diff options
Diffstat (limited to 'deps/v8/test/cctest/test-assembler-a64.cc')
-rw-r--r-- | deps/v8/test/cctest/test-assembler-a64.cc | 9803 |
1 files changed, 0 insertions, 9803 deletions
diff --git a/deps/v8/test/cctest/test-assembler-a64.cc b/deps/v8/test/cctest/test-assembler-a64.cc deleted file mode 100644 index 656f3691ca..0000000000 --- a/deps/v8/test/cctest/test-assembler-a64.cc +++ /dev/null @@ -1,9803 +0,0 @@ -// Copyright 2013 the V8 project authors. All rights reserved. -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are -// met: -// -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// * Redistributions in binary form must reproduce the above -// copyright notice, this list of conditions and the following -// disclaimer in the documentation and/or other materials provided -// with the distribution. -// * Neither the name of Google Inc. nor the names of its -// contributors may be used to endorse or promote products derived -// from this software without specific prior written permission. -// -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - -#include <stdio.h> -#include <stdlib.h> -#include <string.h> -#include <cmath> -#include <limits> - -#include "v8.h" - -#include "macro-assembler.h" -#include "a64/simulator-a64.h" -#include "a64/disasm-a64.h" -#include "a64/utils-a64.h" -#include "cctest.h" -#include "test-utils-a64.h" - -using namespace v8::internal; - -// Test infrastructure. -// -// Tests are functions which accept no parameters and have no return values. -// The testing code should not perform an explicit return once completed. For -// example to test the mov immediate instruction a very simple test would be: -// -// TEST(mov_x0_one) { -// SETUP(); -// -// START(); -// __ mov(x0, Operand(1)); -// END(); -// -// RUN(); -// -// ASSERT_EQUAL_64(1, x0); -// -// TEARDOWN(); -// } -// -// Within a START ... END block all registers but sp can be modified. sp has to -// be explicitly saved/restored. The END() macro replaces the function return -// so it may appear multiple times in a test if the test has multiple exit -// points. -// -// Once the test has been run all integer and floating point registers as well -// as flags are accessible through a RegisterDump instance, see -// utils-a64.cc for more info on RegisterDump. -// -// We provide some helper assert to handle common cases: -// -// ASSERT_EQUAL_32(int32_t, int_32t) -// ASSERT_EQUAL_FP32(float, float) -// ASSERT_EQUAL_32(int32_t, W register) -// ASSERT_EQUAL_FP32(float, S register) -// ASSERT_EQUAL_64(int64_t, int_64t) -// ASSERT_EQUAL_FP64(double, double) -// ASSERT_EQUAL_64(int64_t, X register) -// ASSERT_EQUAL_64(X register, X register) -// ASSERT_EQUAL_FP64(double, D register) -// -// e.g. ASSERT_EQUAL_64(0.5, d30); -// -// If more advance computation is required before the assert then access the -// RegisterDump named core directly: -// -// ASSERT_EQUAL_64(0x1234, core.xreg(0) & 0xffff); - - -#if 0 // TODO(all): enable. -static v8::Persistent<v8::Context> env; - -static void InitializeVM() { - if (env.IsEmpty()) { - env = v8::Context::New(); - } -} -#endif - -#define __ masm. - -#define BUF_SIZE 8192 -#define SETUP() SETUP_SIZE(BUF_SIZE) - -#define INIT_V8() \ - CcTest::InitializeVM(); \ - -#ifdef USE_SIMULATOR - -// Run tests with the simulator. -#define SETUP_SIZE(buf_size) \ - Isolate* isolate = Isolate::Current(); \ - HandleScope scope(isolate); \ - ASSERT(isolate != NULL); \ - byte* buf = new byte[buf_size]; \ - MacroAssembler masm(isolate, buf, buf_size); \ - Decoder decoder; \ - Simulator simulator(&decoder); \ - PrintDisassembler* pdis = NULL; \ - RegisterDump core; - -/* if (Cctest::trace_sim()) { \ - pdis = new PrintDisassembler(stdout); \ - decoder.PrependVisitor(pdis); \ - } \ - */ - -// Reset the assembler and simulator, so that instructions can be generated, -// but don't actually emit any code. This can be used by tests that need to -// emit instructions at the start of the buffer. Note that START_AFTER_RESET -// must be called before any callee-saved register is modified, and before an -// END is encountered. -// -// Most tests should call START, rather than call RESET directly. -#define RESET() \ - __ Reset(); \ - simulator.ResetState(); - -#define START_AFTER_RESET() \ - __ SetStackPointer(csp); \ - __ PushCalleeSavedRegisters(); \ - __ Debug("Start test.", __LINE__, TRACE_ENABLE | LOG_ALL); - -#define START() \ - RESET(); \ - START_AFTER_RESET(); - -#define RUN() \ - simulator.RunFrom(reinterpret_cast<Instruction*>(buf)) - -#define END() \ - __ Debug("End test.", __LINE__, TRACE_DISABLE | LOG_ALL); \ - core.Dump(&masm); \ - __ PopCalleeSavedRegisters(); \ - __ Ret(); \ - __ GetCode(NULL); - -#define TEARDOWN() \ - delete pdis; \ - delete[] buf; - -#else // ifdef USE_SIMULATOR. -// Run the test on real hardware or models. -#define SETUP_SIZE(buf_size) \ - Isolate* isolate = Isolate::Current(); \ - HandleScope scope(isolate); \ - ASSERT(isolate != NULL); \ - byte* buf = new byte[buf_size]; \ - MacroAssembler masm(isolate, buf, buf_size); \ - RegisterDump core; \ - CPU::SetUp(); - -#define