diff options
Diffstat (limited to 'deps/v8/src/x87/macro-assembler-x87.cc')
-rw-r--r-- | deps/v8/src/x87/macro-assembler-x87.cc | 3327 |
1 files changed, 3327 insertions, 0 deletions
diff --git a/deps/v8/src/x87/macro-assembler-x87.cc b/deps/v8/src/x87/macro-assembler-x87.cc new file mode 100644 index 000000000..6196d8f7a --- /dev/null +++ b/deps/v8/src/x87/macro-assembler-x87.cc @@ -0,0 +1,3327 @@ +// Copyright 2012 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "src/v8.h" + +#if V8_TARGET_ARCH_X87 + +#include "src/bootstrapper.h" +#include "src/codegen.h" +#include "src/cpu-profiler.h" +#include "src/debug.h" +#include "src/isolate-inl.h" +#include "src/runtime.h" +#include "src/serialize.h" + +namespace v8 { +namespace internal { + +// ------------------------------------------------------------------------- +// MacroAssembler implementation. + +MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size) + : Assembler(arg_isolate, buffer, size), + generating_stub_(false), + has_frame_(false) { + if (isolate() != NULL) { + // TODO(titzer): should we just use a null handle here instead? + code_object_ = Handle<Object>(isolate()->heap()->undefined_value(), + isolate()); + } +} + + +void MacroAssembler::Load(Register dst, const Operand& src, Representation r) { + DCHECK(!r.IsDouble()); + if (r.IsInteger8()) { + movsx_b(dst, src); + } else if (r.IsUInteger8()) { + movzx_b(dst, src); + } else if (r.IsInteger16()) { + movsx_w(dst, src); + } else if (r.IsUInteger16()) { + movzx_w(dst, src); + } else { + mov(dst, src); + } +} + + +void MacroAssembler::Store(Register src, const Operand& dst, Representation r) { + DCHECK(!r.IsDouble()); + if (r.IsInteger8() || r.IsUInteger8()) { + mov_b(dst, src); + } else if (r.IsInteger16() || r.IsUInteger16()) { + mov_w(dst, src); + } else { + if (r.IsHeapObject()) { + AssertNotSmi(src); + } else if (r.IsSmi()) { + AssertSmi(src); + } + mov(dst, src); + } +} + + +void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) { + if (isolate()->heap()->RootCanBeTreatedAsConstant(index)) { + Handle<Object> value(&isolate()->heap()->roots_array_start()[index]); + mov(destination, value); + return; + } + ExternalReference roots_array_start = + ExternalReference::roots_array_start(isolate()); + mov(destination, Immediate(index)); + mov(destination, Operand::StaticArray(destination, + times_pointer_size, + roots_array_start)); +} + + +void MacroAssembler::StoreRoot(Register source, + Register scratch, + Heap::RootListIndex index) { + DCHECK(Heap::RootCanBeWrittenAfterInitialization(index)); + ExternalReference roots_array_start = + ExternalReference::roots_array_start(isolate()); + mov(scratch, Immediate(index)); + mov(Operand::StaticArray(scratch, times_pointer_size, roots_array_start), + source); +} + + +void MacroAssembler::CompareRoot(Register with, + Register scratch, + Heap::RootListIndex index) { + ExternalReference roots_array_start = + ExternalReference::roots_array_start(isolate()); + mov(scratch, Immediate(index)); + cmp(with, Operand::StaticArray(scratch, + times_pointer_size, + roots_array_start)); +} + + +void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) { + DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index)); + Handle<Object> value(&isolate()->heap()->roots_array_start()[index]); + cmp(with, value); +} + + +void MacroAssembler::CompareRoot(const Operand& with, + Heap::RootListIndex index) { + DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index)); + Handle<Object> value(&isolate()->heap()->roots_array_start()[index]); + cmp(with, value); +} + + +void MacroAssembler::InNewSpace( + Register object, + Register scratch, + Condition cc, + Label* condition_met, + Label::Distance condition_met_distance) { + DCHECK(cc == equal || cc == not_equal); + if (scratch.is(object)) { + and_(scratch, Immediate(~Page::kPageAlignmentMask)); + } else { + mov(scratch, Immediate(~Page::kPageAlignmentMask)); + and_(scratch, object); + } + // Check that we can use a test_b. + DCHECK(MemoryChunk::IN_FROM_SPACE < 8); + DCHECK(MemoryChunk::IN_TO_SPACE < 8); + int mask = (1 << MemoryChunk::IN_FROM_SPACE) + | (1 << MemoryChunk::IN_TO_SPACE); + // If non-zero, the page belongs to new-space. + test_b(Operand(scratch, MemoryChunk::kFlagsOffset), + static_cast<uint8_t>(mask)); + j(cc, condition_met, condition_met_distance); +} + + +void MacroAssembler::RememberedSetHelper( + Register object, // Only used for debug checks. + Register addr, + Register scratch, + MacroAssembler::RememberedSetFinalAction and_then) { + Label done; + if (emit_debug_code()) { + Label ok; + JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear); + int3(); + bind(&ok); + } + // Load store buffer top. + ExternalReference store_buffer = + ExternalReference::store_buffer_top(isolate()); + mov(scratch, Operand::StaticVariable(store_buffer)); + // Store pointer to buffer. + mov(Operand(scratch, 0), addr); + // Increment buffer top. + add(scratch, Immediate(kPointerSize)); + // Write back new top of buffer. + mov(Operand::StaticVariable(store_buffer), scratch); + // Call stub on end of buffer. + // Check for end of buffer. + test(scratch, Immediate(StoreBuffer::kStoreBufferOverflowBit)); + if (and_then == kReturnAtEnd) { + Label buffer_overflowed; + j(not_equal, &buffer_overflowed, Label::kNear); + ret(0); + bind(&buffer_overflowed); + } else { + DCHECK(and_then == kFallThroughAtEnd); + j(equal, &done, Label::kNear); + } + StoreBufferOverflowStub store_buffer_overflow = + StoreBufferOverflowStub(isolate()); + CallStub(&store_buffer_overflow); + if (and_then == kReturnAtEnd) { + ret(0); + } else { + DCHECK(and_then == kFallThroughAtEnd); + bind(&done); + } +} + + +void MacroAssembler::ClampUint8(Register reg) { + Label done; + test(reg, Immediate(0xFFFFFF00)); + j(zero, &done, Label::kNear); + setcc(negative, reg); // 1 if negative, 0 if positive. + dec_b(reg); // 0 if negative, 255 if positive. + bind(&done); +} + + +void MacroAssembler::SlowTruncateToI(Register result_reg, + Register input_reg, + int offset) { + DoubleToIStub stub(isolate(), input_reg, result_reg, offset, true); + call(stub.GetCode(), RelocInfo::CODE_TARGET); +} + + +void MacroAssembler::TruncateX87TOSToI(Register result_reg) { + sub(esp, Immediate(kDoubleSize)); + fst_d(MemOperand(esp, 0)); + SlowTruncateToI(result_reg, esp, 0); + add(esp, Immediate(kDoubleSize)); +} + + +void MacroAssembler::X87TOSToI(Register result_reg, + MinusZeroMode minus_zero_mode, + Label* conversion_failed, + Label::Distance dst) { + Label done; + sub(esp, Immediate(kPointerSize)); + fld(0); + fist_s(MemOperand(esp, 0)); + fild_s(MemOperand(esp, 0)); + pop(result_reg); + FCmp(); + j(not_equal, conversion_failed, dst); + j(parity_even, conversion_failed, dst); + if (minus_zero_mode == FAIL_ON_MINUS_ZERO) { + test(result_reg, Operand(result_reg)); + j(not_zero, &done, Label::kNear); + // To check for minus zero, we load the value again as float, and check + // if that is still 0. + sub(esp, Immediate(kPointerSize)); + fst_s(MemOperand(esp, 0)); + pop(result_reg); + test(result_reg, Operand(result_reg)); + j(not_zero, conversion_failed, dst); + } + bind(&done); +} + + +void MacroAssembler::TruncateHeapNumberToI(Register result_reg, + Register input_reg) { + Label done, slow_case; + + SlowTruncateToI(result_reg, input_reg); + bind(&done); +} + + +void MacroAssembler::TaggedToI(Register result_reg, + Register input_reg, + MinusZeroMode minus_zero_mode, + Label* lost_precision) { + Label done; + + cmp(FieldOperand(input_reg, HeapObject::kMapOffset), + isolate()->factory()->heap_number_map()); + j(not_equal, lost_precision, Label::kNear); + + // TODO(olivf) Converting a number on the fpu is actually quite slow. We + // should first try a fast conversion and then bailout to this slow case. + Label lost_precision_pop, zero_check; + Label* lost_precision_int = (minus_zero_mode == FAIL_ON_MINUS_ZERO) + ? &lost_precision_pop : lost_precision; + sub(esp, Immediate(kPointerSize)); + fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset)); + if (minus_zero_mode == FAIL_ON_MINUS_ZERO) fld(0); + fist_s(MemOperand(esp, 0)); + fild_s(MemOperand(esp, 0)); + FCmp(); + pop(result_reg); + j(not_equal, lost_precision_int, Label::kNear); + j(parity_even, lost_precision_int, Label::kNear); // NaN. + if (minus_zero_mode == FAIL_ON_MINUS_ZERO) { + test(result_reg, Operand(result_reg)); + j(zero, &zero_check, Label::kNear); + fstp(0); + jmp(&done, Label::kNear); + bind(&zero_check); + // To check for minus zero, we load the value again as float, and check + // if that is still 0. + sub(esp, Immediate(kPointerSize)); + fstp_s(Operand(esp, 0)); + pop(result_reg); + test(result_reg, Operand(result_reg)); + j(zero, &done, Label::kNear); + jmp(lost_precision, Label::kNear); + + bind(&lost_precision_pop); + fstp(0); + jmp(lost_precision, Label::kNear); + } + bind(&done); +} + + +void MacroAssembler::LoadUint32NoSSE2(Register src) { + Label done; + push(src); + fild_s(Operand(esp, 0)); + cmp(src, Immediate(0)); + j(not_sign, &done, Label::kNear); + ExternalReference uint32_bias = + ExternalReference::address_of_uint32_bias(); + fld_d(Operand::StaticVariable(uint32_bias)); + faddp(1); + bind(&done); + add(esp, Immediate(kPointerSize)); +} + + +void MacroAssembler::RecordWriteArray( + Register object, + Register value, + Register index, + RememberedSetAction remembered_set_action, + SmiCheck smi_check, + PointersToHereCheck pointers_to_here_check_for_value) { + // First, check if a write barrier is even needed. The tests below + // catch stores of Smis. + Label done; + + // Skip barrier if writing a smi. + if (smi_check == INLINE_SMI_CHECK) { + DCHECK_EQ(0, kSmiTag); + test(value, Immediate(kSmiTagMask)); + j(zero, &done); + } + + // Array access: calculate the destination address in the same manner as + // KeyedStoreIC::GenerateGeneric. Multiply a smi by 2 to get an offset + // into an array of words. + Register dst = index; + lea(dst, Operand(object, index, times_half_pointer_size, + FixedArray::kHeaderSize - kHeapObjectTag)); + + RecordWrite(object, dst, value, remembered_set_action, OMIT_SMI_CHECK, + pointers_to_here_check_for_value); + + bind(&done); + + // Clobber clobbered input registers when running with the debug-code flag + // turned on to provoke errors. + if (emit_debug_code()) { + mov(value, Immediate(BitCast<int32_t>(kZapValue))); + mov(index, Immediate(BitCast<int32_t>(kZapValue))); + } +} + + +void MacroAssembler::RecordWriteField( + Register object, + int offset, + Register value, + Register dst, + RememberedSetAction remembered_set_action, + SmiCheck smi_check, + PointersToHereCheck pointers_to_here_check_for_value) { + // First, check if a write barrier is even needed. The tests below + // catch stores of Smis. + Label done; + + // Skip barrier if writing a smi. + if (smi_check == INLINE_SMI_CHECK) { + JumpIfSmi(value, &done, Label::kNear); + } + + // Although the object register is tagged, the offset is relative to the start + // of the object, so so offset must be a multiple of kPointerSize. + DCHECK(IsAligned(offset, kPointerSize)); + + lea(dst, FieldOperand(object, offset)); + if (emit_debug_code()) { + Label ok; + test_b(dst, (1 << kPointerSizeLog2) - 1); + j(zero, &ok, Label::kNear); + int3(); + bind(&ok); + } + + RecordWrite(object, dst, value, remembered_set_action, OMIT_SMI_CHECK, + pointers_to_here_check_for_value); + + bind(&done); + + // Clobber clobbered input registers when running with the debug-code flag + // turned on to provoke errors. + if (emit_debug_code()) { + mov(value, Immediate(BitCast<int32_t>(kZapValue))); + mov(dst, Immediate(BitCast<int32_t>(kZapValue))); + } +} + + +void MacroAssembler::RecordWriteForMap( + Register object, + Handle<Map> map, + Register scratch1, + Register scratch2) { + Label done; + + Register address = scratch1; + Register value = scratch2; + if (emit_debug_code()) { + Label ok; + lea(address, FieldOperand(object, HeapObject::kMapOffset)); + test_b(address, (1 << kPointerSizeLog2) - 1); + j(zero, &ok, Label::kNear); + int3(); + bind(&ok); + } + + DCHECK(!object.is(value)); + DCHECK(!object.is(address)); + DCHECK(!value.is(address)); + AssertNotSmi(object); + + if (!FLAG_incremental_marking) { + return; + } + + // Compute the address. + lea(address, FieldOperand(object, HeapObject::kMapOffset)); + + // A single check of the map's pages interesting flag suffices, since it is + // only set during incremental collection, and then it's also guaranteed that + // the from object's page's interesting flag is