1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
|
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "ast.h"
#include "deoptimizer.h"
#include "frames-inl.h"
#include "full-codegen.h"
#include "lazy-instance.h"
#include "mark-compact.h"
#include "safepoint-table.h"
#include "scopeinfo.h"
#include "string-stream.h"
#include "allocation-inl.h"
namespace v8 {
namespace internal {
static ReturnAddressLocationResolver return_address_location_resolver = NULL;
// Resolves pc_address through the resolution address function if one is set.
static inline Address* ResolveReturnAddressLocation(Address* pc_address) {
if (return_address_location_resolver == NULL) {
return pc_address;
} else {
return reinterpret_cast<Address*>(
return_address_location_resolver(
reinterpret_cast<uintptr_t>(pc_address)));
}
}
// Iterator that supports traversing the stack handlers of a
// particular frame. Needs to know the top of the handler chain.
class StackHandlerIterator BASE_EMBEDDED {
public:
StackHandlerIterator(const StackFrame* frame, StackHandler* handler)
: limit_(frame->fp()), handler_(handler) {
// Make sure the handler has already been unwound to this frame.
ASSERT(frame->sp() <= handler->address());
}
StackHandler* handler() const { return handler_; }
bool done() {
return handler_ == NULL || handler_->address() > limit_;
}
void Advance() {
ASSERT(!done());
handler_ = handler_->next();
}
private:
const Address limit_;
StackHandler* handler_;
};
// -------------------------------------------------------------------------
#define INITIALIZE_SINGLETON(type, field) field##_(this),
StackFrameIterator::StackFrameIterator()
: isolate_(Isolate::Current()),
STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON)
frame_(NULL), handler_(NULL),
thread_(isolate_->thread_local_top()),
fp_(NULL), sp_(NULL), advance_(&StackFrameIterator::AdvanceWithHandler) {
Reset();
}
StackFrameIterator::StackFrameIterator(Isolate* isolate)
: isolate_(isolate),
STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON)
frame_(NULL), handler_(NULL),
thread_(isolate_->thread_local_top()),
fp_(NULL), sp_(NULL), advance_(&StackFrameIterator::AdvanceWithHandler) {
Reset();
}
StackFrameIterator::StackFrameIterator(Isolate* isolate, ThreadLocalTop* t)
: isolate_(isolate),
STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON)
frame_(NULL), handler_(NULL), thread_(t),
fp_(NULL), sp_(NULL), advance_(&StackFrameIterator::AdvanceWithHandler) {
Reset();
}
StackFrameIterator::StackFrameIterator(Isolate* isolate,
bool use_top, Address fp, Address sp)
: isolate_(isolate),
STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON)
frame_(NULL), handler_(NULL),
thread_(use_top ? isolate_->thread_local_top() : NULL),
fp_(use_top ? NULL : fp), sp_(sp),
advance_(use_top ? &StackFrameIterator::AdvanceWithHandler :
&StackFrameIterator::AdvanceWithoutHandler) {
if (use_top || fp != NULL) {
Reset();
}
}
#undef INITIALIZE_SINGLETON
void StackFrameIterator::AdvanceWithHandler() {
ASSERT(!done());
// Compute the state of the calling frame before restoring
// callee-saved registers and unwinding handlers. This allows the
// frame code that computes the caller state to access the top
// handler and the value of any callee-saved register if needed.
StackFrame::State state;
StackFrame::Type type = frame_->GetCallerState(&state);
// Unwind handlers corresponding to the current frame.
StackHandlerIterator it(frame_, handler_);
while (!it.done()) it.Advance();
handler_ = it.handler();
// Advance to the calling frame.
frame_ = SingletonFor(type, &state);
// When we're done iterating over the stack frames, the handler
// chain must have been completely unwound.
ASSERT(!done() || handler_ == NULL);
}
void StackFrameIterator::AdvanceWithoutHandler() {
// A simpler version of Advance which doesn't care about handler.
ASSERT(!done());
StackFrame::State state;
StackFrame::Type type = frame_->GetCallerState(&state);
frame_ = SingletonFor(type, &state);
}
void StackFrameIterator::Reset() {
StackFrame::State state;
StackFrame::Type type;
if (thread_ != NULL) {
type = ExitFrame::GetStateForFramePointer(
Isolate::c_entry_fp(thread_), &state);
handler_ = StackHandler::FromAddress(
Isolate::handler(thread_));
} else {
ASSERT(fp_ != NULL);
state.fp = fp_;
state.sp = sp_;
state.pc_address = ResolveReturnAddressLocation(
reinterpret_cast<Address*>(StandardFrame::ComputePCAddress(fp_)));
type = StackFrame::ComputeType(isolate(), &state);
}
if (SingletonFor(type) == NULL) return;
frame_ = SingletonFor(type, &state);
}
StackFrame* StackFrameIterator::SingletonFor(StackFrame::Type type,
StackFrame::State* state) {
if (type == StackFrame::NONE) return NULL;
StackFrame* result = SingletonFor(type);
ASSERT(result != NULL);
result->state_ = *state;
return result;
}
StackFrame* StackFrameIterator::SingletonFor(StackFrame::Type type) {
#define FRAME_TYPE_CASE(type, field) \
case StackFrame::type: result = &field##_; break;
StackFrame* result = NULL;
switch (type) {
case StackFrame::NONE: return NULL;
STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE)
default: break;
}
return result;
#undef FRAME_TYPE_CASE
}
// -------------------------------------------------------------------------
StackTraceFrameIterator::StackTraceFrameIterator() {
if (!done() && !IsValidFrame()) Advance();
}
StackTraceFrameIterator::StackTraceFrameIterator(Isolate* isolate)
: JavaScriptFrameIterator(isolate) {
if (!done() && !IsValidFrame()) Advance();
}
void StackTraceFrameIterator::Advance() {
while (true) {
JavaScriptFrameIterator::Advance();
if (done()) return;
if (IsValidFrame()) return;
}
}
bool StackTraceFrameIterator::IsValidFrame() {
if (!frame()->function()->IsJSFunction()) return false;
Object* script = JSFunction::cast(frame()->function())->shared()->script();
// Don't show functions from native scripts to user.