RESET() \ - __ Reset(); - -#define START_AFTER_RESET() \ - __ SetStackPointer(csp); \ - __ PushCalleeSavedRegisters(); - -#define START() \ - RESET(); \ - START_AFTER_RESET(); - -#define RUN() \ - CPU::FlushICache(buf, masm.SizeOfGeneratedCode()); \ - { \ - void (*test_function)(void); \ - memcpy(&test_function, &buf, sizeof(buf)); \ - test_function(); \ - } - -#define END() \ - core.Dump(&masm); \ - __ PopCalleeSavedRegisters(); \ - __ Ret(); \ - __ GetCode(NULL); - -#define TEARDOWN() \ - delete[] buf; - -#endif // ifdef USE_SIMULATOR. - -#define ASSERT_EQUAL_NZCV(expected) \ - CHECK(EqualNzcv(expected, core.flags_nzcv())) - -#define ASSERT_EQUAL_REGISTERS(expected) \ - CHECK(EqualRegisters(&expected, &core)) - -#define ASSERT_EQUAL_32(expected, result) \ - CHECK(Equal32(static_cast<uint32_t>(expected), &core, result)) - -#define ASSERT_EQUAL_FP32(expected, result) \ - CHECK(EqualFP32(expected, &core, result)) - -#define ASSERT_EQUAL_64(expected, result) \ - CHECK(Equal64(expected, &core, result)) - -#define ASSERT_EQUAL_FP64(expected, result) \ - CHECK(EqualFP64(expected, &core, result)) - -#ifdef DEBUG -#define ASSERT_LITERAL_POOL_SIZE(expected) \ - CHECK((expected) == (__ LiteralPoolSize())) -#else -#define ASSERT_LITERAL_POOL_SIZE(expected) \ - ((void) 0) -#endif - - -TEST(stack_ops) { - INIT_V8(); - SETUP(); - - START(); - // save csp. - __ Mov(x29, csp); - - // Set the csp to a known value. - __ Mov(x16, 0x1000); - __ Mov(csp, x16); - __ Mov(x0, csp); - - // Add immediate to the csp, and move the result to a normal register. - __ Add(csp, csp, Operand(0x50)); - __ Mov(x1, csp); - - // Add extended to the csp, and move the result to a normal register. - __ Mov(x17, 0xfff); - __ Add(csp, csp, Operand(x17, SXTB)); - __ Mov(x2, csp); - - // Create an csp using a logical instruction, and move to normal register. - __ Orr(csp, xzr, Operand(0x1fff)); - __ Mov(x3, csp); - - // Write wcsp using a logical instruction. - __ Orr(wcsp, wzr, Operand(0xfffffff8L)); - __ Mov(x4, csp); - - // Write csp, and read back wcsp. - __ Orr(csp, xzr, Operand(0xfffffff8L)); - __ Mov(w5, wcsp); - - // restore csp. - __ Mov(csp, x29); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x1000, x0); - ASSERT_EQUAL_64(0x1050, x1); - ASSERT_EQUAL_64(0x104f, x2); - ASSERT_EQUAL_64(0x1fff, x3); - ASSERT_EQUAL_64(0xfffffff8, x4); - ASSERT_EQUAL_64(0xfffffff8, x5); - - TEARDOWN(); -} - - -TEST(mvn) { - INIT_V8(); - SETUP(); - - START(); - __ Mvn(w0, 0xfff); - __ Mvn(x1, 0xfff); - __ Mvn(w2, Operand(w0, LSL, 1)); - __ Mvn(x3, Operand(x1, LSL, 2)); - __ Mvn(w4, Operand(w0, LSR, 3)); - __ Mvn(x5, Operand(x1, LSR, 4)); - __ Mvn(w6, Operand(w0, ASR, 11)); - __ Mvn(x7, Operand(x1, ASR, 12)); - __ Mvn(w8, Operand(w0, ROR, 13)); - __ Mvn(x9, Operand(x1, ROR, 14)); - __ Mvn(w10, Operand(w2, UXTB)); - __ Mvn(x11, Operand(x2, SXTB, 1)); - __ Mvn(w12, Operand(w2, UXTH, 2)); - __ Mvn(x13, Operand(x2, SXTH, 3)); - __ Mvn(x14, Operand(w2, UXTW, 4)); - __ Mvn(x15, Operand(w2, SXTW, 4)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0xfffff000, x0); - ASSERT_EQUAL_64(0xfffffffffffff000UL, x1); - ASSERT_EQUAL_64(0x00001fff, x2); - ASSERT_EQUAL_64(0x0000000000003fffUL, x3); - ASSERT_EQUAL_64(0xe00001ff, x4); - ASSERT_EQUAL_64(0xf0000000000000ffUL, x5); - ASSERT_EQUAL_64(0x00000001, x6); - ASSERT_EQUAL_64(0x0, x7); - ASSERT_EQUAL_64(0x7ff80000, x8); - ASSERT_EQUAL_64(0x3ffc000000000000UL, x9); - ASSERT_EQUAL_64(0xffffff00, x10); - ASSERT_EQUAL_64(0x0000000000000001UL, x11); - ASSERT_EQUAL_64(0xffff8003, x12); - ASSERT_EQUAL_64(0xffffffffffff0007UL, x13); - ASSERT_EQUAL_64(0xfffffffffffe000fUL, x14); - ASSERT_EQUAL_64(0xfffffffffffe000fUL, x15); - - TEARDOWN(); -} - - -TEST(mov) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0xffffffffffffffffL); - __ Mov(x1, 0xffffffffffffffffL); - __ Mov(x2, 0xffffffffffffffffL); - __ Mov(x3, 0xffffffffffffffffL); - - __ Mov(x0, 0x0123456789abcdefL); - - __ movz(x1, 0xabcdL << 16); - __ movk(x2, 0xabcdL << 32); - __ movn(x3, 0xabcdL << 48); - - __ Mov(x4, 0x0123456789abcdefL); - __ Mov(x5, x4); - - __ Mov(w6, -1); - - // Test that moves back to the same register have the desired effect. This - // is a no-op for X registers, and a truncation for W registers. - __ Mov(x7, 0x0123456789abcdefL); - __ Mov(x7, x7); - __ Mov(x8, 0x0123456789abcdefL); - __ Mov(w8, w8); - __ Mov(x9, 0x0123456789abcdefL); - __ Mov(x9, Operand(x9)); - __ Mov(x10, 0x0123456789abcdefL); - __ Mov(w10, Operand(w10)); - - __ Mov(w11, 0xfff); - __ Mov(x12, 0xfff); - __ Mov(w13, Operand(w11, LSL, 1)); - __ Mov(x14, Operand(x12, LSL, 2)); - __ Mov(w15, Operand(w11, LSR, 3)); - __ Mov(x18, Operand(x12, LSR, 4)); - __ Mov(w19, Operand(w11, ASR, 11)); - __ Mov(x20, Operand(x12, ASR, 12)); - __ Mov(w21, Operand(w11, ROR, 13)); - __ Mov(x22, Operand(x12, ROR, 14)); - __ Mov(w23, Operand(w13, UXTB)); - __ Mov(x24, Operand(x13, SXTB, 1)); - __ Mov(w25, Operand(w13, UXTH, 2)); - __ Mov(x26, Operand(x13, SXTH, 3)); - __ Mov(x27, Operand(w13, UXTW, 