also set. This optimization + // relies on the fact that maps can never be in new space. + DCHECK(!isolate()->heap()->InNewSpace(*map)); + CheckPageFlagForMap(map, + MemoryChunk::kPointersToHereAreInterestingMask, + zero, + &done, + Label::kNear); + + RecordWriteStub stub(isolate(), object, value, address, OMIT_REMEMBERED_SET); + CallStub(&stub); + + bind(&done); + + // Count number of write barriers in generated code. + isolate()->counters()->write_barriers_static()->Increment(); + IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1); + + // Clobber clobbered input registers when running with the debug-code flag + // turned on to provoke errors. + if (emit_debug_code()) { + mov(value, Immediate(BitCast<int32_t>(kZapValue))); + mov(scratch1, Immediate(BitCast<int32_t>(kZapValue))); + mov(scratch2, Immediate(BitCast<int32_t>(kZapValue))); + } +} + + +void MacroAssembler::RecordWrite( + Register object, + Register address, + Register value, + RememberedSetAction remembered_set_action, + SmiCheck smi_check, + PointersToHereCheck pointers_to_here_check_for_value) { + DCHECK(!object.is(value)); + DCHECK(!object.is(address)); + DCHECK(!value.is(address)); + AssertNotSmi(object); + + if (remembered_set_action == OMIT_REMEMBERED_SET && + !FLAG_incremental_marking) { + return; + } + + if (emit_debug_code()) { + Label ok; + cmp(value, Operand(address, 0)); + j(equal, &ok, Label::kNear); + int3(); + bind(&ok); + } + + // First, check if a write barrier is even needed. The tests below + // catch stores of Smis and stores into young gen. + Label done; + + if (smi_check == INLINE_SMI_CHECK) { + // Skip barrier if writing a smi. + JumpIfSmi(value, &done, Label::kNear); + } + + if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) { + CheckPageFlag(value, + value, // Used as scratch. + MemoryChunk::kPointersToHereAreInterestingMask, + zero, + &done, + Label::kNear); + } + CheckPageFlag(object, + value, // Used as scratch. + MemoryChunk::kPointersFromHereAreInterestingMask, + zero, + &done, + Label::kNear); + + RecordWriteStub stub(isolate(), object, value, address, + remembered_set_action); + CallStub(&stub); + + bind(&done); + + // Count number of write barriers in generated code. + isolate()->counters()->write_barriers_static()->Increment(); + IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1); + + // Clobber clobbered registers when running with the debug-code flag + // turned on to provoke errors. + if (emit_debug_code()) { + mov(address, Immediate(BitCast<int32_t>(kZapValue))); + mov(value, Immediate(BitCast<int32_t>(kZapValue))); + } +} + + +void MacroAssembler::DebugBreak() { + Move(eax, Immediate(0)); + mov(ebx, Immediate(ExternalReference(Runtime::kDebugBreak, isolate()))); + CEntryStub ces(isolate(), 1); + call(ces.GetCode(), RelocInfo::DEBUG_BREAK); +} + + +bool MacroAssembler::IsUnsafeImmediate(const Immediate& x) { + static const int kMaxImmediateBits = 17; + if (!RelocInfo::IsNone(x.rmode_)) return false; + return !is_intn(x.x_, kMaxImmediateBits); +} + + +void MacroAssembler::SafeMove(Register dst, const Immediate& x) { + if (IsUnsafeImmediate(x) && jit_cookie() != 0) { + Move(dst, Immediate(x.x_ ^ jit_cookie())); + xor_(dst, jit_cookie()); + } else { + Move(dst, x); + } +} + + +void MacroAssembler::SafePush(const Immediate& x) { + if (IsUnsafeImmediate(x) && jit_cookie() != 0) { + push(Immediate(x.x_ ^ jit_cookie())); + xor_(Operand(esp, 0), Immediate(jit_cookie())); + } else { + push(x); + } +} + + +void MacroAssembler::CmpObjectType(Register heap_object, + InstanceType type, + Register map) { + mov(map, FieldOperand(heap_object, HeapObject::kMapOffset)); + CmpInstanceType(map, type); +} + + +void MacroAssembler::CmpInstanceType(Register map, InstanceType type) { + cmpb(FieldOperand(map, Map::kInstanceTypeOffset), + static_cast<int8_t>(type)); +} + + +void MacroAssembler::CheckFastElements(Register map, + Label* fail, + Label::Distance distance) { + STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); + STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); + STATIC_ASSERT(FAST_ELEMENTS == 2); + STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); + cmpb(FieldOperand(map, Map::kBitField2Offset), + Map::kMaximumBitField2FastHoleyElementValue); + j(above, fail, distance); +} + + +void MacroAssembler::CheckFastObjectElements(Register map, + Label* fail, + Label::Distance distance) { + STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); + STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); + STATIC_ASSERT(FAST_ELEMENTS == 2); + STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); + cmpb(FieldOperand(map, Map::kBitField2Offset), + Map::kMaximumBitField2FastHoleySmiElementValue); + j(below_equal, fail, distance); + cmpb(FieldOperand(map, Map::kBitField2Offset), + Map::kMaximumBitField2FastHoleyElementValue); + j(above, fail, distance); +} + + +void MacroAssembler::CheckFastSmiElements(Register map, + Label* fail, + Label::Distance distance) { + STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); + STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); + cmpb(FieldOperand(map, Map::kBitField2Offset), + Map::kMaximumBitField2FastHoleySmiElementValue); + j(above, fail, distance); +} + + +void MacroAssembler::StoreNumberToDoubleElements( + Register maybe_number, + Register elements, + Register key, + Register scratch, + Label* fail, + int elements_offset) { + Label smi_value, done, maybe_nan, not_nan, is_nan, have_double_value; + JumpIfSmi(maybe_number, &smi_value, Label::kNear); + + CheckMap(maybe_number, + isolate()->factory()->heap_number_map(), + fail, + DONT_DO_SMI_CHECK); + + // Double value, canonicalize NaN. + uint32_t offset = HeapNumber::kValueOffset + sizeof(kHoleNanLower32); + cmp(FieldOperand(maybe_number, offset), + Immediate(kNaNOrInfinityLowerBoundUpper32)); + j(greater_equal, &maybe_nan, Label::kNear); + + bind(¬_nan); + ExternalReference canonical_nan_reference = + ExternalReference::address_of_canonical_non_hole_nan(); + fld_d(FieldOperand(maybe_number, HeapNumber::kValueOffset)); + bind(&have_double_value); + fstp_d(FieldOperand(elements, key, times_4, + FixedDoubleArray::kHeaderSize - elements_offset)); + jmp(&done); + + bind(&maybe_nan); + // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise + // it's an Infinity, and the non-NaN code path applies. + j(greater, &is_nan, Label::kNear); + cmp(FieldOperand(maybe_number, HeapNumber::kValueOffset), Immediate(0)); + j(zero, ¬_nan); + bind(&is_nan); + fld_d(Operand::StaticVariable(canonical_nan_reference)); + jmp(&have_double_value, Label::kNear); + + bind(&smi_value); + // Value is a smi. Convert to a double and store. + // Preserve original value. + mov(scratch, maybe_number); + SmiUntag(scratch); + push(scratch); + fild_s(Operand(esp, 0)); + pop(scratch); + fstp_d(FieldOperand(elements, key, times_4, + FixedDoubleArray::kHeaderSize - elements_offset)); + bind(&done); +} + + +void MacroAssembler::CompareMap(Register obj, Handle<Map> map) { + cmp(FieldOperand(obj, HeapObject::kMapOffset), map); +} + + +void MacroAssembler::CheckMap(Register obj, + Handle<Map> map, + Label* fail, + SmiCheckType smi_check_type) { + if (smi_check_type == DO_SMI_CHECK) { + JumpIfSmi(obj, fail); + } + + CompareMap(obj, map); + j(not_equal, fail); +} + + +void MacroAssembler::DispatchMap(Register obj, + Register unused, + Handle<Map> map, + Handle<Code> success, + SmiCheckType smi_check_type) { + Label fail; + if (smi_check_type == DO_SMI_CHECK) { + JumpIfSmi(obj, &fail); + } + cmp(FieldOperand(obj, HeapObject::kMapOffset), Immediate(map)); + j(equal, success); + + bind(&fail); +} + + +Condition MacroAssembler::IsObjectStringType(Register heap_object, + Register map, + Register instance_type) { + mov(map, FieldOperand(heap_object, HeapObject::kMapOffset)); + movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset)); + STATIC_ASSERT(kNotStringTag != 0); + test(instance_type, Immediate(kIsNotStringMask)); + return zero; +} + + +Condition MacroAssembler::IsObjectNameType(Register heap_object, + Register map, + Register instance_type) { + mov(map, FieldOperand(heap_object, HeapObject::kMapOffset)); + movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset)); + cmpb(instance_type, static_cast<uint8_t>(LAST_NAME_TYPE)); + return below_equal; +} + + +void MacroAssembler::IsObjectJSObjectType(Register heap_object, + Register map, + Register scratch, + Label* fail) { + mov(map, FieldOperand(heap_object, HeapObject::kMapOffset)); + IsInstanceJSObjectType(map, scratch, fail); +} + + +void MacroAssembler::IsInstanceJSObjectType(Register map, + Register scratch, + Label* fail) { + movzx_b(scratch, FieldOperand(map, Map::kInstanceTypeOffset)); + sub(scratch, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); + cmp(scratch, + LAST_NONCALLABLE_SPEC_OBJECT_TYPE - FIRST_NONCALLABLE_SPEC_OBJECT_TYPE); + j(above, fail); +} + + +void MacroAssembler::FCmp() { + fucompp(); + push(eax); + fnstsw_ax(); + sahf(); + pop(eax); +} + + +void MacroAssembler::AssertNumber(Register object) { + if (emit_debug_code()) { + Label ok; + JumpIfSmi(object, &ok); + cmp(FieldOperand(object, HeapObject::kMapOffset), + isolate()->factory()->heap_number_map()); + Check(equal, kOperandNotANumber); + bind(&ok); + } +} + + +void MacroAssembler::AssertSmi(Register object) { + if (emit_debug_code()) { + test(object, Immediate(kSmiTagMask)); + Check(equal, kOperandIsNotASmi); + } +} + + +void MacroAssembler::AssertString(Register object) { + if (emit_debug_code()) { + test(object, Immediate(kSmiTagMask)); + Check(not_equal, kOperandIsASmiAndNotAString); + push(object); + mov(object, FieldOperand(object, HeapObject::kMapOffset)); + CmpInstanceType(object, FIRST_NONSTRING_TYPE); + pop(object); + Check(below, kOperandIsNotAString); + } +} + + +void MacroAssembler::AssertName(Register object) { + if (emit_debug_code()) { + test(object, Immediate(kSmiTagMask)); + Check(not_equal, kOperandIsASmiAndNotAName); + push(object); + mov(object, FieldOperand(object, HeapObject::kMapOffset)); + CmpInstanceType(object, LAST_NAME_TYPE); + pop(object); + Check(below_equal, kOperandIsNotAName); + } +} + + +void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) { + if (emit_debug_code()) { + Label done_checking; + AssertNotSmi(object); + cmp(object, isolate()->factory()->undefined_value()); + j(equal, &done_checking); + cmp(FieldOperand(object, 0), + Immediate(isolate()->factory()->allocation_site_map())); + Assert(equal, kExpectedUndefinedOrCell); + bind(&done_checking); + } +} + + +void MacroAssembler::AssertNotSmi(Register object) { + if (emit_debug_code()) { + test(object, Immediate(kSmiTagMask)); + Check(not_equal, kOperandIsASmi); + } +} + + +void MacroAssembler::StubPrologue() { + push(ebp); // Caller's frame pointer. + mov(ebp, esp); + push(esi); // Callee's context. + push(Immediate(Smi::FromInt(StackFrame::STUB))); +} + + +void MacroAssembler::Prologue(bool code_pre_aging) { + PredictableCodeSizeScope predictible_code_size_scope(this, + kNoCodeAgeSequenceLength); + if (code_pre_aging) { + // Pre-age the code. + call(isolate()->builtins()->MarkCodeAsExecutedOnce(), + RelocInfo::CODE_AGE_SEQUENCE); + Nop(kNoCodeAgeSequenceLength - Assembler::kCallInstructionLength); + } else { + push(ebp); // Caller's frame pointer. + mov(ebp, esp); + push(esi); // Callee's context. + push(edi); // Callee's JS function. + } +} + + +void MacroAssembler::EnterFrame(StackFrame::Type type) { + push(ebp); + mov(ebp, esp); + push(esi); + push(Immediate(Smi::FromInt(type))); + push(Immediate(CodeObject())); + if (emit_debug_code()) { + cmp(Operand(esp, 0), Immediate(isolate()->factory()->undefined_value())); + Check(not_equal, kCodeObjectNotProperlyPatched); + } +} + + +void MacroAssembler::LeaveFrame(StackFrame::Type type) { + if (emit_debug_code()) { + cmp(Operand(ebp, StandardFrameConstants::kMarkerOffset), + Immediate(Smi::FromInt(type))); + Check(equal, kStackFrameTypesMustMatch); + } + leave(); +} + + +void MacroAssembler::EnterExitFramePrologue() { + // Set up the frame structure on the stack. + DCHECK(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize); + DCHECK(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize); + DCHECK(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize); + push(ebp); + mov(ebp, esp); + + // Reserve room for entry stack pointer and push the code object. + DCHECK(ExitFrameConstants::kSPOffset == -1 * kPointerSize); + push(Immediate(0)); // Saved entry sp, patched before call. + push(Immediate(CodeObject())); // Accessed