return (script->IsScript() &&
Script::TYPE_NATIVE != Script::cast(script)->type()->value());
}
// -------------------------------------------------------------------------
bool SafeStackFrameIterator::ExitFrameValidator::IsValidFP(Address fp) {
if (!validator_.IsValid(fp)) return false;
Address sp = ExitFrame::ComputeStackPointer(fp);
if (!validator_.IsValid(sp)) return false;
StackFrame::State state;
ExitFrame::FillState(fp, sp, &state);
if (!validator_.IsValid(reinterpret_cast<Address>(state.pc_address))) {
return false;
}
return *state.pc_address != NULL;
}
SafeStackFrameIterator::ActiveCountMaintainer::ActiveCountMaintainer(
Isolate* isolate)
: isolate_(isolate) {
isolate_->set_safe_stack_iterator_counter(
isolate_->safe_stack_iterator_counter() + 1);
}
SafeStackFrameIterator::ActiveCountMaintainer::~ActiveCountMaintainer() {
isolate_->set_safe_stack_iterator_counter(
isolate_->safe_stack_iterator_counter() - 1);
}
SafeStackFrameIterator::SafeStackFrameIterator(
Isolate* isolate,
Address fp, Address sp, Address low_bound, Address high_bound) :
maintainer_(isolate),
stack_validator_(low_bound, high_bound),
is_valid_top_(IsValidTop(isolate, low_bound, high_bound)),
is_valid_fp_(IsWithinBounds(low_bound, high_bound, fp)),
is_working_iterator_(is_valid_top_ || is_valid_fp_),
iteration_done_(!is_working_iterator_),
iterator_(isolate, is_valid_top_, is_valid_fp_ ? fp : NULL, sp) {
}
bool SafeStackFrameIterator::is_active(Isolate* isolate) {
return isolate->safe_stack_iterator_counter() > 0;
}
bool SafeStackFrameIterator::IsValidTop(Isolate* isolate,
Address low_bound, Address high_bound) {
ThreadLocalTop* top = isolate->thread_local_top();
Address fp = Isolate::c_entry_fp(top);
ExitFrameValidator validator(low_bound, high_bound);
if (!validator.IsValidFP(fp)) return false;
return Isolate::handler(top) != NULL;
}
void SafeStackFrameIterator::Advance() {
ASSERT(is_working_iterator_);
ASSERT(!done());
StackFrame* last_frame = iterator_.frame();
Address last_sp = last_frame->sp(), last_fp = last_frame->fp();
// Before advancing to the next stack frame, perform pointer validity tests
iteration_done_ = !IsValidFrame(last_frame) ||
!CanIterateHandles(last_frame, iterator_.handler()) ||
!IsValidCaller(last_frame);
if (iteration_done_) return;
iterator_.Advance();
if (iterator_.done()) return;
// Check that we have actually moved to the previous frame in the stack
StackFrame* prev_frame = iterator_.frame();
iteration_done_ = prev_frame->sp() < last_sp || prev_frame->fp() < last_fp;
}
bool SafeStackFrameIterator::CanIterateHandles(StackFrame* frame,
StackHandler* handler) {
// If StackIterator iterates over StackHandles, verify that
// StackHandlerIterator can be instantiated (see StackHandlerIterator
// constructor.)
return !is_valid_top_ || (frame->sp() <= handler->address());
}
bool SafeStackFrameIterator::IsValidFrame(StackFrame* frame) const {
return IsValidStackAddress(frame->sp()) && IsValidStackAddress(frame->fp());
}
bool SafeStackFrameIterator::IsValidCaller(StackFrame* frame) {
StackFrame::State state;
if (frame->is_entry() || frame->is_entry_construct()) {
// See EntryFrame::GetCallerState. It computes the caller FP address
// and calls ExitFrame::GetStateForFramePointer on it. We need to be
// sure that caller FP address is valid.
Address caller_fp = Memory::Address_at(
frame->fp() + EntryFrameConstants::kCallerFPOffset);
ExitFrameValidator validator(stack_validator_);
if (!validator.IsValidFP(caller_fp)) return false;
} else if (frame->is_arguments_adaptor()) {
// See ArgumentsAdaptorFrame::GetCallerStackPointer. It assumes that
// the number of arguments is stored on stack as Smi. We need to check
// that it really an Smi.
Object* number_of_args = reinterpret_cast<ArgumentsAdaptorFrame*>(frame)->
GetExpression(0);
if (!number_of_args->IsSmi()) {
return false;
}
}
frame->ComputeCallerState(&state);
return IsValidStackAddress(state.sp) && IsValidStackAddress(state.fp) &&
iterator_.SingletonFor(frame->GetCallerState(&state)) != NULL;
}
void SafeStackFrameIterator::Reset() {
if (is_working_iterator_) {
iterator_.Reset();
iteration_done_ = false;
}
}
// -------------------------------------------------------------------------
SafeStackTraceFrameIterator::SafeStackTraceFrameIterator(
Isolate* isolate,
Address fp, Address sp, Address low_bound, Address high_bound) :
SafeJavaScriptFrameIterator(isolate, fp, sp, low_bound, high_bound) {
if (!done() && !frame()->is_java_script()) Advance();
}
void SafeStackTraceFrameIterator::Advance() {
while (true) {
SafeJavaScriptFrameIterator::Advance();
if (done()) return;
if (frame()->is_java_script()) return;
}
}
Code* StackFrame::GetSafepointData(Isolate* isolate,
Address inner_pointer,
SafepointEntry* safepoint_entry,
unsigned* stack_slots) {
InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry =
isolate->inner_pointer_to_code_cache()->GetCacheEntry(inner_pointer);
if (!entry->safepoint_entry.is_valid()) {
entry->safepoint_entry = entry->code->GetSafepointEntry(inner_pointer);
ASSERT(entry->safepoint_entry.is_valid());
} else {
ASSERT(entry->safepoint_entry.Equals(
entry->code->GetSafepointEntry(inner_pointer)));
}
// Fill in the results and return the code.
