1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_BASE_BITS_H_
#define V8_BASE_BITS_H_
#include <stdint.h>
#include <type_traits>
#include "src/base/base-export.h"
#include "src/base/macros.h"
#if V8_CC_MSVC
#include <intrin.h>
#endif
#if V8_OS_WIN32
#include "src/base/win32-headers.h"
#endif
namespace v8 {
namespace base {
namespace internal {
template <typename T>
class CheckedNumeric;
}
namespace bits {
// Define overloaded |Name| for |Name32| and |Name64|, depending on the size of
// the given value.
//
// The overloads are only defined for input types of size 4 and 8, respectively,
// using enable_if and SFINAE to disable them otherwise. enable_if<bool,
// typename> only has a "type" member if the first parameter is true, in which
// case "type" is a typedef to the second member (here, set to "unsigned").
// Otherwise, enable_if::type doesn't exist, making the function signature
// invalid, and so the entire function is thrown away (without an error) due to
// SFINAE.
//
// Not that we cannot simply check sizeof(T) using an if statement, as we need
// both branches of the if to be syntactically valid even if one of the branches
// is dead.
#define DEFINE_32_64_OVERLOADS(Name) \
template <typename T> \
inline typename std::enable_if<sizeof(T) == 4, unsigned>::type Name( \
T value) { \
return Name##32(value); \
} \
\
template <typename T> \
inline typename std::enable_if<sizeof(T) == 8, unsigned>::type Name( \
T value) { \
return Name##64(value); \
}
// CountPopulation32(value) returns the number of bits set in |value|.
inline unsigned CountPopulation32(uint32_t value) {
#if V8_HAS_BUILTIN_POPCOUNT
return __builtin_popcount(value);
#else
value = ((value >> 1) & 0x55555555) + (value & 0x55555555);
value = ((value >> 2) & 0x33333333) + (value & 0x33333333);
value = ((value >> 4) & 0x0f0f0f0f) + (value & 0x0f0f0f0f);
value = ((value >> 8) & 0x00ff00ff) + (value & 0x00ff00ff);
value = ((value >> 16) & 0x0000ffff) + (value & 0x0000ffff);
return static_cast<unsigned>(value);
#endif
}
// CountPopulation64(value) returns the number of bits set in |value|.
inline unsigned CountPopulation64(uint64_t value) {
#if V8_HAS_BUILTIN_POPCOUNT
return __builtin_popcountll(value);
#else
return CountPopulation32(static_cast<uint32_t>(value)) +
CountPopulation32(static_cast<uint32_t>(value >> 32));
#endif
}
DEFINE_32_64_OVERLOADS(CountPopulation)
// CountLeadingZeros32(value) returns the number of zero bits following the most
// significant 1 bit in |value| if |value| is non-zero, otherwise it returns 32.
inline unsigned CountLeadingZeros32(uint32_t value) {
#if V8_HAS_BUILTIN_CLZ
return value ? __builtin_clz(value) : 32;
#elif V8_CC_MSVC
unsigned long result; // NOLINT(runtime/int)
if (!_BitScanReverse(&result, value)) return 32;
return static_cast<unsigned>(31 - result);
#else
value = value | (value >> 1);
value = value | (value >> 2);
value = value | (value >> 4);
value = value | (value >> 8);
value = value | (value >> 16);
return CountPopulation32(~value);
#endif
}
// CountLeadingZeros64(value) returns the number of zero bits following the most
// significant 1 bit in |value| if |value| is non-zero, otherwise it returns 64.
inline unsigned CountLeadingZeros64(uint64_t value) {
#if V8_HAS_BUILTIN_CLZ
return value ? __builtin_clzll(value) : 64;
#else
value = value | (value >> 1);
value = value | (value >> 2);
value = value | (value >> 4);
value = value | (value >> 8);
value = value | (value >> 16);
value = value | (value >> 32);
return CountPopulation64(~value);
#endif
}
DEFINE_32_64_OVERLOADS(CountLeadingZeros)
// ReverseBits(value) returns |value| in reverse bit order.
template <typename T>
T ReverseBits(T value) {
DCHECK((sizeof(value) == 1) || (sizeof(value) == 2) || (sizeof(value) == 4) ||
(sizeof(value) == 8));
T result = 0;
for (unsigned i = 0; i < (sizeof(value) * 8); i++) {
result = (result << 1) | (value & 1);
value >>= 1;
}
return result;
}
// CountTrailingZeros32(value) returns the number of zero bits preceding the
// least significant 1 bit in |value| if |value| is non-zero, otherwise it
// returns 32.