4)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x0123456789abcdefL, x0); - ASSERT_EQUAL_64(0x00000000abcd0000L, x1); - ASSERT_EQUAL_64(0xffffabcdffffffffL, x2); - ASSERT_EQUAL_64(0x5432ffffffffffffL, x3); - ASSERT_EQUAL_64(x4, x5); - ASSERT_EQUAL_32(-1, w6); - ASSERT_EQUAL_64(0x0123456789abcdefL, x7); - ASSERT_EQUAL_32(0x89abcdefL, w8); - ASSERT_EQUAL_64(0x0123456789abcdefL, x9); - ASSERT_EQUAL_32(0x89abcdefL, w10); - ASSERT_EQUAL_64(0x00000fff, x11); - ASSERT_EQUAL_64(0x0000000000000fffUL, x12); - ASSERT_EQUAL_64(0x00001ffe, x13); - ASSERT_EQUAL_64(0x0000000000003ffcUL, x14); - ASSERT_EQUAL_64(0x000001ff, x15); - ASSERT_EQUAL_64(0x00000000000000ffUL, x18); - ASSERT_EQUAL_64(0x00000001, x19); - ASSERT_EQUAL_64(0x0, x20); - ASSERT_EQUAL_64(0x7ff80000, x21); - ASSERT_EQUAL_64(0x3ffc000000000000UL, x22); - ASSERT_EQUAL_64(0x000000fe, x23); - ASSERT_EQUAL_64(0xfffffffffffffffcUL, x24); - ASSERT_EQUAL_64(0x00007ff8, x25); - ASSERT_EQUAL_64(0x000000000000fff0UL, x26); - ASSERT_EQUAL_64(0x000000000001ffe0UL, x27); - - TEARDOWN(); -} - - -TEST(mov_imm_w) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(w0, 0xffffffffL); - __ Mov(w1, 0xffff1234L); - __ Mov(w2, 0x1234ffffL); - __ Mov(w3, 0x00000000L); - __ Mov(w4, 0x00001234L); - __ Mov(w5, 0x12340000L); - __ Mov(w6, 0x12345678L); - END(); - - RUN(); - - ASSERT_EQUAL_64(0xffffffffL, x0); - ASSERT_EQUAL_64(0xffff1234L, x1); - ASSERT_EQUAL_64(0x1234ffffL, x2); - ASSERT_EQUAL_64(0x00000000L, x3); - ASSERT_EQUAL_64(0x00001234L, x4); - ASSERT_EQUAL_64(0x12340000L, x5); - ASSERT_EQUAL_64(0x12345678L, x6); - - TEARDOWN(); -} - - -TEST(mov_imm_x) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0xffffffffffffffffL); - __ Mov(x1, 0xffffffffffff1234L); - __ Mov(x2, 0xffffffff12345678L); - __ Mov(x3, 0xffff1234ffff5678L); - __ Mov(x4, 0x1234ffffffff5678L); - __ Mov(x5, 0x1234ffff5678ffffL); - __ Mov(x6, 0x12345678ffffffffL); - __ Mov(x7, 0x1234ffffffffffffL); - __ Mov(x8, 0x123456789abcffffL); - __ Mov(x9, 0x12345678ffff9abcL); - __ Mov(x10, 0x1234ffff56789abcL); - __ Mov(x11, 0xffff123456789abcL); - __ Mov(x12, 0x0000000000000000L); - __ Mov(x13, 0x0000000000001234L); - __ Mov(x14, 0x0000000012345678L); - __ Mov(x15, 0x0000123400005678L); - __ Mov(x18, 0x1234000000005678L); - __ Mov(x19, 0x1234000056780000L); - __ Mov(x20, 0x1234567800000000L); - __ Mov(x21, 0x1234000000000000L); - __ Mov(x22, 0x123456789abc0000L); - __ Mov(x23, 0x1234567800009abcL); - __ Mov(x24, 0x1234000056789abcL); - __ Mov(x25, 0x0000123456789abcL); - __ Mov(x26, 0x123456789abcdef0L); - __ Mov(x27, 0xffff000000000001L); - __ Mov(x28, 0x8000ffff00000000L); - END(); - - RUN(); - - ASSERT_EQUAL_64(0xffffffffffff1234L, x1); - ASSERT_EQUAL_64(0xffffffff12345678L, x2); - ASSERT_EQUAL_64(0xffff1234ffff5678L, x3); - ASSERT_EQUAL_64(0x1234ffffffff5678L, x4); - ASSERT_EQUAL_64(0x1234ffff5678ffffL, x5); - ASSERT_EQUAL_64(0x12345678ffffffffL, x6); - ASSERT_EQUAL_64(0x1234ffffffffffffL, x7); - ASSERT_EQUAL_64(0x123456789abcffffL, x8); - ASSERT_EQUAL_64(0x12345678ffff9abcL, x9); - ASSERT_EQUAL_64(0x1234ffff56789abcL, x10); - ASSERT_EQUAL_64(0xffff123456789abcL, x11); - ASSERT_EQUAL_64(0x0000000000000000L, x12); - ASSERT_EQUAL_64(0x0000000000001234L, x13); - ASSERT_EQUAL_64(0x0000000012345678L, x14); - ASSERT_EQUAL_64(0x0000123400005678L, x15); - ASSERT_EQUAL_64(0x1234000000005678L, x18); - ASSERT_EQUAL_64(0x1234000056780000L, x19); - ASSERT_EQUAL_64(0x1234567800000000L, x20); - ASSERT_EQUAL_64(0x1234000000000000L, x21); - ASSERT_EQUAL_64(0x123456789abc0000L, x22); - ASSERT_EQUAL_64(0x1234567800009abcL, x23); - ASSERT_EQUAL_64(0x1234000056789abcL, x24); - ASSERT_EQUAL_64(0x0000123456789abcL, x25); - ASSERT_EQUAL_64(0x123456789abcdef0L, x26); - ASSERT_EQUAL_64(0xffff000000000001L, x27); - ASSERT_EQUAL_64(0x8000ffff00000000L, x28); - - TEARDOWN(); -} - - -TEST(orr) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0xf0f0); - __ Mov(x1, 0xf00000ff); - - __ Orr(x2, x0, Operand(x1)); - __ Orr(w3, w0, Operand(w1, LSL, 28)); - __ Orr(x4, x0, Operand(x1, LSL, 32)); - __ Orr(x5, x0, Operand(x1, LSR, 4)); - __ Orr(w6, w0, Operand(w1, ASR, 4)); - __ Orr(x7, x0, Operand(x1, ASR, 4)); - __ Orr(w8, w0, Operand(w1, ROR, 12)); - __ Orr(x9, x0, Operand(x1, ROR, 12)); - __ Orr(w10, w0, Operand(0xf)); - __ Orr(x11, x0, Operand(0xf0000000f0000000L)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0xf000f0ff, x2); - ASSERT_EQUAL_64(0xf000f0f0, x3); - ASSERT_EQUAL_64(0xf00000ff0000f0f0L, x4); - ASSERT_EQUAL_64(0x0f00f0ff, x5); - ASSERT_EQUAL_64(0xff00f0ff, x6); - ASSERT_EQUAL_64(0x0f00f0ff, x7); - ASSERT_EQUAL_64(0x0ffff0f0, x8); - ASSERT_EQUAL_64(0x0ff00000000ff0f0L, x9); - ASSERT_EQUAL_64(0xf0ff, x10); - ASSERT_EQUAL_64(0xf0000000f000f0f0L, x11); - - TEARDOWN(); -} - - -TEST(orr_extend) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 1); - __ Mov(x1, 0x8000000080008080UL); - __ Orr(w6, w0, Operand(w1, UXTB)); - __ Orr(x7, x0, Operand(x1, UXTH, 1)); - __ Orr(w8, w0, Operand(w1, UXTW, 2)); - __ Orr(x9, x0, Operand(x1, UXTX, 3)); - __ Orr(w10, w0, Operand(w1, SXTB)); - __ Orr(x11, x0, Operand(x1, SXTH, 1)); - __ Orr(x12, x0, Operand(x1, SXTW, 2)); - __ Orr(x13, x0, Operand(x1, SXTX, 