Code* code = entry->code;
*safepoint_entry = entry->safepoint_entry;
*stack_slots = code->stack_slots();
return code;
}
bool StackFrame::HasHandler() const {
StackHandlerIterator it(this, top_handler());
return !it.done();
}
#ifdef DEBUG
static bool GcSafeCodeContains(HeapObject* object, Address addr);
#endif
void StackFrame::IteratePc(ObjectVisitor* v,
Address* pc_address,
Code* holder) {
Address pc = *pc_address;
ASSERT(GcSafeCodeContains(holder, pc));
unsigned pc_offset = static_cast<unsigned>(pc - holder->instruction_start());
Object* code = holder;
v->VisitPointer(&code);
if (code != holder) {
holder = reinterpret_cast<Code*>(code);
pc = holder->instruction_start() + pc_offset;
*pc_address = pc;
}
}
void StackFrame::SetReturnAddressLocationResolver(
ReturnAddressLocationResolver resolver) {
ASSERT(return_address_location_resolver == NULL);
return_address_location_resolver = resolver;
}
StackFrame::Type StackFrame::ComputeType(Isolate* isolate, State* state) {
ASSERT(state->fp != NULL);
if (StandardFrame::IsArgumentsAdaptorFrame(state->fp)) {
return ARGUMENTS_ADAPTOR;
}
// The marker and function offsets overlap. If the marker isn't a
// smi then the frame is a JavaScript frame -- and the marker is
// really the function.
const int offset = StandardFrameConstants::kMarkerOffset;
Object* marker = Memory::Object_at(state->fp + offset);
if (!marker->IsSmi()) {
// If we're using a "safe" stack iterator, we treat optimized
// frames as normal JavaScript frames to avoid having to look
// into the heap to determine the state. This is safe as long
// as nobody tries to GC...
if (SafeStackFrameIterator::is_active(isolate)) return JAVA_SCRIPT;
Code::Kind kind = GetContainingCode(isolate, *(state->pc_address))->kind();
ASSERT(kind == Code::FUNCTION || kind == Code::OPTIMIZED_FUNCTION);
return (kind == Code::OPTIMIZED_FUNCTION) ? OPTIMIZED : JAVA_SCRIPT;
}
return static_cast<StackFrame::Type>(Smi::cast(marker)->value());
}
StackFrame::Type StackFrame::GetCallerState(State* state) const {
ComputeCallerState(state);
return ComputeType(isolate(), state);
}
Address StackFrame::UnpaddedFP() const {
#if defined(V8_TARGET_ARCH_IA32)
if (!is_optimized()) return fp();
int32_t alignment_state = Memory::int32_at(
fp() + JavaScriptFrameConstants::kDynamicAlignmentStateOffset);
return (alignment_state == kAlignmentPaddingPushed) ?
(fp() + kPointerSize) : fp();
#else
return fp();
#endif
}
Code* EntryFrame::unchecked_code() const {
return HEAP->raw_unchecked_js_entry_code();
}
void EntryFrame::ComputeCallerState(State* state) const {
GetCallerState(state);
}
void EntryFrame::SetCallerFp(Address caller_fp) {
const int offset = EntryFrameConstants::kCallerFPOffset;
Memory::Address_at(this->fp() + offset) = caller_fp;
}
StackFrame::Type EntryFrame::GetCallerState(State* state) const {
const int offset = EntryFrameConstants::kCallerFPOffset;
Address fp = Memory::Address_at(this->fp() + offset);
return ExitFrame::GetStateForFramePointer(fp, state);
}
Code* EntryConstructFrame::unchecked_code() const {
return HEAP->raw_unchecked_js_construct_entry_code();
}
Object*& ExitFrame::code_slot() const {
const int offset = ExitFrameConstants::kCodeOffset;
return Memory::Object_at(fp() + offset);
}
Code* ExitFrame::unchecked_code() const {
return reinterpret_cast<Code*>(code_slot());
}
void ExitFrame::ComputeCallerState(State* state) const {
// Set up the caller state.
state->sp = caller_sp();
state->fp = Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset);
state->pc_address = ResolveReturnAddressLocation(
reinterpret_cast<Address*>(fp() + ExitFrameConstants::kCallerPCOffset));
}
void ExitFrame::SetCallerFp(Address caller_fp) {
Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset) = caller_fp;
}
void ExitFrame::Iterate(ObjectVisitor* v) const {
// The arguments are traversed as part of the expression stack of
// the calling frame.
