
+ *
+ * - Solve the NTRU equation fG - gF = q; if the solving fails,
+ * try again. Usual failure condition is when Res(f,phi)
+ * and Res(g,phi) are not prime to each other.
+ */
+ size_t n, u;
+ uint16_t *h2, *tmp2;
+ RNG_CONTEXT *rc;
+
+ n = MKN(logn);
+ rc = rng;
+
+ /*
+ * We need to generate f and g randomly, until we find values
+ * such that the norm of (g,-f), and of the orthogonalized
+ * vector, are satisfying. The orthogonalized vector is:
+ * (q*adj(f)/(f*adj(f)+g*adj(g)), q*adj(g)/(f*adj(f)+g*adj(g)))
+ * (it is actually the (N+1)-th row of the Gram-Schmidt basis).
+ *
+ * In the binary case, coefficients of f and g are generated
+ * independently of each other, with a discrete Gaussian
+ * distribution of standard deviation 1.17*sqrt(q/(2*N)). Then,
+ * the two vectors have expected norm 1.17*sqrt(q), which is
+ * also our acceptance bound: we require both vectors to be no
+ * larger than that (this will be satisfied about 1/4th of the
+ * time, thus we expect sampling new (f,g) about 4 times for that
+ * step).
+ *
+ * We require that Res(f,phi) and Res(g,phi) are both odd (the
+ * NTRU equation solver requires it).
+ */
+ for (;;) {
+ fpr *rt1, *rt2, *rt3;
+ fpr bnorm;
+ uint32_t normf, normg, norm;
+ int lim;
+
+ /*
+ * The poly_small_mkgauss() function makes sure
+ * that the sum of coefficients is 1 modulo 2
+ * (i.e. the resultant of the polynomial with phi
+ * will be odd).
+ */
+ poly_small_mkgauss(rc, f, logn);
+ poly_small_mkgauss(rc, g, logn);
+
+ /*
+ * Verify that all coefficients are within the bounds
+ * defined in max_fg_bits. This is the case with
+ * overwhelming probability; this guarantees that the
+ * key will be encodable with FALCON_COMP_TRIM.
+ */
+ lim = 1 << (PQCLEAN_FALCON512_CLEAN_max_fg_bits[logn] - 1);
+ for (u = 0; u < n; u ++) {
+ /*
+ * We can use non-CT tests since on any failure
+ * we will discard f and g.
+ */
+ if (f[u] >= lim || f[u] <= -lim
+ || g[u] >= lim || g[u] <= -lim) {
+ lim = -1;
+ break;
+ }
+ }
+ if (lim < 0) {
+ continue;
+ }
+
+ /*
+ * Bound is 1.17*sqrt(q). We compute the squared
+ * norms. With q = 12289, the squared bound is:
+ * (1.17^2)* 12289 = 16822.4121
+ * Since f and g are integral, the squared norm
+ * of (g,-f) is an integer.
+ */
+ normf = poly_small_sqnorm(f, logn);
+ normg = poly_small_sqnorm(g, logn);
+ norm = (normf + normg) | -((normf | normg) >> 31);
+ if (norm >= 16823) {
+ continue;
+ }
+
+ /*
+ * We compute the orthogonalized vector norm.
+ */
+ rt1 = (fpr *)tmp;
+ rt2 = rt1 + n;
+ rt3 = rt2 + n;
+ poly_small_to_fp(rt1, f, logn);
+ poly_small_to_fp(rt2, g, logn);
+ PQCLEAN_FALCON512_CLEAN_FFT(rt1, logn);
+ PQCLEAN_FALCON512_CLEAN_FFT(rt2, logn);
+ PQCLEAN_FALCON512_CLEAN_poly_invnorm2_fft(rt3, rt1, rt2, logn);
+ PQCLEAN_FALCON512_CLEAN_poly_adj_fft(rt1, logn);
+ PQCLEAN_FALCON512_CLEAN_poly_adj_fft(rt2, logn);
+ PQCLEAN_FALCON512_CLEAN_poly_mulconst(rt1, fpr_q, logn);
+ PQCLEAN_FALCON512_CLEAN_poly_mulconst(rt2, fpr_q, logn);
+ PQCLEAN_FALCON512_CLEAN_poly_mul_autoadj_fft(rt1, rt3, logn);
+ PQCLEAN_FALCON512_CLEAN_poly_mul_autoadj_fft(rt2, rt3, logn);
+ PQCLEAN_FALCON512_CLEAN_iFFT(rt1, logn);
+ PQCLEAN_FALCON512_CLEAN_iFFT(rt2, logn);
+ bnorm = fpr_zero;
+ for (u = 0; u < n; u ++) {
+ bnorm = fpr_add(bnorm, fpr_sqr(rt1[u]));
+ bnorm = fpr_add(bnorm, fpr_sqr(rt2[u]));
+ }
+ if (!fpr_lt(bnorm, fpr_bnorm_max)) {
+ continue;
+ }
+
+ /*
+ * Compute public key h = g/f mod X^N+1 mod q. If this
+ * fails, we must restart.
+ */
+ if (h == NULL) {
+ h2 = (uint16_t *)tmp;
+ tmp2 = h2 + n;
+ } else {
+ h2 = h;
+ tmp2 = (uint16_t *)tmp;
+ }
+ if (!PQCLEAN_FALCON512_CLEAN_compute_public(h2, f, g, logn, (uint8_t *)tmp2)) {
+ continue;
+ }
+
+ /*
+ * Solve the NTRU equation to get F and G.
+ */
+ lim = (1 << (PQCLEAN_FALCON512_CLEAN_max_FG_bits[logn] - 1)) - 1;
+ if (!solve_NTRU(logn, F, G, f, g, lim, (uint32_t *)tmp)) {
+ continue;
+ }
+
+ /*
+ * Key pair is generated.
+ */
+ break;
+ }
+}