3)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x00000081, x6); - ASSERT_EQUAL_64(0x00010101, x7); - ASSERT_EQUAL_64(0x00020201, x8); - ASSERT_EQUAL_64(0x0000000400040401UL, x9); - ASSERT_EQUAL_64(0x00000000ffffff81UL, x10); - ASSERT_EQUAL_64(0xffffffffffff0101UL, x11); - ASSERT_EQUAL_64(0xfffffffe00020201UL, x12); - ASSERT_EQUAL_64(0x0000000400040401UL, x13); - - TEARDOWN(); -} - - -TEST(bitwise_wide_imm) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0); - __ Mov(x1, 0xf0f0f0f0f0f0f0f0UL); - - __ Orr(x10, x0, Operand(0x1234567890abcdefUL)); - __ Orr(w11, w1, Operand(0x90abcdef)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0, x0); - ASSERT_EQUAL_64(0xf0f0f0f0f0f0f0f0UL, x1); - ASSERT_EQUAL_64(0x1234567890abcdefUL, x10); - ASSERT_EQUAL_64(0xf0fbfdffUL, x11); - - TEARDOWN(); -} - - -TEST(orn) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0xf0f0); - __ Mov(x1, 0xf00000ff); - - __ Orn(x2, x0, Operand(x1)); - __ Orn(w3, w0, Operand(w1, LSL, 4)); - __ Orn(x4, x0, Operand(x1, LSL, 4)); - __ Orn(x5, x0, Operand(x1, LSR, 1)); - __ Orn(w6, w0, Operand(w1, ASR, 1)); - __ Orn(x7, x0, Operand(x1, ASR, 1)); - __ Orn(w8, w0, Operand(w1, ROR, 16)); - __ Orn(x9, x0, Operand(x1, ROR, 16)); - __ Orn(w10, w0, Operand(0xffff)); - __ Orn(x11, x0, Operand(0xffff0000ffffL)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0xffffffff0ffffff0L, x2); - ASSERT_EQUAL_64(0xfffff0ff, x3); - ASSERT_EQUAL_64(0xfffffff0fffff0ffL, x4); - ASSERT_EQUAL_64(0xffffffff87fffff0L, x5); - ASSERT_EQUAL_64(0x07fffff0, x6); - ASSERT_EQUAL_64(0xffffffff87fffff0L, x7); - ASSERT_EQUAL_64(0xff00ffff, x8); - ASSERT_EQUAL_64(0xff00ffffffffffffL, x9); - ASSERT_EQUAL_64(0xfffff0f0, x10); - ASSERT_EQUAL_64(0xffff0000fffff0f0L, x11); - - TEARDOWN(); -} - - -TEST(orn_extend) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 1); - __ Mov(x1, 0x8000000080008081UL); - __ Orn(w6, w0, Operand(w1, UXTB)); - __ Orn(x7, x0, Operand(x1, UXTH, 1)); - __ Orn(w8, w0, Operand(w1, UXTW, 2)); - __ Orn(x9, x0, Operand(x1, UXTX, 3)); - __ Orn(w10, w0, Operand(w1, SXTB)); - __ Orn(x11, x0, Operand(x1, SXTH, 1)); - __ Orn(x12, x0, Operand(x1, SXTW, 2)); - __ Orn(x13, x0, Operand(x1, SXTX, 3)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0xffffff7f, x6); - ASSERT_EQUAL_64(0xfffffffffffefefdUL, x7); - ASSERT_EQUAL_64(0xfffdfdfb, x8); - ASSERT_EQUAL_64(0xfffffffbfffbfbf7UL, x9); - ASSERT_EQUAL_64(0x0000007f, x10); - ASSERT_EQUAL_64(0x0000fefd, x11); - ASSERT_EQUAL_64(0x00000001fffdfdfbUL, x12); - ASSERT_EQUAL_64(0xfffffffbfffbfbf7UL, x13); - - TEARDOWN(); -} - - -TEST(and_) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0xfff0); - __ Mov(x1, 0xf00000ff); - - __ And(x2, x0, Operand(x1)); - __ And(w3, w0, Operand(w1, LSL, 4)); - __ And(x4, x0, Operand(x1, LSL, 4)); - __ And(x5, x0, Operand(x1, LSR, 1)); - __ And(w6, w0, Operand(w1, ASR, 20)); - __ And(x7, x0, Operand(x1, ASR, 20)); - __ And(w8, w0, Operand(w1, ROR, 28)); - __ And(x9, x0, Operand(x1, ROR, 28)); - __ And(w10, w0, Operand(0xff00)); - __ And(x11, x0, Operand(0xff)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x000000f0, x2); - ASSERT_EQUAL_64(0x00000ff0, x3); - ASSERT_EQUAL_64(0x00000ff0, x4); - ASSERT_EQUAL_64(0x00000070, x5); - ASSERT_EQUAL_64(0x0000ff00, x6); - ASSERT_EQUAL_64(0x00000f00, x7); - ASSERT_EQUAL_64(0x00000ff0, x8); - ASSERT_EQUAL_64(0x00000000, x9); - ASSERT_EQUAL_64(0x0000ff00, x10); - ASSERT_EQUAL_64(0x000000f0, x11); - - TEARDOWN(); -} - - -TEST(and_extend) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0xffffffffffffffffUL); - __ Mov(x1, 0x8000000080008081UL); - __ And(w6, w0, Operand(w1, UXTB)); - __ And(x7, x0, Operand(x1, UXTH, 1)); - __ And(w8, w0, Operand(w1, UXTW, 2)); - __ And(x9, x0, Operand(x1, UXTX, 3)); - __ And(w10, w0, Operand(w1, SXTB)); - __ And(x11, x0, Operand(x1, SXTH, 1)); - __ And(x12, x0, Operand(x1, SXTW, 2)); - __ And(x13, x0, Operand(x1, SXTX, 3)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x00000081, x6); - ASSERT_EQUAL_64(0x00010102, x7); - ASSERT_EQUAL_64(0x00020204, x8); - ASSERT_EQUAL_64(0x0000000400040408UL, x9); - ASSERT_EQUAL_64(0xffffff81, x10); - ASSERT_EQUAL_64(0xffffffffffff0102UL, x11); - ASSERT_EQUAL_64(0xfffffffe00020204UL, x12); - ASSERT_EQUAL_64(0x0000000400040408UL, x13); - - TEARDOWN(); -} - - -TEST(ands) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x1, 0xf00000ff); - __ Ands(w0, w1, Operand(w1)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(NFlag); - ASSERT_EQUAL_64(0xf00000ff, x0); - - START(); - __ Mov(x0, 0xfff0); - __ Mov(x1, 0xf00000ff); - __ Ands(w0, w0, Operand(w1, LSR, 4)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(ZFlag); - ASSERT_EQUAL_64(0x00000000, x0); - - START(); - __ Mov(x0, 0x8000000000000000L); - __ Mov(x1, 0x00000001); - __ Ands(x0, x0, Operand(x1, ROR, 1)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(NFlag); - ASSERT_EQUAL_64(0x8000000000000000L, x0); - - START(); - __ Mov(x0, 0xfff0); - __ Ands(w0, w0, Operand(0xf)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(ZFlag); - ASSERT_EQUAL_64(0x00000000, x0); - - START(); - __ Mov(x0, 0xff000000); - __ Ands(w0, w0, Operand(0x80000000)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(NFlag); - ASSERT_EQUAL_64(0x80000000, x0); - - TEARDOWN(); -} - - -TEST(bic) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0xfff0); - __ Mov(x1, 0xf00000ff); - - __ Bic(x2, x0, Operand(x1)); - __ Bic(w3, w0, Operand(w1, LSL, 4)); - __ Bic(x4, x0, Operand(x1, LSL, 4)); - __ Bic(x5, x0, Operand(x1, LSR, 1)); - __ Bic(w6, w0, Operand(w1, ASR, 20)); - __ Bic(x7, x0, Operand(x1, ASR, 20)); - __ Bic(w8, w0, Operand(w1, ROR, 28)); - __ Bic(x9, x0, Operand(x1, ROR, 24)); - __ Bic(x10, x0, Operand(0x1f)); - __ Bic(x11, x0, Operand(0x100)); - - // Test bic into csp when the constant cannot be encoded in the immediate - // field. - // Use x20 to preserve csp. We check for the result via x21 because the - // test infrastructure requires that csp be restored to its original value. - __ Mov(x20, csp); - __ Mov(x0, 0xffffff); - __ Bic(csp, x0, Operand(0xabcdef)); - __ Mov(x21, csp); - __ Mov(csp, x20); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x0000ff00, x2); - ASSERT_EQUAL_64(0x0000f000, x3); - ASSERT_EQUAL_64(0x0000f000, x4); - ASSERT_EQUAL_64(0x0000ff80, x5); - ASSERT_EQUAL_64(0x000000f0, x6); - ASSERT_EQUAL_64(0x0000f0f0, x7); - ASSERT_EQUAL_64(0x0000f000, x8); - ASSERT_EQUAL_64(0x0000ff00, x9); - ASSERT_EQUAL_64(0x0000ffe0, x10); - ASSERT_EQUAL_64(0x0000fef0, x11); - - ASSERT_EQUAL_64(0x543210, x21); - - TEARDOWN(); -} - - -TEST(bic_extend) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0xffffffffffffffffUL); - __ Mov(x1, 0x8000000080008081UL); - __ Bic(w6, w0, Operand(w1, UXTB)); - __ Bic(x7, x0, Operand(x1, UXTH, 1)); - __ Bic(w8, w0, Operand(w1, UXTW, 2)); - __ Bic(x9, x0, Operand(x1, UXTX, 3)); - __ Bic(w10, w0, Operand(w1, SXTB)); - __ Bic(x11, x0, Operand(x1, SXTH, 1)); - __ Bic(x12, x0, Operand(x1, SXTW, 2)); - __ Bic(x13, x0, Operand(x1, SXTX, 3)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0xffffff7e, x6); - ASSERT_EQUAL_64(0xfffffffffffefefdUL, x7); - ASSERT_EQUAL_64(0xfffdfdfb, x8); - ASSERT_EQUAL_64(0xfffffffbfffbfbf7UL, x9); - ASSERT_EQUAL_64(0x0000007e, x10); - ASSERT_EQUAL_64(0x0000fefd, x11); - ASSERT_EQUAL_64(0x00000001fffdfdfbUL, x12); - ASSERT_EQUAL_64(0xfffffffbfffbfbf7UL, x13); - - TEARDOWN(); -} - - -TEST(bics) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x1, 0xffff); - __ Bics(w0, w1, Operand(w1)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(ZFlag); - ASSERT_EQUAL_64(0x00000000, x0); - - START(); - __ Mov(x0, 0xffffffff); - __ Bics(w0, w0, Operand(w0, LSR, 1)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(NFlag); - ASSERT_EQUAL_64(0x80000000, x0); - - START(); - __ Mov(x0, 0x8000000000000000L); - __ Mov(x1, 0x00000001); - __ Bics(x0, x0, Operand(x1, ROR, 1)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(ZFlag); - ASSERT_EQUAL_64(0x00000000, x0); - - START(); - __ Mov(x0, 0xffffffffffffffffL); - __ Bics(x0, x0, Operand(0x7fffffffffffffffL)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(NFlag); - ASSERT_EQUAL_64(0x8000000000000000L, x0); - - START(); - __ Mov(w0, 0xffff0000); - __ Bics(w0, w0, Operand(0xfffffff0)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(ZFlag); - ASSERT_EQUAL_64(0x00000000, x0); - - TEARDOWN(); -} - - -TEST(eor) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0xfff0); - __ Mov(x1, 0xf00000ff); - - __ Eor(x2, x0, Operand(x1)); - __ Eor(w3, w0, Operand(w1, LSL, 4)); - __ Eor(x4, x0, Operand(x1, LSL, 4)); - __ Eor(x5, x0, Operand(x1, LSR, 1)); - __ Eor(w6, w0, Operand(w1, ASR, 20)); - __ Eor(x7, x0, Operand(x1, ASR, 20)); - __ Eor(w8, w0, Operand(w1, ROR, 28)); - __ Eor(x9, x0, Operand(x1, ROR, 28)); - __ Eor(w10, w0, Operand(0xff00ff00)); - __ Eor(x11, x0, Operand(0xff00ff00ff00ff00L)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0xf000ff0f, x2); - ASSERT_EQUAL_64(0x0000f000, x3); - ASSERT_EQUAL_64(0x0000000f0000f000L, x4); - ASSERT_EQUAL_64(0x7800ff8f, x5); - ASSERT_EQUAL_64(0xffff00f0, x6); - ASSERT_EQUAL_64(0x0000f0f0, x7); - ASSERT_EQUAL_64(0x0000f00f, x8); - ASSERT_EQUAL_64(0x00000ff00000ffffL, x9); - ASSERT_EQUAL_64(0xff0000f0, x10); - ASSERT_EQUAL_64(0xff00ff00ff0000f0L, x11); - - TEARDOWN(); -} - - -TEST(eor_extend) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0x1111111111111111UL); - __ Mov(x1, 0x8000000080008081UL); - __ Eor(w6, w0, Operand(w1, UXTB)); - __ Eor(x7, x0, Operand(x1, UXTH, 1)); - __ Eor(w8, w0, Operand(w1, UXTW, 2)); - __ Eor(x9, x0, Operand(x1, UXTX, 3)); - __ Eor(w10, w0, Operand(w1, SXTB)); - __ Eor(x11, x0, Operand(x1, SXTH, 1)); - __ Eor(x12, x0, Operand(x1, SXTW, 2)); - __ Eor(x13, x0, Operand(x1, SXTX, 3)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x11111190, x6); - ASSERT_EQUAL_64(0x1111111111101013UL, x7); - ASSERT_EQUAL_64(0x11131315, x8); - ASSERT_EQUAL_64(0x1111111511151519UL, x9); - ASSERT_EQUAL_64(0xeeeeee90, x10); - ASSERT_EQUAL_64(0xeeeeeeeeeeee1013UL, x11); - ASSERT_EQUAL_64(0xeeeeeeef11131315UL, x12); - ASSERT_EQUAL_64(0x1111111511151519UL, x13); - - TEARDOWN(); -} - - -TEST(eon) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0xfff0); - __ Mov(x1, 0xf00000ff); - - __ Eon(x2, x0, Operand(x1)); - __ Eon(w3, w0, Operand(w1, LSL, 4)); - __ Eon(x4, x0, Operand(x1, LSL, 4)); - __ Eon(x5, x0, Operand(x1, LSR, 1)); - __ Eon(w6, w0, Operand(w1, ASR, 20)); - __ Eon(x7, x0, Operand(x1, ASR, 20)); - __ Eon(w8, w0, Operand(w1, ROR, 28)); - __ Eon(x9, x0, Operand(x1, ROR, 28)); - __ Eon(w10, w0, Operand(0x03c003c0)); - __ Eon(x11, x0, Operand(0x0000100000001000L)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0xffffffff0fff00f0L, x2); - ASSERT_EQUAL_64(0xffff0fff, x3); - ASSERT_EQUAL_64(0xfffffff0ffff0fffL, x4); - ASSERT_EQUAL_64(0xffffffff87ff0070L, x5); - ASSERT_EQUAL_64(0x0000ff0f, x6); - ASSERT_EQUAL_64(0xffffffffffff0f0fL, x7); - ASSERT_EQUAL_64(0xffff0ff0, x8); - ASSERT_EQUAL_64(0xfffff00fffff0000L, x9); - ASSERT_EQUAL_64(0xfc3f03cf, x10); - ASSERT_EQUAL_64(0xffffefffffff100fL, x11); - - TEARDOWN(); -} - - -TEST(eon_extend) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0x1111111111111111UL); - __ Mov(x1, 0x8000000080008081UL); - __ Eon(w6, w0, Operand(w1, UXTB)); - __ Eon(x7, x0, Operand(x1, UXTH, 1)); - __ Eon(w8, w0, Operand(w1, UXTW, 2)); - __ Eon(x9, x0, Operand(x1, UXTX, 3)); - __ Eon(w10, w0, Operand(w1, SXTB)); - __ Eon(x11, x0, Operand(x1, SXTH, 1)); - __ Eon(x12, x0, Operand(x1, SXTW, 2)); - __ Eon(x13, x0, Operand(x1, SXTX, 3)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0xeeeeee6f, x6); - ASSERT_EQUAL_64(0xeeeeeeeeeeefefecUL, x7); - ASSERT_EQUAL_64(0xeeececea, x8); - ASSERT_EQUAL_64(0xeeeeeeeaeeeaeae6UL, x9); - ASSERT_EQUAL_64(0x1111116f, x10); - ASSERT_EQUAL_64(0x111111111111efecUL, x11); - ASSERT_EQUAL_64(0x11111110eeececeaUL, x12); - ASSERT_EQUAL_64(0xeeeeeeeaeeeaeae6UL, x13); - - TEARDOWN(); -} - - -TEST(mul) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x16, 0); - __ Mov(x17, 1); - __ Mov(x18, 0xffffffff); - __ Mov(x19, 0xffffffffffffffffUL); - - __ Mul(w0, w16, w16); - __ Mul(w1, w16, w17); - __ Mul(w2, w17, w18); - __ Mul(w3, w18, w19); - __ Mul(x4, x16, x16); - __ Mul(x5, x17, x18); - __ Mul(x6, x18, x19); - __ Mul(x7, x19, x19); - __ Smull(x8, w17, w18); - __ Smull(x9, w18, w18); - __ Smull(x10, w19, w19); - __ Mneg(w11, w16, w16); - __ Mneg(w12, w16, w17); - __ Mneg(w13, w17, w18); - __ Mneg(w14, w18, w19); - __ Mneg(x20, x16, x16); - __ Mneg(x21, x17, x18); - __ Mneg(x22, x18, x19); - __ Mneg(x23, x19, x19); - END(); - - RUN(); - - ASSERT_EQUAL_64(0, x0); - ASSERT_EQUAL_64(0, x1); - ASSERT_EQUAL_64(0xffffffff, x2); - ASSERT_EQUAL_64(1, x3); - ASSERT_EQUAL_64(0, x4); - ASSERT_EQUAL_64(0xffffffff, x5); - ASSERT_EQUAL_64(0xffffffff00000001UL, x6); - ASSERT_EQUAL_64(1, x7); - ASSERT_EQUAL_64(0xffffffffffffffffUL, x8); - ASSERT_EQUAL_64(1, x9); - ASSERT_EQUAL_64(1, x10); - ASSERT_EQUAL_64(0, x11); - ASSERT_EQUAL_64(0, x12); - ASSERT_EQUAL_64(1, x13); - ASSERT_EQUAL_64(0xffffffff, x14); - ASSERT_EQUAL_64(0, x20); - ASSERT_EQUAL_64(0xffffffff00000001UL, x21); - ASSERT_EQUAL_64(0xffffffff, x22); - ASSERT_EQUAL_64(0xffffffffffffffffUL, x23); - - TEARDOWN(); -} - - -static void SmullHelper(int64_t expected, int64_t a, int64_t b) { - SETUP(); - START(); - __ Mov(w0, a); - __ Mov(w1, b); - __ Smull(x2, w0, w1); - END(); - RUN(); - ASSERT_EQUAL_64(expected, x2); - TEARDOWN(); -} - - -TEST(smull) { - INIT_V8(); - SmullHelper(0, 0, 0); - SmullHelper(1, 1, 1); - SmullHelper(-1, -1, 1); - SmullHelper(1, -1, -1); - SmullHelper(0xffffffff80000000, 0x80000000, 1); - SmullHelper(0x0000000080000000, 0x00010000, 0x00008000); -} - - -TEST(madd) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x16, 0); - __ Mov(x17, 1); - __ Mov(x18, 0xffffffff); - __ Mov(x19, 0xffffffffffffffffUL); - - __ Madd(w0, w16, w16, w16); - __ Madd(w1, w16, w16, w17); - __ Madd(w2, w16, w16, w18); - __ Madd(w3, w16, w16, w19); - __ Madd(w4, w16, w17, w17); - __ Madd(w5, w17, w17, w18); - __ Madd(w6, w17, w17, w19); - __ Madd(w7, w17, w18, w16); - __ Madd(w8, w17, w18, w18); - __ Madd(w9, w18, w18, w17); - __ Madd(w10, w18, w19, w18); - __ Madd(w11, w19, w19, w19); - - __ Madd(x12, x16, x16, x16); - __ Madd(x13, x16, x16, x17); - __ Madd(x14, x16, x16, x18); - __ Madd(x15, x16, x16, x19); - __ Madd(x20, x16, x17, x17); - __ Madd(x21, x17, x17, x18); - __ Madd(x22, x17, x17, x19); - __ Madd(x23, x17, x18, x16); - __ Madd(x24, x17, x18, x18); - __ Madd(x25, x18, x18, x17); - __ Madd(x26, x18, x19, x18); - __ Madd(x27, x19, x19, x19); - - END(); - - RUN(); - - ASSERT_EQUAL_64(0, x0); - ASSERT_EQUAL_64(1, x1); - ASSERT_EQUAL_64(0xffffffff, x2); - ASSERT_EQUAL_64(0xffffffff, x3); - ASSERT_EQUAL_64(1, x4); - ASSERT_EQUAL_64(0, x5); - ASSERT_EQUAL_64(0, x6); - ASSERT_EQUAL_64(0xffffffff, x7); - ASSERT_EQUAL_64(0xfffffffe, x8); - ASSERT_EQUAL_64(2, x9); - ASSERT_EQUAL_64(0, x10); - ASSERT_EQUAL_64(0, x11); - - ASSERT_EQUAL_64(0, x12); - ASSERT_EQUAL_64(1, x13); - ASSERT_EQUAL_64(0xffffffff, x14); - ASSERT_EQUAL_64(0xffffffffffffffff, x15); - ASSERT_EQUAL_64(1, x20); - ASSERT_EQUAL_64(0x100000000UL, x21); - ASSERT_EQUAL_64(0, x22); - ASSERT_EQUAL_64(0xffffffff, x23); - ASSERT_EQUAL_64(0x1fffffffe, x24); - ASSERT_EQUAL_64(0xfffffffe00000002UL, x25); - ASSERT_EQUAL_64(0, x26); - ASSERT_EQUAL_64(0, x27); - - TEARDOWN(); -} - - -TEST(msub) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x16, 