IteratePc(v, pc_address(), LookupCode());
v->VisitPointer(&code_slot());
}
Address ExitFrame::GetCallerStackPointer() const {
return fp() + ExitFrameConstants::kCallerSPDisplacement;
}
StackFrame::Type ExitFrame::GetStateForFramePointer(Address fp, State* state) {
if (fp == 0) return NONE;
Address sp = ComputeStackPointer(fp);
FillState(fp, sp, state);
ASSERT(*state->pc_address != NULL);
return EXIT;
}
void ExitFrame::FillState(Address fp, Address sp, State* state) {
state->sp = sp;
state->fp = fp;
state->pc_address = ResolveReturnAddressLocation(
reinterpret_cast<Address*>(sp - 1 * kPointerSize));
}
Address StandardFrame::GetExpressionAddress(int n) const {
const int offset = StandardFrameConstants::kExpressionsOffset;
return fp() + offset - n * kPointerSize;
}
Object* StandardFrame::GetExpression(Address fp, int index) {
return Memory::Object_at(GetExpressionAddress(fp, index));
}
Address StandardFrame::GetExpressionAddress(Address fp, int n) {
const int offset = StandardFrameConstants::kExpressionsOffset;
return fp + offset - n * kPointerSize;
}
int StandardFrame::ComputeExpressionsCount() const {
const int offset =
StandardFrameConstants::kExpressionsOffset + kPointerSize;
Address base = fp() + offset;
Address limit = sp();
ASSERT(base >= limit); // stack grows downwards
// Include register-allocated locals in number of expressions.
return static_cast<int>((base - limit) / kPointerSize);
}
void StandardFrame::ComputeCallerState(State* state) const {
state->sp = caller_sp();
state->fp = caller_fp();
state->pc_address = ResolveReturnAddressLocation(
reinterpret_cast<Address*>(ComputePCAddress(fp())));
}
void StandardFrame::SetCallerFp(Address caller_fp) {
Memory::Address_at(fp() + StandardFrameConstants::kCallerFPOffset) =
caller_fp;
}
bool StandardFrame::IsExpressionInsideHandler(int n) const {
Address address = GetExpressionAddress(n);
for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) {
if (it.handler()->includes(address)) return true;
}
return false;
}
void OptimizedFrame::Iterate(ObjectVisitor* v) const {
#ifdef DEBUG
// Make sure that optimized frames do not contain any stack handlers.
StackHandlerIterator it(this, top_handler());
ASSERT(it.done());
#endif
// Make sure that we're not doing "safe" stack frame iteration. We cannot
// possibly find pointers in optimized frames in that state.
ASSERT(!SafeStackFrameIterator::is_active(isolate()));
// Compute the safepoint information.
unsigned stack_slots = 0;
SafepointEntry safepoint_entry;
Code* code = StackFrame::GetSafepointData(
isolate(), pc(), &safepoint_entry, &stack_slots);
unsigned slot_space = stack_slots * kPointerSize;
// Visit the outgoing parameters.
Object** parameters_base = &Memory::Object_at(sp());
Object** parameters_limit = &Memory::Object_at(
fp() + JavaScriptFrameConstants::kFunctionOffset - slot_space);
// Visit the parameters that may be on top of the saved registers.
if (safepoint_entry.argument_count() > 0) {
v->VisitPointers(parameters_base,
parameters_base + safepoint_entry.argument_count());
parameters_base += safepoint_entry.argument_count();
}
// Skip saved double registers.
if (safepoint_entry.has_doubles()) {
parameters_base += DoubleRegister::kNumAllocatableRegisters *
kDoubleSize / kPointerSize;
}
// Visit the registers that contain pointers if any.
if (safepoint_entry.HasRegisters()) {
for (int i = kNumSafepointRegisters - 1; i >=0; i--) {
if (safepoint_entry.HasRegisterAt(i)) {
int reg_stack_index = MacroAssembler::SafepointRegisterStackIndex(i);
v->VisitPointer(parameters_base + reg_stack_index);
}
}
// Skip the words containing the register values.
parameters_base += kNumSafepointRegisters;
}
// We're done dealing with the register bits.
uint8_t* safepoint_bits = safepoint_entry.bits();
safepoint_bits += kNumSafepointRegisters >> kBitsPerByteLog2;
// Visit the rest of the parameters.
v->VisitPointers(parameters_base, parameters_limit);
// Visit pointer spill slots and locals.
for (unsigned index = 0; index < stack_slots; index++) {
int byte_index = index >> kBitsPerByteLog2;
int bit_index = index & (kBitsPerByte - 1);
if ((safepoint_bits[byte_index] & (1U << bit_index)) != 0) {
v->VisitPointer(parameters_limit + index);
}
}
// Visit the context and the function.
Object** fixed_base = &Memory::Object_at(
fp() + JavaScriptFrameConstants::kFunctionOffset);
Object** fixed_limit = &Memory::Object_at(fp());
v->VisitPointers(fixed_base, fixed_limit);
// Visit the return address in the callee and incoming arguments.
IteratePc(v, pc_address(), code);
}
bool JavaScriptFrame::IsConstructor() const {
Address fp = caller_fp();
if (has_adapted_arguments()) {
// Skip the arguments adaptor frame and look at the real caller.
fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
}
return IsConstructFrame(fp);
}
int JavaScriptFrame::GetArgumentsLength() const {
// If there is an arguments adaptor frame get the arguments length from it.