inline unsigned CountTrailingZeros32(uint32_t value) {
#if V8_HAS_BUILTIN_CTZ
return value ? __builtin_ctz(value) : 32;
#elif V8_CC_MSVC
unsigned long result; // NOLINT(runtime/int)
if (!_BitScanForward(&result, value)) return 32;
return static_cast<unsigned>(result);
#else
if (value == 0) return 32;
unsigned count = 0;
for (value ^= value - 1; value >>= 1; ++count) {
}
return count;
#endif
}
// CountTrailingZeros64(value) returns the number of zero bits preceding the
// least significant 1 bit in |value| if |value| is non-zero, otherwise it
// returns 64.
inline unsigned CountTrailingZeros64(uint64_t value) {
#if V8_HAS_BUILTIN_CTZ
return value ? __builtin_ctzll(value) : 64;
#else
if (value == 0) return 64;
unsigned count = 0;
for (value ^= value - 1; value >>= 1; ++count) {
}
return count;
#endif
}
DEFINE_32_64_OVERLOADS(CountTrailingZeros)
// Returns true iff |value| is a power of 2.
template <typename T,
typename = typename std::enable_if<std::is_integral<T>::value>::type>
constexpr inline bool IsPowerOfTwo(T value) {
return value > 0 && (value & (value - 1)) == 0;
}
// RoundUpToPowerOfTwo32(value) returns the smallest power of two which is
// greater than or equal to |value|. If you pass in a |value| that is already a
// power of two, it is returned as is. |value| must be less than or equal to
// 0x80000000u. Uses computation based on leading zeros if we have compiler
// support for that. Falls back to the implementation from "Hacker's Delight" by
// Henry S. Warren, Jr., figure 3-3, page 48, where the function is called clp2.
V8_BASE_EXPORT uint32_t RoundUpToPowerOfTwo32(uint32_t value);
// Same for 64 bit integers. |value| must be <= 2^63
V8_BASE_EXPORT uint64_t RoundUpToPowerOfTwo64(uint64_t value);
// RoundDownToPowerOfTwo32(value) returns the greatest power of two which is
// less than or equal to |value|. If you pass in a |value| that is already a
// power of two, it is returned as is.
inline uint32_t RoundDownToPowerOfTwo32(uint32_t value) {
if (value > 0x80000000u) return 0x80000000u;
uint32_t result = RoundUpToPowerOfTwo32(value);
if (result > value) result >>= 1;
return result;
}
// Precondition: 0 <= shift < 32
inline uint32_t RotateRight32(uint32_t value, uint32_t shift) {
if (shift == 0) return value;
return (value >> shift) | (value << (32 - shift));
}
// Precondition: 0 <= shift < 32
inline uint32_t RotateLeft32(uint32_t value, uint32_t shift) {
if (shift == 0) return value;
return (value << shift) | (value >> (32 - shift));
}
// Precondition: 0 <= shift < 64
inline uint64_t RotateRight64(uint64_t value, uint64_t shift) {
if (shift == 0) return value;
return (value >> shift) | (value << (64 - shift));
}
// Precondition: 0 <= shift < 64
inline uint64_t RotateLeft64(uint64_t value, uint64_t shift) {
if (shift == 0) return value;
return (value << shift) | (value >> (64 - shift));
}
// SignedAddOverflow32(lhs,rhs,val) performs a signed summation of |lhs| and
// |rhs| and stores the result into the variable pointed to by |val| and
// returns true if the signed summation resulted in an overflow.
inline bool SignedAddOverflow32(int32_t lhs, int32_t rhs, int32_t* val) {
#if V8_HAS_BUILTIN_SADD_OVERFLOW
return __builtin_sadd_overflow(lhs, rhs, val);
#else
uint32_t res = static_cast<uint32_t>(lhs) + static_cast<uint32_t>(rhs);
*val = bit_cast<int32_t>(res);
return ((res ^ lhs) & (res ^ rhs) & (1U << 31)) != 0;
#endif
}
// SignedSubOverflow32(lhs,rhs,val) performs a signed subtraction of |lhs| and
// |rhs| and stores the result into the variable pointed to by |val| and
// returns true if the signed subtraction resulted in an overflow.
inline bool SignedSubOverflow32(int32_t lhs, int32_t rhs, int32_t* val) {
#if V8_HAS_BUILTIN_SSUB_OVERFLOW
return __builtin_ssub_overflow(lhs, rhs, val);
#else
uint32_t res = static_cast<uint32_t>(lhs) - static_cast<uint32_t>(rhs);
*val = bit_cast<int32_t>(res);
return ((res ^ lhs) & (res ^ ~rhs) & (1U << 31)) != 0;
#endif
}
// SignedMulOverflow32(lhs,rhs,val) performs a signed multiplication of |lhs|
// and |rhs| and stores the result into the variable pointed to by |val| and
// returns true if the signed multiplication resulted in an overflow.