from ExitFrame::code_slot. + + // Save the frame pointer and the context in top. + ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, isolate()); + ExternalReference context_address(Isolate::kContextAddress, isolate()); + mov(Operand::StaticVariable(c_entry_fp_address), ebp); + mov(Operand::StaticVariable(context_address), esi); +} + + +void MacroAssembler::EnterExitFrameEpilogue(int argc) { + sub(esp, Immediate(argc * kPointerSize)); + + // Get the required frame alignment for the OS. + const int kFrameAlignment = base::OS::ActivationFrameAlignment(); + if (kFrameAlignment > 0) { + DCHECK(IsPowerOf2(kFrameAlignment)); + and_(esp, -kFrameAlignment); + } + + // Patch the saved entry sp. + mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp); +} + + +void MacroAssembler::EnterExitFrame() { + EnterExitFramePrologue(); + + // Set up argc and argv in callee-saved registers. + int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize; + mov(edi, eax); + lea(esi, Operand(ebp, eax, times_4, offset)); + + // Reserve space for argc, argv and isolate. + EnterExitFrameEpilogue(3); +} + + +void MacroAssembler::EnterApiExitFrame(int argc) { + EnterExitFramePrologue(); + EnterExitFrameEpilogue(argc); +} + + +void MacroAssembler::LeaveExitFrame() { + // Get the return address from the stack and restore the frame pointer. + mov(ecx, Operand(ebp, 1 * kPointerSize)); + mov(ebp, Operand(ebp, 0 * kPointerSize)); + + // Pop the arguments and the receiver from the caller stack. + lea(esp, Operand(esi, 1 * kPointerSize)); + + // Push the return address to get ready to return. + push(ecx); + + LeaveExitFrameEpilogue(true); +} + + +void MacroAssembler::LeaveExitFrameEpilogue(bool restore_context) { + // Restore current context from top and clear it in debug mode. + ExternalReference context_address(Isolate::kContextAddress, isolate()); + if (restore_context) { + mov(esi, Operand::StaticVariable(context_address)); + } +#ifdef DEBUG + mov(Operand::StaticVariable(context_address), Immediate(0)); +#endif + + // Clear the top frame. + ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, + isolate()); + mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0)); +} + + +void MacroAssembler::LeaveApiExitFrame(bool restore_context) { + mov(esp, ebp); + pop(ebp); + + LeaveExitFrameEpilogue(restore_context); +} + + +void MacroAssembler::PushTryHandler(StackHandler::Kind kind, + int handler_index) { + // Adjust this code if not the case. + STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); + STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); + STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); + STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); + STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); + STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); + + // We will build up the handler from the bottom by pushing on the stack. + // First push the frame pointer and context. + if (kind == StackHandler::JS_ENTRY) { + // The frame pointer does not point to a JS frame so we save NULL for + // ebp. We expect the code throwing an exception to check ebp before + // dereferencing it to restore the context. + push(Immediate(0)); // NULL frame pointer. + push(Immediate(Smi::FromInt(0))); // No context. + } else { + push(ebp); + push(esi); + } + // Push the state and the code object. + unsigned state = + StackHandler::IndexField::encode(handler_index) | + StackHandler::KindField::encode(kind); + push(Immediate(state)); + Push(CodeObject()); + + // Link the current handler as the next handler. + ExternalReference handler_address(Isolate::kHandlerAddress, isolate()); + push(Operand::StaticVariable(handler_address)); + // Set this new handler as the current one. + mov(Operand::StaticVariable(handler_address), esp); +} + + +void MacroAssembler::PopTryHandler() { + STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); + ExternalReference handler_address(Isolate::kHandlerAddress, isolate()); + pop(Operand::StaticVariable(handler_address)); + add(esp, Immediate(StackHandlerConstants::kSize - kPointerSize)); +} + + +void MacroAssembler::JumpToHandlerEntry() { + // Compute the handler entry address and jump to it. The handler table is + // a fixed array of (smi-tagged) code offsets. + // eax = exception, edi = code object, edx = state. + mov(ebx, FieldOperand(edi, Code::kHandlerTableOffset)); + shr(edx, StackHandler::kKindWidth); + mov(edx, FieldOperand(ebx, edx, times_4, FixedArray::kHeaderSize)); + SmiUntag(edx); + lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize)); + jmp(edi); +} + + +void MacroAssembler::Throw(Register value) { + // Adjust this code if not the case. + STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); + STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); + STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); + STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); + STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); + STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); + + // The exception is expected in eax. + if (!value.is(eax)) { + mov(eax, value); + } + // Drop the stack pointer to the top of the top handler. + ExternalReference handler_address(Isolate::kHandlerAddress, isolate()); + mov(esp, Operand::StaticVariable(handler_address)); + // Restore the next handler. + pop(Operand::StaticVariable(handler_address)); + + // Remove the code object and state, compute the handler address in edi. + pop(edi); // Code object. + pop(edx); // Index and state. + + // Restore the context and frame pointer. + pop(esi); // Context. + pop(ebp); // Frame pointer. + + // If the handler is a JS frame, restore the context to the frame. + // (kind == ENTRY) == (ebp == 0) == (esi == 0), so we could test either + // ebp or esi. + Label skip; + test(esi, esi); + j(zero, &skip, Label::kNear); + mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi); + bind(&skip); + + JumpToHandlerEntry(); +} + + +void MacroAssembler::ThrowUncatchable(Register value) { + // Adjust this code if not the case. + STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); + STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); + STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); + STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); + STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); + STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); + + // The exception is expected in eax. + if (!value.is(eax)) { + mov(eax, value); + } + // Drop the stack pointer to the top of the top stack handler. + ExternalReference handler_address(Isolate::kHandlerAddress, isolate()); + mov(esp, Operand::StaticVariable(handler_address)); + + // Unwind the handlers until the top ENTRY handler is found. + Label fetch_next, check_kind; + jmp(&check_kind, Label::kNear); + bind(&fetch_next); + mov(esp, Operand(esp, StackHandlerConstants::kNextOffset)); + + bind(&check_kind); + STATIC_ASSERT(StackHandler::JS_ENTRY == 0); + test(Operand(esp, StackHandlerConstants::kStateOffset), + Immediate(StackHandler::KindField::kMask)); + j(not_zero, &fetch_next); + + // Set the top handler address to next handler past the top ENTRY handler. + pop(Operand::StaticVariable(handler_address)); + + // Remove the code object and state, compute the handler address in edi. + pop(edi); // Code object. + pop(edx); // Index and state. + + // Clear the context pointer and frame pointer (0 was saved in the handler). + pop(esi); + pop(ebp); + + JumpToHandlerEntry(); +} + + +void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, + Register scratch1, + Register scratch2, + Label* miss) { + Label same_contexts; + + DCHECK(!holder_reg.is(scratch1)); + DCHECK(!holder_reg.is(scratch2)); + DCHECK(!scratch1.is(scratch2)); + + // Load current lexical context from the stack frame. + mov(scratch1, Operand(ebp, StandardFrameConstants::kContextOffset)); + + // When generating debug code, make sure the lexical context is set. + if (emit_debug_code()) { + cmp(scratch1, Immediate(0)); + Check(not_equal, kWeShouldNotHaveAnEmptyLexicalContext); + } + // Load the native context of the current context. + int offset = + Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize; + mov(scratch1, FieldOperand(scratch1, offset)); + mov(scratch1, FieldOperand(scratch1, GlobalObject::kNativeContextOffset)); + + // Check the context is a native context. + if (emit_debug_code()) { + // Read the first word and compare to native_context_map. + cmp(FieldOperand(scratch1, HeapObject::kMapOffset), + isolate()->factory()->native_context_map()); + Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext); + } + + // Check if both contexts are the same. + cmp(scratch1, FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset)); + j(equal, &same_contexts); + + // Compare security tokens, save holder_reg on the stack so we can use it + // as a temporary register. + // + // Check that the security token in the calling global object is + // compatible with the security token in the receiving global + // object. + mov(scratch2, + FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset)); + + // Check the context is a native context. + if (emit_debug_code()) { + cmp(scratch2, isolate()->factory()->null_value()); + Check(not_equal, kJSGlobalProxyContextShouldNotBeNull); + + // Read the first word and compare to native_context_map(), + cmp(FieldOperand(scratch2, HeapObject::kMapOffset), + isolate()->factory()->native_context_map()); + Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext); + } + + int token_offset = Context::kHeaderSize + + Context::SECURITY_TOKEN_INDEX * kPointerSize; + mov(scratch1, FieldOperand(scratch1, token_offset)); + cmp(scratch1, FieldOperand(scratch2, token_offset)); + j(not_equal, miss); + + bind(&same_contexts); +} + + +// Compute the hash code from the untagged key. This must be kept in sync with +// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in +// code-stub-hydrogen.cc +// +// Note: r0 will contain hash code +void MacroAssembler::GetNumberHash(Register r0, Register scratch) { + // Xor original key with a seed. + if (serializer_enabled()) { + ExternalReference roots_array_start = + ExternalReference::roots_array_start(isolate()); + mov(scratch, Immediate(Heap::kHashSeedRootIndex)); + mov(scratch, + Operand::StaticArray(scratch, times_pointer_size, roots_array_start)); + SmiUntag(scratch); + xor_(r0, scratch); + } else { + int32_t seed = isolate()->heap()->HashSeed(); + xor_(r0, Immediate(seed)); + } + + // hash = ~hash + (hash << 15); + mov(scratch, r0); + not_(r0); + shl(scratch, 15); + add(r0, scratch); + // hash = hash ^ (hash >> 12); + mov(scratch, r0); + shr(scratch, 12); + xor_(r0, scratch); + // hash = hash + (hash << 2); + lea(r0, Operand(r0, r0, times_4, 0)); + // hash = hash ^ (hash >> 4); + mov(scratch, r0); + shr(scratch, 4); + xor_(r0, scratch); + // hash = hash * 2057; + imul(r0, r0, 2057); + // hash = hash ^ (hash >> 16); + mov(scratch, r0); + shr(scratch, 16); + xor_(r0, scratch); +} + + + +void MacroAssembler::LoadFromNumberDictionary(Label* miss, + Register elements, + Register key, + Register r0, + Register r1, + Register r2, + Register result) { + // Register use: + // + // elements - holds the slow-case elements of the receiver and is unchanged. + // + // key - holds the smi key on entry and is unchanged. + // + // Scratch registers: + // + // r0 - holds the untagged key on entry and holds the hash once computed. + // + // r1 - used to hold the capacity mask of the dictionary + // + // r2 - used for the index into the dictionary. + // + // result - holds the result on exit if the load succeeds and we fall through. + + Label done; + + GetNumberHash(r0, r1); + + // Compute capacity mask. + mov(r1, FieldOperand(elements, SeededNumberDictionary::kCapacityOffset)); + shr(r1, kSmiTagSize); // convert smi to int + dec(r1); + + // Generate an unrolled loop that performs a few probes before giving up. + for (int i = 0; i < kNumberDictionaryProbes; i++) { + // Use r2 for index calculations and keep the hash intact in r0. + mov(r2, r0); + // Compute the masked index: (hash + i + i * i) & mask. + if (i > 0) { + add(r2, Immediate(SeededNumberDictionary::GetProbeOffset(i))); + } + and_(r2, r1); + + // Scale the index by multiplying by the entry size. + DCHECK(SeededNumberDictionary::kEntrySize == 3); + lea(r2, Operand(r2, r2, times_2, 0)); // r2 = r2 * 3 + + // Check if the key matches. + cmp(key, FieldOperand(elements, + r2, + times_pointer_size, + SeededNumberDictionary::kElementsStartOffset)); + if (i != (kNumberDictionaryProbes - 1)) { + j(equal, &done); + } else { + j(not_equal, miss); + } + } + + bind(&done); + // Check that the value is a normal propety. + const int kDetailsOffset = + SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize; + DCHECK_EQ(NORMAL, 0); + test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset), + Immediate(PropertyDetails::TypeField::kMask << kSmiTagSize)); + j(not_zero, miss); + + // Get the value at the masked, scaled index. + const int kValueOffset = + SeededNumberDictionary::kElementsStartOffset + kPointerSize; + mov(result, FieldOperand(elements, r2, times_pointer_size, kValueOffset)); +} + + +void MacroAssembler::LoadAllocationTopHelper(Register result, + Register scratch, + AllocationFlags flags) { + ExternalReference allocation_top = + AllocationUtils::GetAllocationTopReference(isolate(), flags); + + // Just return if allocation top is already known. + if ((flags & RESULT_CONTAINS_TOP) != 0) { + // No use of scratch if allocation top is provided. + DCHECK(scratch.is(no_reg)); +#ifdef DEBUG + // Assert that result actually contains top on entry. + cmp(result, Operand::StaticVariable(allocation_top)); + Check(equal, kUnexpectedAllocationTop); +#endif + return; + } + + // Move address of new object to result. Use scratch register if available. + if (scratch.is(no_reg)) { + mov(result, Operand::StaticVariable(allocation_top)); + } else { + mov(scratch, Immediate(allocation_top)); + mov(result, Operand(scratch, 0)); + } +} + + +void MacroAssembler::UpdateAllocationTopHelper(Register result_end, + Register scratch, + AllocationFlags flags) { + if (emit_debug_code()) { + test(result_end, Immediate(kObjectAlignmentMask)); + Check(zero, kUnalignedAllocationInNewSpace); + } + + ExternalReference allocation_top = + AllocationUtils::GetAllocationTopReference(isolate(), flags); + + // Update new top. Use scratch if available. + if (scratch.is(no_reg)) { + mov(Operand::StaticVariable(allocation_top), result_end); + } else { + mov(Operand(scratch, 0), result_end); + } +} + + +void MacroAssembler::Allocate(int object_size, + Register result, + Register result_end, + Register scratch, + Label* gc_required, + AllocationFlags flags) { + DCHECK((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0); + DCHECK(object_size <= Page::kMaxRegularHeapObjectSize); + if (!FLAG_inline_new) { + if (emit_debug_code()) { + // Trash the registers to simulate an allocation failure. + mov(result, Immediate(0x7091)); + if (result_end.is_valid()) { + mov(result_end, Immediate(0x7191)); + } + if (scratch.is_valid()) { + mov(scratch, Immediate(0x7291)); + } + } + jmp(gc_required); + return; + } + DCHECK(!result.is(result_end)); + + // Load address of new object into result. + LoadAllocationTopHelper(result, scratch, flags); + + ExternalReference allocation_limit = + AllocationUtils::GetAllocationLimitReference(isolate(), flags); + + // Align the next allocation. Storing the filler map without checking top is + // safe in new-space because the limit of the heap is aligned there. + if ((flags & DOUBLE_ALIGNMENT) != 0) { + DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0); + DCHECK(kPointerAlignment * 2 == kDoubleAlignment); + Label aligned; + test(result, Immediate(kDoubleAlignmentMask)); + j(zero, &aligned, Label::kNear); + if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) { + cmp(result, Operand::StaticVariable(allocation_limit)); + j(above_equal, gc_required); + } + mov(Operand(result, 0), + Immediate(isolate()->factory()->one_pointer_filler_map())); + add(result, Immediate(kDoubleSize / 2)); + bind(&aligned); + } + + // Calculate new top and bail out if space is exhausted. + Register top_reg = result_end.is_valid() ? result_end : result; + if (!top_reg.is(result)) { + mov(top_reg, result); + } + add(top_reg, Immediate(object_size)); + j(carry, gc_required); + cmp(top_reg, Operand::StaticVariable(allocation_limit)); + j(above, gc_required); + + // Update allocation top. + UpdateAllocationTopHelper(top_reg, scratch, flags); + + // Tag result if requested. + bool tag_result = (flags & TAG_OBJECT) != 0; + if (top_reg.is(result)) { + if (tag_result) { + sub(result, Immediate(object_size - kHeapObjectTag)); + } else { + sub(result, Immediate(object_size)); + } + } else if (tag_result) { + DCHECK(kHeapObjectTag == 1); + inc(result); + } +} + + +void MacroAssembler::Allocate(int header_size, + ScaleFactor element_size, + Register element_count, + RegisterValueType element_count_type, + Register result, + Register result_end, + Register scratch, + Label* gc_required, + AllocationFlags flags) { + DCHECK((flags & SIZE_IN_WORDS) == 0); + if (!FLAG_inline_new) { + if (emit_debug_code()) { + // Trash the registers to simulate an allocation failure. + mov(result, Immediate(0x7091)); + mov(result_end, Immediate(0x7191)); + if (scratch.is_valid()) { + mov(scratch, Immediate(0x7291)); + } + // Register element_count is not modified by the function. + } + jmp(gc_required); + return; + } + DCHECK(!result.is(result_end)); + + // Load address of new object into result. + LoadAllocationTopHelper(result, scratch, flags); + + ExternalReference allocation_limit = + AllocationUtils::GetAllocationLimitReference(isolate(), flags); + + // Align the next allocation. Storing the filler map without checking top is + // safe in new-space because the limit of the heap is aligned there. + if ((flags & DOUBLE_ALIGNMENT) != 0) { + DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0); + DCHECK(kPointerAlignment * 2 == kDoubleAlignment); + Label aligned; + test(result, Immediate(kDoubleAlignmentMask)); + j(zero, &aligned, Label::kNear); + if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) { + cmp(result, Operand::StaticVariable(allocation_limit)); + j(above_equal, gc_required); + } + mov(Operand(result, 0), + Immediate(isolate()->factory()->one_pointer_filler_map())); + add(result, Immediate(kDoubleSize / 2)); + bind(&aligned); + } + + // Calculate new top and bail out if space is exhausted. + // We assume that element_count*element_size + header_size does not + // overflow. + if (element_count_type == REGISTER_VALUE_IS_SMI) { + STATIC_ASSERT(static_cast<ScaleFactor>(times_2 - 1) == times_1); + STATIC_ASSERT(static_cast<ScaleFactor>(times_4 - 1) == times_2); + STATIC_ASSERT(static_cast<ScaleFactor>(times_8 - 1) == times_4); + DCHECK(element_size >= times_2); + DCHECK(kSmiTagSize == 1); + element_size = static_cast<ScaleFactor>(element_size - 1); + } else { + DCHECK(element_count_type == REGISTER_VALUE_IS_INT32); + } + lea(result_end, Operand(element_count, element_size, header_size)); + add(result_end, result); + j(carry, gc_required); + cmp(result_end, Operand::StaticVariable(allocation_limit)); + j(above, gc_required); + + if ((flags & TAG_OBJECT) != 0) { + DCHECK(kHeapObjectTag == 1); + inc(result); + } + + // Update allocation top. + UpdateAllocationTopHelper(result_end, scratch, flags); +} + + +void MacroAssembler::Allocate(Register object_size, + Register result, + Register result_end, + Register scratch, + Label* gc_required, + AllocationFlags flags) { + DCHECK((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0); + if (!FLAG_inline_new) { + if (emit_debug_code()) { + // Trash the registers to simulate an allocation failure. + mov(result, Immediate(0x7091)); + mov(result_end, Immediate(0x7191)); + if (scratch.is_valid()) { + mov(scratch, Immediate(0x7291)); + } + // object_size is left unchanged by this function. + } + jmp(gc_required); + return; + } + DCHECK(!result.is(result_end)); + + // Load address of new object into result. + LoadAllocationTopHelper(result, scratch, flags); + + ExternalReference allocation_limit = + AllocationUtils::GetAllocationLimitReference(isolate(), flags); + + // Align the next allocation. Storing the filler map without checking top is + // safe in new-space because the limit of the heap is aligned there. + if ((flags & DOUBLE_ALIGNMENT) != 0) { + DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0); + DCHECK(kPointerAlignment * 2 == kDoubleAlignment); + Label aligned; + test(result, Immediate(kDoubleAlignmentMask)); + j(zero, &aligned, Label::kNear); + if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) { + cmp(result, Operand::StaticVariable(allocation_limit)); + j(above_equal, gc_required); + } + mov(Operand(result, 0), + Immediate(isolate()->factory()->one_pointer_filler_map())); + add(result, Immediate(kDoubleSize / 2)); + bind(&aligned); + } + + // Calculate new top and bail out if space is exhausted. + if (!object_size.is(result_end)) { + mov(result_end, object_size); + } + add(result_end, result); + j(carry, gc_required); + cmp(result_end, Operand::StaticVariable(allocation_limit)); + j(above, gc_required); + + // Tag result if requested. + if ((flags & TAG_OBJECT) != 0) { + DCHECK(kHeapObjectTag == 1); + inc(result); + } + + // Update allocation top. + UpdateAllocationTopHelper(result_end, scratch, flags); +} + + +void MacroAssembler::UndoAllocationInNewSpace(Register object) { + ExternalReference new_space_allocation_top = + ExternalReference::new_space_allocation_top_address(isolate()); + + // Make sure the object has no tag before resetting top. + and_(object, Immediate(~kHeapObjectTagMask)); +#ifdef DEBUG + cmp(object, Operand::StaticVariable(new_space_allocation_top)); + Check(below, kUndoAllocationOfNonAllocatedMemory); +#endif + mov(Operand::StaticVariable(new_space_allocation_top), object); +} + + +void MacroAssembler::AllocateHeapNumber(Register result, + Register scratch1, + Register scratch2, + Label* gc_required, + MutableMode mode) { + // Allocate heap number in new space. + Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required, + TAG_OBJECT); + + Handle<Map> map = mode == MUTABLE + ? isolate()->factory()->mutable_heap_number_map() + : isolate()->factory()->heap_number_map(); + + // Set the map. + mov(FieldOperand(result, HeapObject::kMapOffset), Immediate(map)); +} + + +void MacroAssembler::AllocateTwoByteString(Register result, + Register length, + Register scratch1, + Register scratch2, + Register scratch3, + Label* gc_required) { + // Calculate the number of bytes needed for the characters in the string while + // observing object alignment. + DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); + DCHECK(kShortSize == 2); + // scratch1 = length * 2 + kObjectAlignmentMask. + lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask)); + and_(scratch1, Immediate(~kObjectAlignmentMask)); + + // Allocate two byte string in new space. + Allocate(SeqTwoByteString::kHeaderSize, + times_1, + scratch1, + REGISTER_VALUE_IS_INT32, + result, + scratch2, + scratch3, + gc_required, + TAG_OBJECT); + + // Set the map, length and hash field. + mov(FieldOperand(result, HeapObject::kMapOffset), + Immediate(isolate()->factory()->string_map())); + mov(scratch1, length); + SmiTag(scratch1); + mov(FieldOperand(result, String::kLengthOffset), scratch1); + mov(FieldOperand(result, String::kHashFieldOffset), + Immediate(String::kEmptyHashField)); +} + + +void MacroAssembler::AllocateAsciiString(Register result, + Register length, + Register scratch1, + Register scratch2, + Register scratch3, + Label* gc_required) { + // Calculate the number of bytes needed for the characters in the string while + // observing object alignment. + DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); + mov(scratch1, length); + DCHECK(kCharSize == 1); + add(scratch1, Immediate(kObjectAlignmentMask)); + and_(scratch1, Immediate(~kObjectAlignmentMask)); + + // Allocate ASCII string in new space. + Allocate(SeqOneByteString::kHeaderSize, + times_1, + scratch1, + REGISTER_VALUE_IS_INT32, + result, + scratch2, + scratch3, + gc_required, + TAG_OBJECT); + + // Set the map, length and hash field. + mov(FieldOperand(result, HeapObject::kMapOffset), + Immediate(isolate()->factory()->ascii_string_map())); + mov(scratch1, length); + SmiTag(scratch1); + mov(FieldOperand(result, String::kLengthOffset), scratch1); + mov(FieldOperand(result, String::kHashFieldOffset), + Immediate(String::kEmptyHashField)); +} + + +void MacroAssembler::AllocateAsciiString(Register result, + int length, + Register scratch1, + Register scratch2, + Label* gc_required) { + DCHECK(length > 0); + + // Allocate ASCII string in new space. + Allocate(SeqOneByteString::SizeFor(length), result, scratch1, scratch2, + gc_required, TAG_OBJECT); + + // Set the map, length and hash