if (has_adapted_arguments()) {
return Smi::cast(GetExpression(caller_fp(), 0))->value();
} else {
return GetNumberOfIncomingArguments();
}
}
Code* JavaScriptFrame::unchecked_code() const {
JSFunction* function = JSFunction::cast(this->function());
return function->unchecked_code();
}
int JavaScriptFrame::GetNumberOfIncomingArguments() const {
ASSERT(!SafeStackFrameIterator::is_active(isolate()) &&
isolate()->heap()->gc_state() == Heap::NOT_IN_GC);
JSFunction* function = JSFunction::cast(this->function());
return function->shared()->formal_parameter_count();
}
Address JavaScriptFrame::GetCallerStackPointer() const {
return fp() + StandardFrameConstants::kCallerSPOffset;
}
void JavaScriptFrame::GetFunctions(List<JSFunction*>* functions) {
ASSERT(functions->length() == 0);
functions->Add(JSFunction::cast(function()));
}
void JavaScriptFrame::Summarize(List<FrameSummary>* functions) {
ASSERT(functions->length() == 0);
Code* code_pointer = LookupCode();
int offset = static_cast<int>(pc() - code_pointer->address());
FrameSummary summary(receiver(),
JSFunction::cast(function()),
code_pointer,
offset,
IsConstructor());
functions->Add(summary);
}
void JavaScriptFrame::PrintTop(FILE* file,
bool print_args,
bool print_line_number) {
// constructor calls
HandleScope scope;
AssertNoAllocation no_allocation;
JavaScriptFrameIterator it;
while (!it.done()) {
if (it.frame()->is_java_script()) {
JavaScriptFrame* frame = it.frame();
if (frame->IsConstructor()) PrintF(file, "new ");
// function name
Object* maybe_fun = frame->function();
if (maybe_fun->IsJSFunction()) {
JSFunction* fun = JSFunction::cast(maybe_fun);
fun->PrintName();
Code* js_code = frame->unchecked_code();
Address pc = frame->pc();
int code_offset =
static_cast<int>(pc - js_code->instruction_start());
PrintF("+%d", code_offset);
SharedFunctionInfo* shared = fun->shared();
if (print_line_number) {
Code* code = Code::cast(
v8::internal::Isolate::Current()->heap()->FindCodeObject(pc));
int source_pos = code->SourcePosition(pc);
Object* maybe_script = shared->script();
if (maybe_script->IsScript()) {
Handle<Script> script(Script::cast(maybe_script));
int line = GetScriptLineNumberSafe(script, source_pos) + 1;
Object* script_name_raw = script->name();
if (script_name_raw->IsString()) {
String* script_name = String::cast(script->name());
SmartArrayPointer<char> c_script_name =
script_name->ToCString(DISALLOW_NULLS,
ROBUST_STRING_TRAVERSAL);
PrintF(file, " at %s:%d", *c_script_name, line);
} else {
PrintF(file, "at <unknown>:%d", line);
}
} else {
PrintF(file, " at <unknown>:<unknown>");
}
}
} else {
PrintF("<unknown>");
}
if (print_args) {
// function arguments
// (we are intentionally only printing the actually
// supplied parameters, not all parameters required)
PrintF(file, "(this=");
frame->receiver()->ShortPrint(file);
const int length = frame->ComputeParametersCount();
for (int i = 0; i < length; i++) {
PrintF(file, ", ");
frame->GetParameter(i)->ShortPrint(file);
}
PrintF(file, ")");
}
break;
}
it.Advance();
}
}
void FrameSummary::Print() {
PrintF("receiver: ");
receiver_->ShortPrint();
PrintF("\nfunction: ");
function_->shared()->DebugName()->ShortPrint();
PrintF("\ncode: ");
code_->ShortPrint();
if (code_->kind() == Code::FUNCTION) PrintF(" NON-OPT");
if (code_->kind() == Code::OPTIMIZED_FUNCTION) PrintF(" OPT");
PrintF("\npc: %d\n", offset_);
}
void OptimizedFrame::Summarize(List<FrameSummary>* frames) {
ASSERT(frames->length() == 0);
ASSERT(is_optimized());
int deopt_index = Safepoint::kNoDeoptimizationIndex;
DeoptimizationInputData* data = GetDeoptimizationData(&deopt_index);
// BUG(3243555): Since we don't have a lazy-deopt registered at
// throw-statements, we can't use the translation at the call-site of
// throw. An entry with no deoptimization index indicates a call-site
// without a lazy-deopt. As a consequence we are not allowed to inline
// functions containing throw.
if (deopt_index == Safepoint::kNoDeoptimizationIndex) {
JavaScriptFrame::Summarize(frames);
return;
}
TranslationIterator it(data->TranslationByteArray(),
data->TranslationIndex(deopt_index)->value());
Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
ASSERT(opcode == Translation::BEGIN);
it.Next(); // Drop frame count.
int jsframe_count = it.Next();
// We create the summary in reverse order because the frames
// in the deoptimization translation are ordered bottom-to-top.
bool is_constructor = IsConstructor();
int i = jsframe_count;
while (i > 0) {
opcode = static_cast<Translation::Opcode>(it.Next());
if (opcode == Translation::JS_FRAME) {
i--;
int ast_id = it.Next();
int function_id = it.Next();
it.Next(); // Skip height.
JSFunction* function =
JSFunction::cast(data->LiteralArray()->get(function_id));
// The translation commands are ordered and the receiver is always
// at the first position. Since we are always at a call when we need
// to construct a stack trace, the receiver is always in a stack slot.
opcode = static_cast<Translation::Opcode>(it.Next());
ASSERT(opcode == Translation::STACK_SLOT ||
opcode == Translation::LITERAL);
int index = it.Next();
// Get the correct receiver in the optimized frame.
Object* receiver = NULL;
if (opcode == Translation::LITERAL) {
receiver = data->LiteralArray()->get(index);
} else {
// Positive index means the value is spilled to the locals
// area. Negative means it is stored in the incoming parameter
// area.
if (index >= 0) {
receiver = GetExpression(index);
} else {
// Index -1 overlaps with last parameter, -n with the first parameter,
// (-n - 1) with the receiver with n being the number of parameters
// of the outermost, optimized frame.
int parameter_count = ComputeParametersCount();
int parameter_index = index + parameter_count;
receiver = (parameter_index == -1)
? this->receiver()
: this->GetParameter(parameter_index);
}
}
Code* code = function->shared()->code();
DeoptimizationOutputData* output_data =
DeoptimizationOutputData::cast(code->deoptimization_data());
unsigned entry = Deoptimizer::GetOutputInfo(output_data,
ast_id,
function->shared());
unsigned pc_offset =
FullCodeGenerator::PcField::decode(entry) + Code::kHeaderSize;
ASSERT(pc_offset > 0);
FrameSummary summary(receiver, function, code, pc_offset, is_constructor);
frames->Add(summary);
is_constructor = false;
} else if (opcode == Translation::CONSTRUCT_STUB_FRAME) {
// The next encountered JS_FRAME will be marked as a constructor call.