V8_BASE_EXPORT bool SignedMulOverflow32(int32_t lhs, int32_t rhs, int32_t* val);
// SignedAddOverflow64(lhs,rhs,val) performs a signed summation of |lhs| and
// |rhs| and stores the result into the variable pointed to by |val| and
// returns true if the signed summation resulted in an overflow.
inline bool SignedAddOverflow64(int64_t lhs, int64_t rhs, int64_t* val) {
uint64_t res = static_cast<uint64_t>(lhs) + static_cast<uint64_t>(rhs);
*val = bit_cast<int64_t>(res);
return ((res ^ lhs) & (res ^ rhs) & (1ULL << 63)) != 0;
}
// SignedSubOverflow64(lhs,rhs,val) performs a signed subtraction of |lhs| and
// |rhs| and stores the result into the variable pointed to by |val| and
// returns true if the signed subtraction resulted in an overflow.
inline bool SignedSubOverflow64(int64_t lhs, int64_t rhs, int64_t* val) {
uint64_t res = static_cast<uint64_t>(lhs) - static_cast<uint64_t>(rhs);
*val = bit_cast<int64_t>(res);
return ((res ^ lhs) & (res ^ ~rhs) & (1ULL << 63)) != 0;
}
// SignedMulOverflow64(lhs,rhs,val) performs a signed multiplication of |lhs|
// and |rhs| and stores the result into the variable pointed to by |val| and
// returns true if the signed multiplication resulted in an overflow.
V8_BASE_EXPORT bool SignedMulOverflow64(int64_t lhs, int64_t rhs, int64_t* val);
// SignedMulHigh32(lhs, rhs) multiplies two signed 32-bit values |lhs| and
// |rhs|, extracts the most significant 32 bits of the result, and returns
// those.
V8_BASE_EXPORT int32_t SignedMulHigh32(int32_t lhs, int32_t rhs);
// SignedMulHighAndAdd32(lhs, rhs, acc) multiplies two signed 32-bit values
// |lhs| and |rhs|, extracts the most significant 32 bits of the result, and
// adds the accumulate value |acc|.
V8_BASE_EXPORT int32_t SignedMulHighAndAdd32(int32_t lhs, int32_t rhs,
int32_t acc);
// SignedDiv32(lhs, rhs) divides |lhs| by |rhs| and returns the quotient
// truncated to int32. If |rhs| is zero, then zero is returned. If |lhs|
// is minint and |rhs| is -1, it returns minint.
V8_BASE_EXPORT int32_t SignedDiv32(int32_t lhs, int32_t rhs);
// SignedMod32(lhs, rhs) divides |lhs| by |rhs| and returns the remainder
// truncated to int32. If either |rhs| is zero or |lhs| is minint and |rhs|
// is -1, it returns zero.
V8_BASE_EXPORT int32_t SignedMod32(int32_t lhs, int32_t rhs);
// UnsignedAddOverflow32(lhs,rhs,val) performs an unsigned summation of |lhs|
// and |rhs| and stores the result into the variable pointed to by |val| and
// returns true if the unsigned summation resulted in an overflow.
inline bool UnsignedAddOverflow32(uint32_t lhs, uint32_t rhs, uint32_t* val) {
#if V8_HAS_BUILTIN_SADD_OVERFLOW
return __builtin_uadd_overflow(lhs, rhs, val);
#else
*val = lhs + rhs;
return *val < (lhs | rhs);
#endif
}
// UnsignedDiv32(lhs, rhs) divides |lhs| by |rhs| and returns the quotient
// truncated to uint32. If |rhs| is zero, then zero is returned.
inline uint32_t UnsignedDiv32(uint32_t lhs, uint32_t rhs) {
return rhs ? lhs / rhs : 0u;
}
// UnsignedMod32(lhs, rhs) divides |lhs| by |rhs| and returns the remainder
// truncated to uint32. If |rhs| is zero, then zero is returned.
inline uint32_t UnsignedMod32(uint32_t lhs, uint32_t rhs) {
return rhs ? lhs % rhs : 0u;
}
// Clamp |value| on overflow and underflow conditions.
V8_BASE_EXPORT int64_t
FromCheckedNumeric(const internal::CheckedNumeric<int64_t> value);
// SignedSaturatedAdd64(lhs, rhs) adds |lhs| and |rhs|,
// checks and returns the result.
V8_BASE_EXPORT int64_t SignedSaturatedAdd64(int64_t lhs, int64_t rhs);
// SignedSaturatedSub64(lhs, rhs) subtracts |lhs| by |rhs|,
// checks and returns the result.
V8_BASE_EXPORT int64_t SignedSaturatedSub64(int64_t lhs, int64_t rhs);
#undef DEFINE_32_64_OVERLOADS
} // namespace bits
} // namespace base
} // namespace v8
#endif // V8_BASE_BITS_H_
|