field. + mov(FieldOperand(result, HeapObject::kMapOffset), + Immediate(isolate()->factory()->ascii_string_map())); + mov(FieldOperand(result, String::kLengthOffset), + Immediate(Smi::FromInt(length))); + mov(FieldOperand(result, String::kHashFieldOffset), + Immediate(String::kEmptyHashField)); +} + + +void MacroAssembler::AllocateTwoByteConsString(Register result, + Register scratch1, + Register scratch2, + Label* gc_required) { + // Allocate heap number in new space. + Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required, + TAG_OBJECT); + + // Set the map. The other fields are left uninitialized. + mov(FieldOperand(result, HeapObject::kMapOffset), + Immediate(isolate()->factory()->cons_string_map())); +} + + +void MacroAssembler::AllocateAsciiConsString(Register result, + Register scratch1, + Register scratch2, + Label* gc_required) { + Allocate(ConsString::kSize, + result, + scratch1, + scratch2, + gc_required, + TAG_OBJECT); + + // Set the map. The other fields are left uninitialized. + mov(FieldOperand(result, HeapObject::kMapOffset), + Immediate(isolate()->factory()->cons_ascii_string_map())); +} + + +void MacroAssembler::AllocateTwoByteSlicedString(Register result, + Register scratch1, + Register scratch2, + Label* gc_required) { + // Allocate heap number in new space. + Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, + TAG_OBJECT); + + // Set the map. The other fields are left uninitialized. + mov(FieldOperand(result, HeapObject::kMapOffset), + Immediate(isolate()->factory()->sliced_string_map())); +} + + +void MacroAssembler::AllocateAsciiSlicedString(Register result, + Register scratch1, + Register scratch2, + Label* gc_required) { + // Allocate heap number in new space. + Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, + TAG_OBJECT); + + // Set the map. The other fields are left uninitialized. + mov(FieldOperand(result, HeapObject::kMapOffset), + Immediate(isolate()->factory()->sliced_ascii_string_map())); +} + + +// Copy memory, byte-by-byte, from source to destination. Not optimized for +// long or aligned copies. The contents of scratch and length are destroyed. +// Source and destination are incremented by length. +// Many variants of movsb, loop unrolling, word moves, and indexed operands +// have been tried here already, and this is fastest. +// A simpler loop is faster on small copies, but 30% slower on large ones. +// The cld() instruction must have been emitted, to set the direction flag(), +// before calling this function. +void MacroAssembler::CopyBytes(Register source, + Register destination, + Register length, + Register scratch) { + Label short_loop, len4, len8, len12, done, short_string; + DCHECK(source.is(esi)); + DCHECK(destination.is(edi)); + DCHECK(length.is(ecx)); + cmp(length, Immediate(4)); + j(below, &short_string, Label::kNear); + + // Because source is 4-byte aligned in our uses of this function, + // we keep source aligned for the rep_movs call by copying the odd bytes + // at the end of the ranges. + mov(scratch, Operand(source, length, times_1, -4)); + mov(Operand(destination, length, times_1, -4), scratch); + + cmp(length, Immediate(8)); + j(below_equal, &len4, Label::kNear); + cmp(length, Immediate(12)); + j(below_equal, &len8, Label::kNear); + cmp(length, Immediate(16)); + j(below_equal, &len12, Label::kNear); + + mov(scratch, ecx); + shr(ecx, 2); + rep_movs(); + and_(scratch, Immediate(0x3)); + add(destination, scratch); + jmp(&done, Label::kNear); + + bind(&len12); + mov(scratch, Operand(source, 8)); + mov(Operand(destination, 8), scratch); + bind(&len8); + mov(scratch, Operand(source, 4)); + mov(Operand(destination, 4), scratch); + bind(&len4); + mov(scratch, Operand(source, 0)); + mov(Operand(destination, 0), scratch); + add(destination, length); + jmp(&done, Label::kNear); + + bind(&short_string); + test(length, length); + j(zero, &done, Label::kNear); + + bind(&short_loop); + mov_b(scratch, Operand(source, 0)); + mov_b(Operand(destination, 0), scratch); + inc(source); + inc(destination); + dec(length); + j(not_zero, &short_loop); + + bind(&done); +} + + +void MacroAssembler::InitializeFieldsWithFiller(Register start_offset, + Register end_offset, + Register filler) { + Label loop, entry; + jmp(&entry); + bind(&loop); + mov(Operand(start_offset, 0), filler); + add(start_offset, Immediate(kPointerSize)); + bind(&entry); + cmp(start_offset, end_offset); + j(less, &loop); +} + + +void MacroAssembler::BooleanBitTest(Register object, + int field_offset, + int bit_index) { + bit_index += kSmiTagSize + kSmiShiftSize; + DCHECK(IsPowerOf2(kBitsPerByte)); + int byte_index = bit_index / kBitsPerByte; + int byte_bit_index = bit_index & (kBitsPerByte - 1); + test_b(FieldOperand(object, field_offset + byte_index), + static_cast<byte>(1 << byte_bit_index)); +} + + + +void MacroAssembler::NegativeZeroTest(Register result, + Register op, + Label* then_label) { + Label ok; + test(result, result); + j(not_zero, &ok); + test(op, op); + j(sign, then_label); + bind(&ok); +} + + +void MacroAssembler::NegativeZeroTest(Register result, + Register op1, + Register op2, + Register scratch, + Label* then_label) { + Label ok; + test(result, result); + j(not_zero, &ok); + mov(scratch, op1); + or_(scratch, op2); + j(sign, then_label); + bind(&ok); +} + + +void MacroAssembler::TryGetFunctionPrototype(Register function, + Register result, + Register scratch, + Label* miss, + bool miss_on_bound_function) { + Label non_instance; + if (miss_on_bound_function) { + // Check that the receiver isn't a smi. + JumpIfSmi(function, miss); + + // Check that the function really is a function. + CmpObjectType(function, JS_FUNCTION_TYPE, result); + j(not_equal, miss); + + // If a bound function, go to miss label. + mov(scratch, + FieldOperand(function, JSFunction::kSharedFunctionInfoOffset)); + BooleanBitTest(scratch, SharedFunctionInfo::kCompilerHintsOffset, + SharedFunctionInfo::kBoundFunction); + j(not_zero, miss); + + // Make sure that the function has an instance prototype. + movzx_b(scratch, FieldOperand(result, Map::kBitFieldOffset)); + test(scratch, Immediate(1 << Map::kHasNonInstancePrototype)); + j(not_zero, &non_instance); + } + + // Get the prototype or initial map from the function. + mov(result, + FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); + + // If the prototype or initial map is the hole, don't return it and + // simply miss the cache instead. This will allow us to allocate a + // prototype object on-demand in the runtime system. + cmp(result, Immediate(isolate()->factory()->the_hole_value())); + j(equal, miss); + + // If the function does not have an initial map, we're done. + Label done; + CmpObjectType(result, MAP_TYPE, scratch); + j(not_equal, &done); + + // Get the prototype from the initial map. + mov(result, FieldOperand(result, Map::kPrototypeOffset)); + + if (miss_on_bound_function) { + jmp(&done); + + // Non-instance prototype: Fetch prototype from constructor field + // in initial map. + bind(&non_instance); + mov(result, FieldOperand(result, Map::kConstructorOffset)); + } + + // All done. + bind(&done); +} + + +void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) { + DCHECK(AllowThisStubCall(stub)); // Calls are not allowed in some stubs. + call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id); +} + + +void MacroAssembler::TailCallStub(CodeStub* stub) { + jmp(stub->GetCode(), RelocInfo::CODE_TARGET); +} + + +void MacroAssembler::StubReturn(int argc) { + DCHECK(argc >= 1 && generating_stub()); + ret((argc - 1) * kPointerSize); +} + + +bool MacroAssembler::AllowThisStubCall(CodeStub* stub) { + return has_frame_ || !stub->SometimesSetsUpAFrame(); +} + + +void MacroAssembler::IndexFromHash(Register hash, Register index) { + // The assert checks that the constants for the maximum number of digits + // for an array index cached in the hash field and the number of bits + // reserved for it does not conflict. + DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) < + (1 << String::kArrayIndexValueBits)); + if (!index.is(hash)) { + mov(index, hash); + } + DecodeFieldToSmi<String::ArrayIndexValueBits>(index); +} + + +void MacroAssembler::CallRuntime(const Runtime::Function* f, + int num_arguments) { + // If the expected number of arguments of the runtime function is + // constant, we check that the actual number of arguments match the + // expectation. + CHECK(f->nargs < 0 || f->nargs == num_arguments); + + // TODO(1236192): Most runtime routines don't need the number of + // arguments passed in because it is constant. At some point we + // should remove this need and make the runtime routine entry code + // smarter. + Move(eax, Immediate(num_arguments)); + mov(ebx, Immediate(ExternalReference(f, isolate()))); + CEntryStub ces(isolate(), 1); + CallStub(&ces); +} + + +void MacroAssembler::CallExternalReference(ExternalReference ref, + int num_arguments) { + mov(eax, Immediate(num_arguments)); + mov(ebx, Immediate(ref)); + + CEntryStub stub(isolate(), 1); + CallStub(&stub); +} + + +void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, + int num_arguments, + int result_size) { + // TODO(1236192): Most runtime routines don't need the number of + // arguments passed in because it is constant. At some point we + // should remove this need and make the runtime routine entry code + // smarter. + Move(eax, Immediate(num_arguments)); + JumpToExternalReference(ext); +} + + +void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, + int num_arguments, + int result_size) { + TailCallExternalReference(ExternalReference(fid, isolate()), + num_arguments, + result_size); +} + + +Operand ApiParameterOperand(int index) { + return Operand(esp, index * kPointerSize); +} + + +void MacroAssembler::PrepareCallApiFunction(int argc) { + EnterApiExitFrame(argc); + if (emit_debug_code()) { + mov(esi, Immediate(BitCast<int32_t>(kZapValue))); + } +} + + +void MacroAssembler::CallApiFunctionAndReturn( + Register function_address, + ExternalReference thunk_ref, + Operand thunk_last_arg, + int stack_space, + Operand return_value_operand, + Operand* context_restore_operand) { + ExternalReference next_address = + ExternalReference::handle_scope_next_address(isolate()); + ExternalReference limit_address = + ExternalReference::handle_scope_limit_address(isolate()); + ExternalReference level_address = + ExternalReference::handle_scope_level_address(isolate()); + + DCHECK(edx.is(function_address)); + // Allocate HandleScope in callee-save registers. + mov(ebx, Operand::StaticVariable(next_address)); + mov(edi, Operand::StaticVariable(limit_address)); + add(Operand::StaticVariable(level_address), Immediate(1)); + + if (FLAG_log_timer_events) { + FrameScope frame(this, StackFrame::MANUAL); + PushSafepointRegisters(); + PrepareCallCFunction(1, eax); + mov(Operand(esp, 0), + Immediate(ExternalReference::isolate_address(isolate()))); + CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1); + PopSafepointRegisters(); + } + + + Label profiler_disabled; + Label end_profiler_check; + mov(eax, Immediate(ExternalReference::is_profiling_address(isolate()))); + cmpb(Operand(eax, 0), 0); + j(zero, &profiler_disabled); + + // Additional parameter is the address of the actual getter function. + mov(thunk_last_arg, function_address); + // Call the api function. + mov(eax, Immediate(thunk_ref)); + call(eax); + jmp(&end_profiler_check); + + bind(&profiler_disabled); + // Call the api function. + call(function_address); + bind(&end_profiler_check); + + if (FLAG_log_timer_events) { + FrameScope frame(this, StackFrame::MANUAL); + PushSafepointRegisters(); + PrepareCallCFunction(1, eax); + mov(Operand(esp, 0), + Immediate(ExternalReference::isolate_address(isolate()))); + CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1); + PopSafepointRegisters(); + } + + Label prologue; + // Load the value from ReturnValue + mov(eax, return_value_operand); + + Label promote_scheduled_exception; + Label exception_handled; + Label delete_allocated_handles; + Label leave_exit_frame; + + bind(&prologue); + // No more valid handles (the result handle was the last one). Restore + // previous handle scope. + mov(Operand::StaticVariable(next_address), ebx); + sub(Operand::StaticVariable(level_address), Immediate(1)); + Assert(above_equal, kInvalidHandleScopeLevel); + cmp(edi, Operand::StaticVariable(limit_address)); + j(not_equal, &delete_allocated_handles); + bind(&leave_exit_frame); + + // Check if the function scheduled an exception. + ExternalReference scheduled_exception_address = + ExternalReference::scheduled_exception_address(isolate()); + cmp(Operand::StaticVariable(scheduled_exception_address), + Immediate(isolate()->factory()->the_hole_value())); + j(not_equal, &promote_scheduled_exception); + bind(&exception_handled); + +#if ENABLE_EXTRA_CHECKS + // Check if the function returned a valid JavaScript value. + Label ok; + Register return_value = eax; + Register map = ecx; + + JumpIfSmi(return_value, &ok, Label::kNear); + mov(map, FieldOperand(return_value, HeapObject::kMapOffset)); + + CmpInstanceType(map, FIRST_NONSTRING_TYPE); + j(below, &ok, Label::kNear); + + CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE); + j(above_equal, &ok, Label::kNear); + + cmp(map, isolate()->factory()->heap_number_map()); + j(equal, &ok, Label::kNear); + + cmp(return_value, isolate()->factory()->undefined_value()); + j(equal, &ok, Label::kNear); + + cmp(return_value, isolate()->factory()->true_value()); + j(equal, &ok, Label::kNear); + + cmp(return_value, isolate()->factory()->false_value()); + j(equal, &ok, Label::kNear); + + cmp(return_value, isolate()->factory()->null_value()); + j(equal, &ok, Label::kNear); + + Abort(kAPICallReturnedInvalidObject); + + bind(&ok); +#endif + + bool restore_context = context_restore_operand != NULL; + if (restore_context) { + mov(esi, *context_restore_operand); + } + LeaveApiExitFrame(!restore_context); + ret(stack_space * kPointerSize); + + bind(&promote_scheduled_exception); + { + FrameScope frame(this, StackFrame::INTERNAL); + CallRuntime(Runtime::kPromoteScheduledException, 0); + } + jmp(&exception_handled); + + // HandleScope limit has changed. Delete allocated extensions. + ExternalReference delete_extensions = + ExternalReference::delete_handle_scope_extensions(isolate()); + bind(&delete_allocated_handles); + mov(Operand::StaticVariable(limit_address), edi); + mov(edi, eax); + mov(Operand(esp, 0), + Immediate(ExternalReference::isolate_address(isolate()))); + mov(eax, Immediate(delete_extensions)); + call(eax); + mov(eax, edi); + jmp(&leave_exit_frame); +} + + +void MacroAssembler::JumpToExternalReference(const ExternalReference& ext) { + // Set the entry point and jump to the C entry runtime stub. + mov(ebx, Immediate(ext)); + CEntryStub ces(isolate(), 1); + jmp(ces.GetCode(), RelocInfo::CODE_TARGET); +} + + +void MacroAssembler::InvokePrologue(const ParameterCount& expected, + const ParameterCount& actual, + Handle<Code> code_constant, + const Operand& code_operand, + Label* done, + bool* definitely_mismatches, + InvokeFlag flag, + Label::Distance done_near, + const CallWrapper& call_wrapper) { + bool definitely_matches = false; + *definitely_mismatches = false; + Label invoke; + if (expected.is_immediate()) { + DCHECK(actual.is_immediate()); + if (expected.immediate() == actual.immediate()) { + definitely_matches = true; + } else { + mov(eax, actual.immediate()); + const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; + if (expected.immediate() == sentinel) { + // Don't worry about adapting arguments for builtins that + // don't want that done. Skip adaption code by making it look + // like we have a match between expected and actual number of + // arguments. + definitely_matches = true; + } else { + *definitely_mismatches = true; + mov(ebx, expected.immediate()); + } + } + } else { + if (actual.is_immediate()) { + // Expected is in register, actual is immediate. This is the + // case when we invoke function values without going through the + // IC mechanism. + cmp(expected.reg(), actual.immediate()); + j(equal, &invoke); + DCHECK(expected.reg().is(ebx)); + mov(eax, actual.immediate()); + } else if (!expected.reg().is(actual.reg())) { + // Both expected and actual are in (different) registers. This + // is the case when we invoke functions using call and apply. + cmp(expected.reg(), actual.reg()); + j(equal, &invoke); + DCHECK(actual.reg().is(eax)); + DCHECK(expected.reg().is(ebx)); + } + } + + if (!definitely_matches) { + Handle<Code> adaptor = + isolate()->builtins()->ArgumentsAdaptorTrampoline(); + if (!code_constant.is_null()) { + mov(edx, Immediate(code_constant)); + add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag)); + } else if (!code_operand.is_reg(edx)) { + mov(edx, code_operand); + } + + if (flag == CALL_FUNCTION) { + call_wrapper.BeforeCall(CallSize(adaptor, RelocInfo::CODE_TARGET)); + call(adaptor, RelocInfo::CODE_TARGET); + call_wrapper.AfterCall(); + if (!*definitely_mismatches) { + jmp(done, done_near); + } + } else { + jmp(adaptor, RelocInfo::CODE_TARGET); + } + bind(&invoke); + } +} + + +void MacroAssembler::InvokeCode(const Operand& code, + const ParameterCount& expected, + const ParameterCount& actual, + InvokeFlag flag, + const CallWrapper& call_wrapper) { + // You can't call a function without a valid frame. + DCHECK(flag == JUMP_FUNCTION || has_frame()); + + Label done; + bool definitely_mismatches = false; + InvokePrologue(expected, actual, Handle<Code>::null(), code, + &done, &definitely_mismatches, flag, Label::kNear, + call_wrapper); + if (!definitely_mismatches) { + if (flag == CALL_FUNCTION) { + call_wrapper.BeforeCall(CallSize(code)); + call(code); + call_wrapper.AfterCall(); + } else { + DCHECK(flag == JUMP_FUNCTION); + jmp(code); + } + bind(&done); + } +} + + +void MacroAssembler::InvokeFunction(Register fun, + const ParameterCount& actual, + InvokeFlag flag, + const CallWrapper& call_wrapper) { + // You can't call a function without a valid frame. + DCHECK(flag == JUMP_FUNCTION || has_frame()); + + DCHECK(fun.is(edi)); + mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); + mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); + mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset)); + SmiUntag(ebx); + + ParameterCount expected(ebx); + InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset), + expected, actual, flag, call_wrapper); +} + + +void MacroAssembler::InvokeFunction(Register fun, + const ParameterCount& expected, + const ParameterCount& actual, + InvokeFlag flag, + const CallWrapper& call_wrapper) { + // You can't call a function without a valid frame. + DCHECK(flag == JUMP_FUNCTION || has_frame()); + + DCHECK(fun.is(edi)); + mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); + + InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset), + expected, actual, flag, call_wrapper); +} + + +void MacroAssembler::InvokeFunction(Handle<JSFunction> function, + const ParameterCount& expected, + const ParameterCount& actual, + InvokeFlag flag, + const CallWrapper& call_wrapper) { + LoadHeapObject(edi, function); + InvokeFunction(edi, expected, actual, flag, call_wrapper); +} + + +void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, + InvokeFlag flag, + const CallWrapper& call_wrapper) { + // You can't call a builtin without a valid frame. + DCHECK(flag == JUMP_FUNCTION || has_frame()); + + // Rely on the assertion to check that the number of provided + // arguments match the expected number of arguments. Fake a + // parameter count to avoid emitting code to do the check. + ParameterCount expected(0); + GetBuiltinFunction(edi, id); + InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset), + expected, expected, flag, call_wrapper); +} + + +void MacroAssembler::GetBuiltinFunction(Register target, + Builtins::JavaScript id) { + // Load the JavaScript builtin function from the builtins object. + mov(target, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); + mov(target, FieldOperand(target, GlobalObject::kBuiltinsOffset)); + mov(target, FieldOperand(target, + JSBuiltinsObject::OffsetOfFunctionWithId(id))); +} + + +void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { + DCHECK(!target.is(edi)); + // Load the JavaScript builtin function from the builtins object. + GetBuiltinFunction(edi, id); + // Load the code entry point from the function into the target register. + mov(target, FieldOperand(edi, JSFunction::kCodeEntryOffset)); +} + + +void MacroAssembler::LoadContext(Register dst, int context_chain_length) { + if (context_chain_length > 0) { + // Move up the chain of contexts to the context containing the slot. + mov(dst, Operand(esi, Context::SlotOffset(Context::PREVIOUS_INDEX))); + for (int i = 1; i < context_chain_length; i++) { + mov(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX))); + } + } else { + // Slot is in the current function context. Move it into the + // destination register in case we store into it (the write barrier + // cannot be allowed to destroy the context in esi). + mov(dst, esi); + } + + // We should not have found a with context by walking the context chain + // (i.e., the static scope chain and runtime context chain do not agree). + // A variable occurring in such a scope should have slot type LOOKUP and + // not CONTEXT. + if (emit_debug_code()) { + cmp(FieldOperand(dst, HeapObject::kMapOffset), + isolate()->factory()->with_context_map()); + Check(not_equal, kVariableResolvedToWithContext); + } +} + + +void MacroAssembler::LoadTransitionedArrayMapConditional( + ElementsKind expected_kind, + ElementsKind transitioned_kind, + Register map_in_out, + Register scratch, + Label* no_map_match) { + // Load the global or builtins object from the current context. + mov(scratch, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); + mov(scratch, FieldOperand(scratch, GlobalObject::kNativeContextOffset)); + + // Check that the function's map is the same as the expected cached map. + mov(scratch, Operand(scratch, + Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX))); + + size_t offset = expected_kind * kPointerSize + + FixedArrayBase::kHeaderSize; + cmp(map_in_out, FieldOperand(scratch, offset)); + j(not_equal, no_map_match); + + // Use the transitioned cached map. + offset = transitioned_kind * kPointerSize + + FixedArrayBase::kHeaderSize; + mov(map_in_out, FieldOperand(scratch, offset)); +} + + +void MacroAssembler::LoadGlobalFunction(int index, Register function) { + // Load the global or builtins object from the current context. + mov(function, + Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); + // Load the native context from the global or builtins object. + mov(function, + FieldOperand(function, GlobalObject::kNativeContextOffset)); + // Load the function from the native context. + mov(function, Operand(function, Context::SlotOffset(index))); +} + + +void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, + Register map) { + // Load the initial map. The global functions all have initial maps. + mov(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); + if (emit_debug_code()) { + Label ok, fail; + CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK); + jmp(&ok); + bind(&fail); + Abort(kGlobalFunctionsMustHaveInitialMap); + bind(&ok); + } +} + + +// Store the value in register src in the safepoint register stack +// slot for register dst. +void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) { + mov(SafepointRegisterSlot(dst), src); +} + + +void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Immediate src) { + mov(SafepointRegisterSlot(dst), src); +} + + +void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) { + mov(dst, SafepointRegisterSlot(src)); +} + + +Operand MacroAssembler::SafepointRegisterSlot(Register reg) { + return Operand(esp, SafepointRegisterStackIndex(reg.code()) * kPointerSize); +} + + +int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { + // The registers are pushed starting with the lowest encoding, + // which means that lowest encodings are furthest away from + // the stack pointer. + DCHECK(reg_code >= 0 && reg_code < kNumSafepointRegisters); + return kNumSafepointRegisters - reg_code - 1; +} + + +void MacroAssembler::LoadHeapObject(Register result, + Handle<HeapObject> object) { + AllowDeferredHandleDereference embedding_raw_address; + if (isolate()->heap()->InNewSpace(*object)) { + Handle<Cell> cell = isolate()->factory()->NewCell(object); + mov(result, Operand::ForCell(cell)); + } else { + mov(result, object); + } +} + + +void MacroAssembler::CmpHeapObject(Register reg, Handle<HeapObject> object) { + AllowDeferredHandleDereference using_raw_address; + if (isolate()->heap()->InNewSpace(*object)) { + Handle<Cell> cell = isolate()->factory()->NewCell(object); + cmp(reg, Operand::ForCell(cell)); + } else { + cmp(reg, object); + } +} + + +void MacroAssembler::PushHeapObject(Handle<HeapObject> object) { + AllowDeferredHandleDereference using_raw_address; + if (isolate()->heap()->InNewSpace(*object)) { + Handle<Cell> cell = isolate()->factory()->NewCell(object); + push(Operand::ForCell(cell)); + } else { + Push(object); + } +} + + +void