it.Skip(Translation::NumberOfOperandsFor(opcode));
ASSERT(!is_constructor);
is_constructor = true;
} else {
// Skip over operands to advance to the next opcode.
it.Skip(Translation::NumberOfOperandsFor(opcode));
}
}
ASSERT(!is_constructor);
}
DeoptimizationInputData* OptimizedFrame::GetDeoptimizationData(
int* deopt_index) {
ASSERT(is_optimized());
JSFunction* opt_function = JSFunction::cast(function());
Code* code = opt_function->code();
// The code object may have been replaced by lazy deoptimization. Fall
// back to a slow search in this case to find the original optimized
// code object.
if (!code->contains(pc())) {
code = isolate()->inner_pointer_to_code_cache()->
GcSafeFindCodeForInnerPointer(pc());
}
ASSERT(code != NULL);
ASSERT(code->kind() == Code::OPTIMIZED_FUNCTION);
SafepointEntry safepoint_entry = code->GetSafepointEntry(pc());
*deopt_index = safepoint_entry.deoptimization_index();
ASSERT(*deopt_index != Safepoint::kNoDeoptimizationIndex);
return DeoptimizationInputData::cast(code->deoptimization_data());
}
int OptimizedFrame::GetInlineCount() {
ASSERT(is_optimized());
int deopt_index = Safepoint::kNoDeoptimizationIndex;
DeoptimizationInputData* data = GetDeoptimizationData(&deopt_index);
TranslationIterator it(data->TranslationByteArray(),
data->TranslationIndex(deopt_index)->value());
Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
ASSERT(opcode == Translation::BEGIN);
USE(opcode);
it.Next(); // Drop frame count.
int jsframe_count = it.Next();
return jsframe_count;
}
void OptimizedFrame::GetFunctions(List<JSFunction*>* functions) {
ASSERT(functions->length() == 0);
ASSERT(is_optimized());
int deopt_index = Safepoint::kNoDeoptimizationIndex;
DeoptimizationInputData* data = GetDeoptimizationData(&deopt_index);
TranslationIterator it(data->TranslationByteArray(),
data->TranslationIndex(deopt_index)->value());
Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
ASSERT(opcode == Translation::BEGIN);
it.Next(); // Drop frame count.
int jsframe_count = it.Next();
// We insert the frames in reverse order because the frames
// in the deoptimization translation are ordered bottom-to-top.
while (jsframe_count > 0) {
opcode = static_cast<Translation::Opcode>(it.Next());
if (opcode == Translation::JS_FRAME) {
jsframe_count--;
it.Next(); // Skip ast id.
int function_id = it.Next();
it.Next(); // Skip height.
JSFunction* function =
JSFunction::cast(data->LiteralArray()->get(function_id));
functions->Add(function);
} else {
// Skip over operands to advance to the next opcode.
it.Skip(Translation::NumberOfOperandsFor(opcode));
}
}
}
int ArgumentsAdaptorFrame::GetNumberOfIncomingArguments() const {
return Smi::cast(GetExpression(0))->value();
}
Address ArgumentsAdaptorFrame::GetCallerStackPointer() const {
return fp() + StandardFrameConstants::kCallerSPOffset;
}
Address InternalFrame::GetCallerStackPointer() const {
// Internal frames have no arguments. The stack pointer of the
// caller is at a fixed offset from the frame pointer.
return fp() + StandardFrameConstants::kCallerSPOffset;
}
Code* ArgumentsAdaptorFrame::unchecked_code() const {
return isolate()->builtins()->builtin(
Builtins::kArgumentsAdaptorTrampoline);
}
Code* InternalFrame::unchecked_code() const {
const int offset = InternalFrameConstants::kCodeOffset;
Object* code = Memory::Object_at(fp() + offset);
ASSERT(code != NULL);
return reinterpret_cast<Code*>(code);
}
void StackFrame::PrintIndex(StringStream* accumulator,
PrintMode mode,
int index) {
accumulator->Add((mode == OVERVIEW) ? "%5d: " : "[%d]: ", index);
}
void JavaScriptFrame::Print(StringStream* accumulator,
PrintMode mode,
int index) const {
HandleScope scope;
Object* receiver = this->receiver();
Object* function = this->function();
accumulator->PrintSecurityTokenIfChanged(function);
PrintIndex(accumulator, mode, index);
Code* code = NULL;
if (IsConstructor()) accumulator->Add("new ");
accumulator->PrintFunction(function, receiver, &code);
// Get scope information for nicer output, if possible. If code is NULL, or
// doesn't contain scope info, scope_info will return 0 for the number of
// parameters, stack local variables, context local variables, stack slots,
// or context slots.
Handle<ScopeInfo> scope_info(ScopeInfo::Empty());
if (function->IsJSFunction()) {
Handle<SharedFunctionInfo> shared(JSFunction::cast(function)->shared());
scope_info = Handle<ScopeInfo>(shared->scope_info());
Object* script_obj = shared->script();
if (script_obj->IsScript()) {
Handle<Script> script(Script::cast(script_obj));
accumulator->Add(" [");
accumulator->PrintName(script->name());
Address pc = this->pc();
if (code != NULL && code->kind() == Code::FUNCTION &&
pc >= code->instruction_start() && pc < code->instruction_end()) {
int source_pos = code->SourcePosition(pc);
int line = GetScriptLineNumberSafe(script, source_pos) + 1;
accumulator->Add(":%d", line);
} else {
int function_start_pos = shared->start_position();
int line = GetScriptLineNumberSafe(script, function_start_pos) + 1;
accumulator->Add(":~%d", line);
}
accumulator->Add("] ");
}
}
accumulator->Add("(this=%o", receiver);
// Print the parameters.
int parameters_count = ComputeParametersCount();
for (int i = 0; i < parameters_count; i++) {
accumulator->Add(",");
// If we have a name for the parameter we print it. Nameless
// parameters are either because we have more actual parameters
// than formal parameters or because we have no scope information.
if (i < scope_info->ParameterCount()) {
accumulator->PrintName(scope_info->ParameterName(i));
accumulator->Add("=");
}
accumulator->Add("%o", GetParameter(i));
}
accumulator->Add(")");
if (mode == OVERVIEW) {
accumulator->Add("\n");
return;
}
if (is_optimized()) {
accumulator->Add(" {\n// optimized frame\n}\n");
return;
}
accumulator->Add(" {\n");
// Compute the number of locals and expression stack elements.
int stack_locals_count = scope_info->StackLocalCount();
int heap_locals_count = scope_info->ContextLocalCount();
int expressions_count = ComputeExpressionsCount();
// Print stack-allocated local variables.
if (stack_locals_count > 0) {
accumulator->Add(" // stack-allocated locals\n");
}
for (int i = 0; i < stack_locals_count; i++) {
accumulator->Add(" var ");
accumulator->PrintName(scope_info->StackLocalName(i));
accumulator->Add(" = ");
if (i < expressions_count) {
accumulator->Add("%o", GetExpression(i));
} else {
accumulator->Add("// no expression found - inconsistent frame?");
}
accumulator->Add("\n");
}
// Try to get hold of the context of this frame.
Context* context = NULL;
if (this->context() != NULL && this->context()->IsContext()) {
context = Context::cast(this->context());
}
// Print heap-allocated local variables.
if (heap_locals_count > 0) {
accumulator->Add(" // heap-allocated locals\n");
}
for (int i = 0; i < heap_locals_count; i++) {
accumulator->Add(" var ");
accumulator->PrintName(scope_info->ContextLocalName(i));
accumulator->Add(" = ");
if (context != NULL) {
if (i < context->length()) {
accumulator->Add("%o", context->get(Context::MIN_CONTEXT_SLOTS + i));
} else {
accumulator->Add(
"// warning: missing context slot - inconsistent frame?");
}
} else {
accumulator->Add("// warning: no context found - inconsistent frame?");
}
accumulator->Add("\n");
}
// Print the expression stack.
int expressions_start = stack_locals_count;
if (expressions_start < expressions_count) {
accumulator->Add(" // expression stack (top to bottom)\n");
}
for (int i = expressions_count - 1; i >= expressions_start; i--) {
if (IsExpressionInsideHandler(i)) continue;
accumulator->Add(" [%02d] : %o\n", i, GetExpression(i));
}
// Print details about the function.
if (FLAG_max_stack_trace_source_length != 0 && code != NULL) {
SharedFunctionInfo* shared = JSFunction::cast(function)->shared();
accumulator->Add("--------- s o u r c e c o d e ---------\n");
shared->SourceCodePrint(accumulator, FLAG_max_stack_trace_source_length);
accumulator->Add("\n-----------------------------------------\n");
}
accumulator->Add("}\n\n");
}
void ArgumentsAdaptorFrame::Print(StringStream* accumulator,
PrintMode mode,
int index) const {
int actual = ComputeParametersCount();
int expected = -1;
Object* function = this->function();
if (function->IsJSFunction()) {
expected = JSFunction::cast(function)->shared()->formal_parameter_count();
}
PrintIndex(accumulator, mode, index);
accumulator->Add("arguments adaptor frame: %d->%d", actual, expected);
if (mode == OVERVIEW) {
accumulator->Add("\n");
return;
}
accumulator->Add(" {\n");
// Print actual arguments.
if (actual > 0) accumulator->Add(" // actual arguments\n");
for (int i = 0; i < actual; i++) {
accumulator->Add(" [%02d] : %o", i, GetParameter(i));
if (expected != -1 && i >= expected) {
accumulator->Add(" // not passed to callee");
}
accumulator->Add("\n");
}
accumulator->Add("}\n\n");
}
void EntryFrame::Iterate(ObjectVisitor* v) const {
StackHandlerIterator it(this, top_handler());
ASSERT(!it.done());
StackHandler* handler = it.handler();
ASSERT(handler->is_js_entry());
handler->Iterate(v, LookupCode());
#ifdef DEBUG
// Make sure that the entry frame does not contain more than one
// stack handler.
it.Advance();
ASSERT(it.done());
#endif
IteratePc(v, pc_address(), LookupCode());
}
void StandardFrame::IterateExpressions(ObjectVisitor* v) const {
const int offset = StandardFrameConstants::kContextOffset;
Object** base = &Memory::Object_at(sp());
Object** limit = &Memory::Object_at(fp() + offset) + 1;
for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) {
StackHandler* handler = it.handler();
// Traverse pointers down to - but not including - the next
// handler in the handler chain. Update the base to skip the
// handler and allow the handler to traverse its own pointers.
const Address address = handler->address();
v->VisitPointers(base, reinterpret_cast<Object**>(address));
base = reinterpret_cast<Object**>(address + StackHandlerConstants::kSize);
// Traverse the pointers in the handler itself.
handler->Iterate(v, LookupCode());
}
v->VisitPointers(base, limit);
}
void JavaScriptFrame::Iterate(ObjectVisitor* v) const {
IterateExpressions(v);
IteratePc(v, pc_address(), LookupCode());
}
void InternalFrame::Iterate(ObjectVisitor* v) const {
// Internal frames only have object pointers on the expression stack
// as they never have any arguments.