MacroAssembler::Ret() { + ret(0); +} + + +void MacroAssembler::Ret(int bytes_dropped, Register scratch) { + if (is_uint16(bytes_dropped)) { + ret(bytes_dropped); + } else { + pop(scratch); + add(esp, Immediate(bytes_dropped)); + push(scratch); + ret(0); + } +} + + +void MacroAssembler::VerifyX87StackDepth(uint32_t depth) { + // Make sure the floating point stack is either empty or has depth items. + DCHECK(depth <= 7); + // This is very expensive. + DCHECK(FLAG_debug_code && FLAG_enable_slow_asserts); + + // The top-of-stack (tos) is 7 if there is one item pushed. + int tos = (8 - depth) % 8; + const int kTopMask = 0x3800; + push(eax); + fwait(); + fnstsw_ax(); + and_(eax, kTopMask); + shr(eax, 11); + cmp(eax, Immediate(tos)); + Check(equal, kUnexpectedFPUStackDepthAfterInstruction); + fnclex(); + pop(eax); +} + + +void MacroAssembler::Drop(int stack_elements) { + if (stack_elements > 0) { + add(esp, Immediate(stack_elements * kPointerSize)); + } +} + + +void MacroAssembler::Move(Register dst, Register src) { + if (!dst.is(src)) { + mov(dst, src); + } +} + + +void MacroAssembler::Move(Register dst, const Immediate& x) { + if (x.is_zero()) { + xor_(dst, dst); // Shorter than mov of 32-bit immediate 0. + } else { + mov(dst, x); + } +} + + +void MacroAssembler::Move(const Operand& dst, const Immediate& x) { + mov(dst, x); +} + + +void MacroAssembler::SetCounter(StatsCounter* counter, int value) { + if (FLAG_native_code_counters && counter->Enabled()) { + mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value)); + } +} + + +void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) { + DCHECK(value > 0); + if (FLAG_native_code_counters && counter->Enabled()) { + Operand operand = Operand::StaticVariable(ExternalReference(counter)); + if (value == 1) { + inc(operand); + } else { + add(operand, Immediate(value)); + } + } +} + + +void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) { + DCHECK(value > 0); + if (FLAG_native_code_counters && counter->Enabled()) { + Operand operand = Operand::StaticVariable(ExternalReference(counter)); + if (value == 1) { + dec(operand); + } else { + sub(operand, Immediate(value)); + } + } +} + + +void MacroAssembler::IncrementCounter(Condition cc, + StatsCounter* counter, + int value) { + DCHECK(value > 0); + if (FLAG_native_code_counters && counter->Enabled()) { + Label skip; + j(NegateCondition(cc), &skip); + pushfd(); + IncrementCounter(counter, value); + popfd(); + bind(&skip); + } +} + + +void MacroAssembler::DecrementCounter(Condition cc, + StatsCounter* counter, + int value) { + DCHECK(value > 0); + if (FLAG_native_code_counters && counter->Enabled()) { + Label skip; + j(NegateCondition(cc), &skip); + pushfd(); + DecrementCounter(counter, value); + popfd(); + bind(&skip); + } +} + + +void MacroAssembler::Assert(Condition cc, BailoutReason reason) { + if (emit_debug_code()) Check(cc, reason); +} + + +void MacroAssembler::AssertFastElements(Register elements) { + if (emit_debug_code()) { + Factory* factory = isolate()->factory(); + Label ok; + cmp(FieldOperand(elements, HeapObject::kMapOffset), + Immediate(factory->fixed_array_map())); + j(equal, &ok); + cmp(FieldOperand(elements, HeapObject::kMapOffset), + Immediate(factory->fixed_double_array_map())); + j(equal, &ok); + cmp(FieldOperand(elements, HeapObject::kMapOffset), + Immediate(factory->fixed_cow_array_map())); + j(equal, &ok); + Abort(kJSObjectWithFastElementsMapHasSlowElements); + bind(&ok); + } +} + + +void MacroAssembler::Check(Condition cc, BailoutReason reason) { + Label L; + j(cc, &L); + Abort(reason); + // will not return here + bind(&L); +} + + +void MacroAssembler::CheckStackAlignment() { + int frame_alignment = base::OS::ActivationFrameAlignment(); + int frame_alignment_mask = frame_alignment - 1; + if (frame_alignment > kPointerSize) { + DCHECK(IsPowerOf2(frame_alignment)); + Label alignment_as_expected; + test(esp, Immediate(frame_alignment_mask)); + j(zero, &alignment_as_expected); + // Abort if stack is not aligned. + int3(); + bind(&alignment_as_expected); + } +} + + +void MacroAssembler::Abort(BailoutReason reason) { +#ifdef DEBUG + const char* msg = GetBailoutReason(reason); + if (msg != NULL) { + RecordComment("Abort message: "); + RecordComment(msg); + } + + if (FLAG_trap_on_abort) { + int3(); + return; + } +#endif + + push(Immediate(reinterpret_cast<intptr_t>(Smi::FromInt(reason)))); + // Disable stub call restrictions to always allow calls to abort. + if (!has_frame_) { + // We don't actually want to generate a pile of code for this, so just + // claim there is a stack frame, without generating one. + FrameScope scope(this, StackFrame::NONE); + CallRuntime(Runtime::kAbort, 1); + } else { + CallRuntime(Runtime::kAbort, 1); + } + // will not return here + int3(); +} + + +void MacroAssembler::LoadInstanceDescriptors(Register map, + Register descriptors) { + mov(descriptors, FieldOperand(map, Map::kDescriptorsOffset)); +} + + +void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) { + mov(dst, FieldOperand(map, Map::kBitField3Offset)); + DecodeField<Map::NumberOfOwnDescriptorsBits>(dst); +} + + +void MacroAssembler::LookupNumberStringCache(Register object, + Register result, + Register scratch1, + Register scratch2, + Label* not_found) { + // Use of registers. Register result is used as a temporary. + Register number_string_cache = result; + Register mask = scratch1; + Register scratch = scratch2; + + // Load the number string cache. + LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); + // Make the hash mask from the length of the number string cache. It + // contains two elements (number and string) for each cache entry. + mov(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset)); + shr(mask, kSmiTagSize + 1); // Untag length and divide it by two. + sub(mask, Immediate(1)); // Make mask. + + // Calculate the entry in the number string cache. The hash value in the + // number string cache for smis is just the smi value, and the hash for + // doubles is the xor of the upper and lower words. See + // Heap::GetNumberStringCache. + Label smi_hash_calculated; + Label load_result_from_cache; + Label not_smi; + STATIC_ASSERT(kSmiTag == 0); + JumpIfNotSmi(object, ¬_smi, Label::kNear); + mov(scratch, object); + SmiUntag(scratch); + jmp(&smi_hash_calculated, Label::kNear); + bind(¬_smi); + cmp(FieldOperand(object, HeapObject::kMapOffset), + isolate()->factory()->heap_number_map()); + j(not_equal, not_found); + STATIC_ASSERT(8 == kDoubleSize); + mov(scratch, FieldOperand(object, HeapNumber::kValueOffset)); + xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4)); + // Object is heap number and hash is now in scratch. Calculate cache index. + and_(scratch, mask); + Register index = scratch; + Register probe = mask; + mov(probe, + FieldOperand(number_string_cache, + index, + times_twice_pointer_size, + FixedArray::kHeaderSize)); + JumpIfSmi(probe, not_found); + fld_d(FieldOperand(object, HeapNumber::kValueOffset)); + fld_d(FieldOperand(probe, HeapNumber::kValueOffset)); + FCmp(); + j(parity_even, not_found); // Bail out if NaN is involved. + j(not_equal, not_found); // The cache did not contain this value. + jmp(&load_result_from_cache, Label::kNear); + + bind(&smi_hash_calculated); + // Object is smi and hash is now in scratch. Calculate cache index. + and_(scratch, mask); + // Check if the entry is the smi we are looking for. + cmp(object, + FieldOperand(number_string_cache, + index, + times_twice_pointer_size, + FixedArray::kHeaderSize)); + j(not_equal, not_found); + + // Get the result from the cache. + bind(&load_result_from_cache); + mov(result, + FieldOperand(number_string_cache, + index, + times_twice_pointer_size, + FixedArray::kHeaderSize + kPointerSize)); + IncrementCounter(isolate()->counters()->number_to_string_native(), 1); +} + + +void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii( + Register instance_type, + Register scratch, + Label* failure) { + if (!scratch.is(instance_type)) { + mov(scratch, instance_type); + } + and_(scratch, + kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask); + cmp(scratch, kStringTag | kSeqStringTag | kOneByteStringTag); + j(not_equal, failure); +} + + +void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register object1, + Register object2, + Register scratch1, + Register scratch2, + Label* failure) { + // Check that both objects are not smis. + STATIC_ASSERT(kSmiTag == 0); + mov(scratch1, object1); + and_(scratch1, object2); + JumpIfSmi(scratch1, failure); + + // Load instance type for both strings. + mov(scratch1, FieldOperand(object1, HeapObject::kMapOffset)); + mov(scratch2, FieldOperand(object2, HeapObject::kMapOffset)); + movzx_b(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset)); + movzx_b(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset)); + + // Check that both are flat ASCII strings. + const int kFlatAsciiStringMask = + kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; + const int kFlatAsciiStringTag = + kStringTag | kOneByteStringTag | kSeqStringTag; + // Interleave bits from both instance types and compare them in one check. + DCHECK_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3)); + and_(scratch1, kFlatAsciiStringMask); + and_(scratch2, kFlatAsciiStringMask); + lea(scratch1, Operand(scratch1, scratch2, times_8, 0)); + cmp(scratch1, kFlatAsciiStringTag | (kFlatAsciiStringTag << 3)); + j(not_equal, failure); +} + + +void MacroAssembler::JumpIfNotUniqueName(Operand operand, + Label* not_unique_name, + Label::Distance distance) { + STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); + Label succeed; + test(operand, Immediate(kIsNotStringMask | kIsNotInternalizedMask)); + j(zero, &succeed); + cmpb(operand, static_cast<uint8_t>(SYMBOL_TYPE)); + j(not_equal, not_unique_name, distance); + + bind(&succeed); +} + + +void MacroAssembler::EmitSeqStringSetCharCheck(Register string, + Register index, + Register value, + uint32_t encoding_mask) { + Label is_object; + JumpIfNotSmi(string, &is_object, Label::kNear); + Abort(kNonObject); + bind(&is_object); + + push(value); + mov(value, FieldOperand(string, HeapObject::kMapOffset)); + movzx_b(value, FieldOperand(value, Map::kInstanceTypeOffset)); + + and_(value, Immediate(kStringRepresentationMask | kStringEncodingMask)); + cmp(value, Immediate(encoding_mask)); + pop(value); + Check(equal, kUnexpectedStringType); + + // The index is assumed to be untagged coming in, tag it to compare with the + // string length without using a temp register, it is restored at the end of + // this function. + SmiTag(index); + Check(no_overflow, kIndexIsTooLarge); + + cmp(index, FieldOperand(string, String::kLengthOffset)); + Check(less, kIndexIsTooLarge); + + cmp(index, Immediate(Smi::FromInt(0))); + Check(greater_equal, kIndexIsNegative); + + // Restore the index + SmiUntag(index); +} + + +void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) { + int frame_alignment = base::OS::ActivationFrameAlignment(); + if (frame_alignment != 0) { + // Make stack end at alignment and make room for num_arguments words + // and the original value of esp. + mov(scratch, esp); + sub(esp, Immediate((num_arguments + 1) * kPointerSize)); + DCHECK(IsPowerOf2(frame_alignment)); + and_(esp, -frame_alignment); + mov(Operand(esp, num_arguments * kPointerSize), scratch); + } else { + sub(esp, Immediate(num_arguments * kPointerSize)); + } +} + + +void MacroAssembler::CallCFunction(ExternalReference function, + int num_arguments) { + // Trashing eax is ok as it will be the return value. + mov(eax, Immediate(function)); + CallCFunction(eax, num_arguments); +} + + +void MacroAssembler::CallCFunction(Register function, + int num_arguments) { + DCHECK(has_frame()); + // Check stack alignment. + if (emit_debug_code()) { + CheckStackAlignment(); + } + + call(function); + if (base::OS::ActivationFrameAlignment() != 0) { + mov(esp, Operand(esp, num_arguments * kPointerSize)); + } else { + add(esp, Immediate(num_arguments * kPointerSize)); + } +} + + +#ifdef DEBUG +bool AreAliased(Register reg1, + Register reg2, + Register reg3, + Register reg4, + Register reg5, + Register reg6, + Register reg7, + Register reg8) { + int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() + + reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() + + reg7.is_valid() + reg8.is_valid(); + + RegList regs = 0; + if (reg1.is_valid()) regs |= reg1.bit(); + if (reg2.is_valid()) regs |= reg2.bit(); + if (reg3.is_valid()) regs |= reg3.bit(); + if (reg4.is_valid()) regs |= reg4.bit(); + if (reg5.is_valid()) regs |= reg5.bit(); + if (reg6.is_valid()) regs |= reg6.bit(); + if (reg7.is_valid()) regs |= reg7.bit(); + if (reg8.is_valid()) regs |= reg8.bit(); + int n_of_non_aliasing_regs = NumRegs(regs); + + return n_of_valid_regs != n_of_non_aliasing_regs; +} +#endif + + +CodePatcher::CodePatcher(byte* address, int size) + : address_(address), + size_(size), + masm_(NULL, address, size + Assembler::kGap) { + // Create a new macro assembler pointing to the address of the code to patch. + // The size is adjusted with kGap on order for the assembler to generate size + // bytes of instructions without failing with buffer size constraints. + DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); +} + + +CodePatcher::~CodePatcher() { + // Indicate that code has changed. + CpuFeatures::FlushICache(address_, size_); + + // Check that the code was patched as expected. + DCHECK(masm_.pc_ == address_ + size_); + DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); +} + + +void MacroAssembler::CheckPageFlag( + Register object, + Register scratch, + int mask, + Condition cc, + Label* condition_met, + Label::Distance condition_met_distance) { + DCHECK(cc == zero || cc == not_zero); + if (scratch.is(object)) { + and_(scratch, Immediate(~Page::kPageAlignmentMask)); + } else { + mov(scratch, Immediate(~Page::kPageAlignmentMask)); + and_(scratch, object); + } + if (mask < (1 << kBitsPerByte)) { + test_b(Operand(scratch, MemoryChunk::kFlagsOffset), + static_cast<uint8_t>(mask)); + } else { + test(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask)); + } + j(cc, condition_met, condition_met_distance); +} + + +void MacroAssembler::CheckPageFlagForMap( + Handle<Map> map, + int mask, + Condition cc, + Label* condition_met, + Label::Distance condition_met_distance) { + DCHECK(cc == zero || cc == not_zero); + Page* page = Page::FromAddress(map->address()); + DCHECK(!serializer_enabled()); // Serializer cannot match page_flags. + ExternalReference reference(ExternalReference::page_flags(page)); + // The inlined static address check of the page's flags relies + // on maps never being compacted. + DCHECK(!isolate()->heap()->mark_compact_collector()-> + IsOnEvacuationCandidate(*map)); + if (mask < (1 << kBitsPerByte)) { + test_b(Operand::StaticVariable(reference), static_cast<uint8_t>(mask)); + } else { + test(Operand::StaticVariable(reference), Immediate(mask)); + } + j(cc, condition_met, condition_met_distance); +} + + +void MacroAssembler::CheckMapDeprecated(Handle<Map> map, + Register scratch, + Label* if_deprecated) { + if (map->CanBeDeprecated()) { + mov(scratch, map); + mov(scratch, FieldOperand(scratch, Map::kBitField3Offset)); + and_(scratch, Immediate(Map::Deprecated::kMask)); + j(not_zero, if_deprecated); + } +} + + +void MacroAssembler::JumpIfBlack(Register object, + Register scratch0, + Register scratch1, + Label* on_black, + Label::Distance on_black_near) { + HasColor(object, scratch0, scratch1, + on_black, on_black_near, + 1, 0); // kBlackBitPattern. + DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0); +} + + +void MacroAssembler::HasColor(Register object, + Register bitmap_scratch, + Register mask_scratch, + Label* has_color, + Label::Distance has_color_distance, + int first_bit, + int second_bit) { + DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, ecx)); + + GetMarkBits(object, bitmap_scratch, mask_scratch); + + Label other_color, word_boundary; + test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize)); + j(first_bit == 1 ? zero : not_zero, &other_color, Label::kNear); + add(mask_scratch, mask_scratch); // Shift left 1 by adding. + j(zero, &word_boundary, Label::kNear); + test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize)); + j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance); + jmp(&other_color, Label::kNear); + + bind(&word_boundary); + test_b(Operand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize), 1); + + j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance); + bind(&other_color); +} + + +void MacroAssembler::GetMarkBits(Register addr_reg, + Register bitmap_reg, + Register mask_reg) { + DCHECK(!AreAliased(addr_reg, mask_reg, bitmap_reg, ecx)); + mov(bitmap_reg, Immediate(~Page::kPageAlignmentMask)); + and_(bitmap_reg, addr_reg); + mov(ecx, addr_reg); + int shift = + Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 - Bitmap::kBytesPerCellLog2; + shr(ecx, shift); + and_(ecx, + (Page::kPageAlignmentMask >> shift) & ~(Bitmap::kBytesPerCell - 1)); + + add(bitmap_reg, ecx); + mov(ecx, addr_reg); + shr(ecx, kPointerSizeLog2); + and_(ecx, (1 << Bitmap::kBitsPerCellLog2) - 1); + mov(mask_reg, Immediate(1)); + shl_cl(mask_reg); +} + + +void MacroAssembler::EnsureNotWhite( + Register value, + Register bitmap_scratch, + Register mask_scratch, + Label* value_is_white_and_not_data, + Label::Distance distance) { + DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, ecx)); + GetMarkBits(value, bitmap_scratch, mask_scratch); + + // If the value is black or grey we don't need to do anything. + DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0); + DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0); + DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0); + DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0); + + Label done; + + // Since both black and grey have a 1 in the first position and white does + // not have a 1 there we only need to check one bit. + test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize)); + j(not_zero, &done, Label::kNear); + + if (emit_debug_code()) { + // Check for impossible bit pattern. + Label ok; + push(mask_scratch); + // shl. May overflow making the check conservative. + add(mask_scratch, mask_scratch); + test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize)); + j(zero, &ok, Label::kNear); + int3(); + bind(&ok); + pop(mask_scratch); + } + + // Value is white. We check whether it is data that doesn't need scanning. + // Currently only checks for HeapNumber and non-cons strings. + Register map = ecx; // Holds map while checking type. + Register length = ecx; // Holds length of object after checking type. + Label not_heap_number; + Label is_data_object; + + // Check for heap-number + mov(map, FieldOperand(value, HeapObject::kMapOffset)); + cmp(map, isolate()->factory()->heap_number_map()); + j(not_equal, ¬_heap_number, Label::kNear); + mov(length, Immediate(HeapNumber::kSize)); + jmp(&is_data_object, Label::kNear); + + bind(¬_heap_number); + // Check for strings. + DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); + DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); + // If it's a string and it's not a cons string then it's an object containing + // no GC pointers. + Register instance_type = ecx; + movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset)); + test_b(instance_type, kIsIndirectStringMask | kIsNotStringMask); + j(not_zero, value_is_white_and_not_data); + // It's a non-indirect (non-cons and non-slice) string. + // If it's external, the length is just ExternalString::kSize. + // Otherwise it's String::kHeaderSize + string->length() * (1 or 2). + Label not_external; + // External strings are the only ones with the kExternalStringTag bit + // set. + DCHECK_EQ(0, kSeqStringTag & kExternalStringTag); + DCHECK_EQ(0, kConsStringTag & kExternalStringTag); + test_b(instance_type, kExternalStringTag); + j(zero, ¬_external, Label::kNear); + mov(length, Immediate(ExternalString::kSize)); + jmp(&is_data_object, Label::kNear); + + bind(¬_external); + // Sequential string, either ASCII or UC16. + DCHECK(kOneByteStringTag == 0x04); + and_(length, Immediate(kStringEncodingMask)); + xor_(length, Immediate(kStringEncodingMask)); + add(length, Immediate(0x04)); + // Value now either 4 (if ASCII) or 8 (if UC16), i.e., char-size shifted + // by 2. If we multiply the string length as smi by this, it still + // won't overflow a 32-bit value. + DCHECK_EQ(SeqOneByteString::kMaxSize, SeqTwoByteString::kMaxSize); + DCHECK(SeqOneByteString::kMaxSize <= + static_cast<int>(0xffffffffu >> (2 + kSmiTagSize))); + imul(length, FieldOperand(value, String::kLengthOffset)); + shr(length, 2 + kSmiTagSize + kSmiShiftSize); + add(length, Immediate(SeqString::kHeaderSize + kObjectAlignmentMask)); + and_(length, Immediate(~kObjectAlignmentMask)); + + bind(&is_data_object); + // Value is a data object, and it is white. Mark it black. Since we know + // that the object is white we can make it black by flipping one bit. + or_(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch); + + and_(bitmap_scratch, Immediate(~Page::kPageAlignmentMask)); + add(Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset), + length); + if (emit_debug_code()) { + mov(length, Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); + cmp(length, Operand(bitmap_scratch, MemoryChunk::kSizeOffset)); + Check(less_equal, kLiveBytesCountOverflowChunkSize); + } + + bind(&done); +} + + +void MacroAssembler::EnumLength(Register dst, Register map) { + STATIC_ASSERT(Map::EnumLengthBits::kShift == 0); + mov(dst, FieldOperand(map, Map::kBitField3Offset)); + and_(dst, Immediate(Map::EnumLengthBits::kMask)); + SmiTag(dst); +} + + +void MacroAssembler::CheckEnumCache(Label* call_runtime) { + Label next, start; + mov(ecx, eax); + + // Check if the enum length field is properly initialized, indicating that + // there is an enum cache. + mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset)); + + EnumLength(edx, ebx); + cmp(edx, Immediate(Smi::FromInt(kInvalidEnumCacheSentinel))); + j(equal, call_runtime); + + jmp(&start); + + bind(&next); + mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset)); + + // For all objects but the receiver, check that the cache is empty. + EnumLength(edx, ebx); + cmp(edx, Immediate(Smi::FromInt(0))); + j(not_equal, call_runtime); + + bind(&start); + + // Check that there are no elements. Register rcx contains the current JS + // object we've reached through the prototype chain. + Label no_elements; + mov(ecx, FieldOperand(ecx, JSObject::kElementsOffset)); + cmp(ecx, isolate()->factory()->empty_fixed_array()); + j(equal, &no_elements); + + // Second chance, the object may be using the empty slow element dictionary. + cmp(ecx, isolate()->factory()->empty_slow_element_dictionary()); + j(not_equal, call_runtime); + + bind(&no_elements); + mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset)); + cmp(ecx, isolate()->factory()->null_value()); + j(not_equal, &next); +} + + +void MacroAssembler::TestJSArrayForAllocationMemento( + Register receiver_reg, + Register scratch_reg, + Label* no_memento_found) { + ExternalReference new_space_start = + ExternalReference::new_space_start(isolate()); + ExternalReference new_space_allocation_top = + ExternalReference::new_space_allocation_top_address(isolate()); + + lea(scratch_reg, Operand(receiver_reg, + JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag)); + cmp(scratch_reg, Immediate(new_space_start)); + j(less, no_memento_found); + cmp(scratch_reg, Operand::StaticVariable(new_space_allocation_top)); + j(greater, no_memento_found); + cmp(MemOperand(scratch_reg, -AllocationMemento::kSize), + Immediate(isolate()->factory()->allocation_memento_map())); +} + + +void MacroAssembler::JumpIfDictionaryInPrototypeChain( + Register object, + Register scratch0, + Register scratch1, + Label* found) { + DCHECK(!scratch1.is(scratch0)); + Factory* factory = isolate()->factory(); + Register current = scratch0; + Label loop_again; + + // scratch contained elements pointer. + mov(current, object); + + // Loop based on the map going up the prototype chain. + bind(&loop_again); + mov(current, FieldOperand(current, HeapObject::kMapOffset)); + mov(scratch1, FieldOperand(current, Map::kBitField2Offset)); + DecodeField<Map::ElementsKindBits>(scratch1); + cmp(scratch1, Immediate(DICTIONARY_ELEMENTS)); + j(equal, found); + mov(current, FieldOperand(current, Map::kPrototypeOffset)); + cmp(current, Immediate(factory->null_value())); + j(not_equal, &loop_again); +} + + +void MacroAssembler::TruncatingDiv(Register dividend, int32_t divisor) { + DCHECK(!dividend.is(eax)); + DCHECK(!dividend.is(edx)); + MultiplierAndShift ms(divisor); + mov(eax, Immediate(ms.multiplier())); + imul(dividend); + if (divisor > 0 && ms.multiplier() < 0) add(edx, dividend); + if (divisor < 0 && ms.multiplier() > 0) sub(edx, dividend); + if (ms.shift() > 0) sar(edx, ms.shift()); + mov(eax, dividend); + shr(eax, 31); + add(edx, eax); +} + + +} } // namespace v8::internal + +#endif // V8_TARGET_ARCH_X87 |