IterateExpressions(v);
IteratePc(v, pc_address(), LookupCode());
}
// -------------------------------------------------------------------------
JavaScriptFrame* StackFrameLocator::FindJavaScriptFrame(int n) {
ASSERT(n >= 0);
for (int i = 0; i <= n; i++) {
while (!iterator_.frame()->is_java_script()) iterator_.Advance();
if (i == n) return JavaScriptFrame::cast(iterator_.frame());
iterator_.Advance();
}
UNREACHABLE();
return NULL;
}
// -------------------------------------------------------------------------
static Map* GcSafeMapOfCodeSpaceObject(HeapObject* object) {
MapWord map_word = object->map_word();
return map_word.IsForwardingAddress() ?
map_word.ToForwardingAddress()->map() : map_word.ToMap();
}
static int GcSafeSizeOfCodeSpaceObject(HeapObject* object) {
return object->SizeFromMap(GcSafeMapOfCodeSpaceObject(object));
}
#ifdef DEBUG
static bool GcSafeCodeContains(HeapObject* code, Address addr) {
Map* map = GcSafeMapOfCodeSpaceObject(code);
ASSERT(map == code->GetHeap()->code_map());
Address start = code->address();
Address end = code->address() + code->SizeFromMap(map);
return start <= addr && addr < end;
}
#endif
Code* InnerPointerToCodeCache::GcSafeCastToCode(HeapObject* object,
Address inner_pointer) {
Code* code = reinterpret_cast<Code*>(object);
ASSERT(code != NULL && GcSafeCodeContains(code, inner_pointer));
return code;
}
Code* InnerPointerToCodeCache::GcSafeFindCodeForInnerPointer(
Address inner_pointer) {
Heap* heap = isolate_->heap();
// Check if the inner pointer points into a large object chunk.
LargePage* large_page = heap->lo_space()->FindPage(inner_pointer);
if (large_page != NULL) {
return GcSafeCastToCode(large_page->GetObject(), inner_pointer);
}
// Iterate through the page until we reach the end or find an object starting
// after the inner pointer.
Page* page = Page::FromAddress(inner_pointer);
Address addr = page->skip_list()->StartFor(inner_pointer);
Address top = heap->code_space()->top();
Address limit = heap->code_space()->limit();
while (true) {
if (addr == top && addr != limit) {
addr = limit;
continue;
}
HeapObject* obj = HeapObject::FromAddress(addr);
int obj_size = GcSafeSizeOfCodeSpaceObject(obj);
Address next_addr = addr + obj_size;
if (next_addr > inner_pointer) return GcSafeCastToCode(obj, inner_pointer);
addr = next_addr;
}
}
InnerPointerToCodeCache::InnerPointerToCodeCacheEntry*
InnerPointerToCodeCache::GetCacheEntry(Address inner_pointer) {
isolate_->counters()->pc_to_code()->Increment();
ASSERT(IsPowerOf2(kInnerPointerToCodeCacheSize));
uint32_t hash = ComputeIntegerHash(
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(inner_pointer)),
v8::internal::kZeroHashSeed);
uint32_t index = hash & (kInnerPointerToCodeCacheSize - 1);
InnerPointerToCodeCacheEntry* entry = cache(index);
if (entry->inner_pointer == inner_pointer) {
isolate_->counters()->pc_to_code_cached()->Increment();
ASSERT(entry->code == GcSafeFindCodeForInnerPointer(inner_pointer));
} else {
// Because this code may be interrupted by a profiling signal that
// also queries the cache, we cannot update inner_pointer before the code
// has been set. Otherwise, we risk trying to use a cache entry before
// the code has been computed.
entry->code = GcSafeFindCodeForInnerPointer(inner_pointer);
entry->safepoint_entry.Reset();
entry->inner_pointer = inner_pointer;
}
return entry;
}
// -------------------------------------------------------------------------
int NumRegs(RegList reglist) {
return CompilerIntrinsics::CountSetBits(reglist);
}
struct JSCallerSavedCodeData {
int reg_code[kNumJSCallerSaved];
};
JSCallerSavedCodeData caller_saved_code_data;
void SetUpJSCallerSavedCodeData() {
int i = 0;
for (int r = 0; r < kNumRegs; r++)
if ((kJSCallerSaved & (1 << r)) != 0)
caller_saved_code_data.reg_code[i++] = r;
ASSERT(i == kNumJSCallerSaved);
}
int JSCallerSavedCode(int n) {
ASSERT(0 <= n && n < kNumJSCallerSaved);
return caller_saved_code_data.reg_code[n];
}
#define DEFINE_WRAPPER(type, field) \
class field##_Wrapper : public ZoneObject { \
public: /* NOLINT */ \
field##_Wrapper(const field& original) : frame_(original) { \
} \
field frame_; \
};
STACK_FRAME_TYPE_LIST(DEFINE_WRAPPER)
#undef DEFINE_WRAPPER
static StackFrame* AllocateFrameCopy(StackFrame* frame, Zone* zone) {
#define FRAME_TYPE_CASE(type, field) \
case StackFrame::type: { \
field##_Wrapper* wrapper = \
new(zone) field##_Wrapper(*(reinterpret_cast<field*>(frame))); \
return &wrapper->frame_; \
}
switch (frame->type()) {
STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE)
default: UNREACHABLE();
}
#undef FRAME_TYPE_CASE
return NULL;
}
Vector<StackFrame*> CreateStackMap(Zone* zone) {
ZoneList<StackFrame*> list(10, zone);
for (StackFrameIterator it; !it.done(); it.Advance()) {
StackFrame* frame = AllocateFrameCopy(it.frame(), zone);
list.Add(frame, zone);
}
return list.ToVector();
}
} } // namespace v8::internal
|