0); - __ Mov(x17, 1); - __ Mov(x18, 0xffffffff); - __ Mov(x19, 0xffffffffffffffffUL); - - __ Msub(w0, w16, w16, w16); - __ Msub(w1, w16, w16, w17); - __ Msub(w2, w16, w16, w18); - __ Msub(w3, w16, w16, w19); - __ Msub(w4, w16, w17, w17); - __ Msub(w5, w17, w17, w18); - __ Msub(w6, w17, w17, w19); - __ Msub(w7, w17, w18, w16); - __ Msub(w8, w17, w18, w18); - __ Msub(w9, w18, w18, w17); - __ Msub(w10, w18, w19, w18); - __ Msub(w11, w19, w19, w19); - - __ Msub(x12, x16, x16, x16); - __ Msub(x13, x16, x16, x17); - __ Msub(x14, x16, x16, x18); - __ Msub(x15, x16, x16, x19); - __ Msub(x20, x16, x17, x17); - __ Msub(x21, x17, x17, x18); - __ Msub(x22, x17, x17, x19); - __ Msub(x23, x17, x18, x16); - __ Msub(x24, x17, x18, x18); - __ Msub(x25, x18, x18, x17); - __ Msub(x26, x18, x19, x18); - __ Msub(x27, x19, x19, x19); - - END(); - - RUN(); - - ASSERT_EQUAL_64(0, x0); - ASSERT_EQUAL_64(1, x1); - ASSERT_EQUAL_64(0xffffffff, x2); - ASSERT_EQUAL_64(0xffffffff, x3); - ASSERT_EQUAL_64(1, x4); - ASSERT_EQUAL_64(0xfffffffe, x5); - ASSERT_EQUAL_64(0xfffffffe, x6); - ASSERT_EQUAL_64(1, x7); - ASSERT_EQUAL_64(0, x8); - ASSERT_EQUAL_64(0, x9); - ASSERT_EQUAL_64(0xfffffffe, x10); - ASSERT_EQUAL_64(0xfffffffe, x11); - - ASSERT_EQUAL_64(0, x12); - ASSERT_EQUAL_64(1, x13); - ASSERT_EQUAL_64(0xffffffff, x14); - ASSERT_EQUAL_64(0xffffffffffffffffUL, x15); - ASSERT_EQUAL_64(1, x20); - ASSERT_EQUAL_64(0xfffffffeUL, x21); - ASSERT_EQUAL_64(0xfffffffffffffffeUL, x22); - ASSERT_EQUAL_64(0xffffffff00000001UL, x23); - ASSERT_EQUAL_64(0, x24); - ASSERT_EQUAL_64(0x200000000UL, x25); - ASSERT_EQUAL_64(0x1fffffffeUL, x26); - ASSERT_EQUAL_64(0xfffffffffffffffeUL, x27); - - TEARDOWN(); -} - - -TEST(smulh) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x20, 0); - __ Mov(x21, 1); - __ Mov(x22, 0x0000000100000000L); - __ Mov(x23, 0x12345678); - __ Mov(x24, 0x0123456789abcdefL); - __ Mov(x25, 0x0000000200000000L); - __ Mov(x26, 0x8000000000000000UL); - __ Mov(x27, 0xffffffffffffffffUL); - __ Mov(x28, 0x5555555555555555UL); - __ Mov(x29, 0xaaaaaaaaaaaaaaaaUL); - - __ Smulh(x0, x20, x24); - __ Smulh(x1, x21, x24); - __ Smulh(x2, x22, x23); - __ Smulh(x3, x22, x24); - __ Smulh(x4, x24, x25); - __ Smulh(x5, x23, x27); - __ Smulh(x6, x26, x26); - __ Smulh(x7, x26, x27); - __ Smulh(x8, x27, x27); - __ Smulh(x9, x28, x28); - __ Smulh(x10, x28, x29); - __ Smulh(x11, x29, x29); - END(); - - RUN(); - - ASSERT_EQUAL_64(0, x0); - ASSERT_EQUAL_64(0, x1); - ASSERT_EQUAL_64(0, x2); - ASSERT_EQUAL_64(0x01234567, x3); - ASSERT_EQUAL_64(0x02468acf, x4); - ASSERT_EQUAL_64(0xffffffffffffffffUL, x5); - ASSERT_EQUAL_64(0x4000000000000000UL, x6); - ASSERT_EQUAL_64(0, x7); - ASSERT_EQUAL_64(0, x8); - ASSERT_EQUAL_64(0x1c71c71c71c71c71UL, x9); - ASSERT_EQUAL_64(0xe38e38e38e38e38eUL, x10); - ASSERT_EQUAL_64(0x1c71c71c71c71c72UL, x11); - - TEARDOWN(); -} - - -TEST(smaddl_umaddl) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x17, 1); - __ Mov(x18, 0xffffffff); - __ Mov(x19, 0xffffffffffffffffUL); - __ Mov(x20, 4); - __ Mov(x21, 0x200000000UL); - - __ Smaddl(x9, w17, w18, x20); - __ Smaddl(x10, w18, w18, x20); - __ Smaddl(x11, w19, w19, x20); - __ Smaddl(x12, w19, w19, x21); - __ Umaddl(x13, w17, w18, x20); - __ Umaddl(x14, w18, w18, x20); - __ Umaddl(x15, w19, w19, x20); - __ Umaddl(x22, w19, w19, x21); - END(); - - RUN(); - - ASSERT_EQUAL_64(3, x9); - ASSERT_EQUAL_64(5, x10); - ASSERT_EQUAL_64(5, x11); - ASSERT_EQUAL_64(0x200000001UL, x12); - ASSERT_EQUAL_64(0x100000003UL, x13); - ASSERT_EQUAL_64(0xfffffffe00000005UL, x14); - ASSERT_EQUAL_64(0xfffffffe00000005UL, x15); - ASSERT_EQUAL_64(0x1, x22); - - TEARDOWN(); -} - - -TEST(smsubl_umsubl) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x17, 1); - __ Mov(x18, 0xffffffff); - __ Mov(x19, 0xffffffffffffffffUL); - __ Mov(x20, 4); - __ Mov(x21, 0x200000000UL); - - __ Smsubl(x9, w17, w18, x20); - __ Smsubl(x10, w18, w18, x20); - __ Smsubl(x11, w19, w19, x20); - __ Smsubl(x12, w19, w19, x21); - __ Umsubl(x13, w17, w18, x20); - __ Umsubl(x14, w18, w18, x20); - __ Umsubl(x15, w19, w19, x20); - __ Umsubl(x22, w19, w19, x21); - END(); - - RUN(); - - ASSERT_EQUAL_64(5, x9); - ASSERT_EQUAL_64(3, x10); - ASSERT_EQUAL_64(3, x11); - ASSERT_EQUAL_64(0x1ffffffffUL, x12); - ASSERT_EQUAL_64(0xffffffff00000005UL, x13); - ASSERT_EQUAL_64(0x200000003UL, x14); - ASSERT_EQUAL_64(0x200000003UL, x15); - ASSERT_EQUAL_64(0x3ffffffffUL, x22); - - TEARDOWN(); -} - - -TEST(div) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x16, 1); - __ Mov(x17, 0xffffffff); - __ Mov(x18, 0xffffffffffffffffUL); - __ Mov(x19, 0x80000000); - __ Mov(x20, 0x8000000000000000UL); - __ Mov(x21, 2); - - __ Udiv(w0, w16, w16); - __ Udiv(w1, w17, w16); - __ Sdiv(w2, w16, w16); - __ Sdiv(w3, w16, w17); - __ Sdiv(w4, w17, w18); - - __ Udiv(x5, x16, x16); - __ Udiv(x6, x17, x18); - __ Sdiv(x7, x16, x16); - __ Sdiv(x8, x16, x17); - __ Sdiv(x9, x17, x18); - - __ Udiv(w10, w19, w21); - __ Sdiv(w11, w19, w21); - __ Udiv(x12, x19, x21); - __ Sdiv(x13, x19, x21); - __ Udiv(x14, x20, x21); - __ Sdiv(x15, x20, x21); - - __ Udiv(w22, w19, w17); - __ Sdiv(w23, w19, w17); - __ Udiv(x24, x20, x18); - __ Sdiv(x25, x20, x18); - - __ Udiv(x26, x16, x21); - __ Sdiv(x27, x16, x21); - __ Udiv(x28, x18, x21); - __ Sdiv(x29, x18, x21); - - __ Mov(x17, 0); - __ Udiv(w18, w16, w17); - __ Sdiv(w19, w16, w17); - __ Udiv(x20, x16, x17); - __ Sdiv(x21, x16, x17); - END(); - - RUN(); - - ASSERT_EQUAL_64(1, x0); - ASSERT_EQUAL_64(0xffffffff, x1); - ASSERT_EQUAL_64(1, x2); - ASSERT_EQUAL_64(0xffffffff, x3); - ASSERT_EQUAL_64(1, x4); - ASSERT_EQUAL_64(1, x5); - ASSERT_EQUAL_64(0, x6); - ASSERT_EQUAL_64(1, x7); - ASSERT_EQUAL_64(0, x8); - ASSERT_EQUAL_64(0xffffffff00000001UL, x9); - ASSERT_EQUAL_64(0x40000000, x10); - ASSERT_EQUAL_64(0xC0000000, x11); - ASSERT_EQUAL_64(0x40000000, x12); - ASSERT_EQUAL_64(0x40000000, x13); - ASSERT_EQUAL_64(0x4000000000000000UL, x14); - ASSERT_EQUAL_64(0xC000000000000000UL, x15); - ASSERT_EQUAL_64(0, x22); - ASSERT_EQUAL_64(0x80000000, x23); - ASSERT_EQUAL_64(0, x24); - ASSERT_EQUAL_64(0x8000000000000000UL, x25); - ASSERT_EQUAL_64(0, x26); - ASSERT_EQUAL_64(0, x27); - ASSERT_EQUAL_64(0x7fffffffffffffffUL, x28); - ASSERT_EQUAL_64(0, x29); - ASSERT_EQUAL_64(0, x18); - ASSERT_EQUAL_64(0, x19); - ASSERT_EQUAL_64(0, x20); - ASSERT_EQUAL_64(0, x21); - - TEARDOWN(); -} - - -TEST(rbit_rev) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x24, 0xfedcba9876543210UL); - __ Rbit(w0, w24); - __ Rbit(x1, x24); - __ Rev16(w2, w24); - __ Rev16(x3, x24); - __ Rev(w4, w24); - __ Rev32(x5, x24); - __ Rev(x6, x24); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x084c2a6e, x0); - ASSERT_EQUAL_64(0x084c2a6e195d3b7fUL, x1); - ASSERT_EQUAL_64(0x54761032, x2); - ASSERT_EQUAL_64(0xdcfe98ba54761032UL, x3); - ASSERT_EQUAL_64(0x10325476, x4); - ASSERT_EQUAL_64(0x98badcfe10325476UL, x5); - ASSERT_EQUAL_64(0x1032547698badcfeUL, x6); - - TEARDOWN(); -} - - -TEST(clz_cls) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x24, 0x0008000000800000UL); - __ Mov(x25, 0xff800000fff80000UL); - __ Mov(x26, 0); - __ Clz(w0, w24); - __ Clz(x1, x24); - __ Clz(w2, w25); - __ Clz(x3, x25); - __ Clz(w4, w26); - __ Clz(x5, x26); - __ Cls(w6, w24); - __ Cls(x7, x24); - __ Cls(w8, w25); - __ Cls(x9, x25); - __ Cls(w10, w26); - __ Cls(x11, x26); - END(); - - RUN(); - - ASSERT_EQUAL_64(8, x0); - ASSERT_EQUAL_64(12, x1); - ASSERT_EQUAL_64(0, x2); - ASSERT_EQUAL_64(0, x3); - ASSERT_EQUAL_64(32, x4); - ASSERT_EQUAL_64(64, x5); - ASSERT_EQUAL_64(7, x6); - ASSERT_EQUAL_64(11, x7); - ASSERT_EQUAL_64(12, x8); - ASSERT_EQUAL_64(8, x9); - ASSERT_EQUAL_64(31, x10); - ASSERT_EQUAL_64(63, x11); - - TEARDOWN(); -} - - -TEST(label) { - INIT_V8(); - SETUP(); - - Label label_1, label_2, label_3, label_4; - - START(); - __ Mov(x0, 0x1); - __ Mov(x1, 0x0); - __ Mov(x22, lr); // Save lr. - - __ B(&label_1); - __ B(&label_1); - __ B(&label_1); // Multiple branches to the same label. - __ Mov(x0, 0x0); - __ Bind(&label_2); - __ B(&label_3); // Forward branch. - __ Mov(x0, 0x0); - __ Bind(&label_1); - __ B(&label_2); // Backward branch. - __ Mov(x0, 0x0); - __ Bind(&label_3); - __ Bl(&label_4); - END(); - - __ Bind(&label_4); - __ Mov(x1, 0x1); - __ Mov(lr, x22); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x1, x0); - ASSERT_EQUAL_64(0x1, x1); - - TEARDOWN(); -} - - -TEST(branch_at_start) { - INIT_V8(); - SETUP(); - - Label good, exit; - - // Test that branches can exist at the start of the buffer. (This is a - // boundary condition in the label-handling code.) To achieve this, we have - // to work around the code generated by START. - RESET(); - __ B(&good); - - START_AFTER_RESET(); - __ Mov(x0, 0x0); - END(); - - __ Bind(&exit); - START_AFTER_RESET(); - __ Mov(x0, 0x1); - END(); - - __ Bind(&good); - __ B(&exit); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x1, x0); - TEARDOWN(); -} - - -TEST(adr) { - INIT_V8(); - SETUP(); - - Label label_1, label_2, label_3, label_4; - - START(); - __ Mov(x0, 0x0); // Set to non-zero to indicate failure. - __ Adr(x1, &label_3); // Set to zero to indicate success. - - __ Adr(x2, &label_1); // Multiple forward references to the same label. - __ Adr(x3, &label_1); - __ Adr(x4, &label_1); - - __ Bind(&label_2); - __ Eor(x5, x2, Operand(x3)); // Ensure that x2,x3 and x4 are identical. - __ Eor(x6, x2, Operand(x4)); - __ Orr(x0, x0, Operand(x5)); - __ Orr(x0, x0, Operand(x6)); - __ Br(x2); // label_1, label_3 - - __ Bind(&label_3); - __ Adr(x2, &label_3); // Self-reference (offset 0). - __ Eor(x1, x1, Operand(x2)); - __ Adr(x2, &label_4); // Simple forward reference. - __ Br(x2); // label_4 - - __ Bind(&label_1); - __ Adr(x2, &label_3); // Multiple reverse references to the same label. - __ Adr(x3, &label_3); - __ Adr(x4, &label_3); - __ Adr(x5, &label_2); // Simple reverse reference. - __ Br(x5); // label_2 - - __ Bind(&label_4); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x0, x0); - ASSERT_EQUAL_64(0x0, x1); - - TEARDOWN(); -} - - -TEST(branch_cond) { - INIT_V8(); - SETUP(); - - Label wrong; - - START(); - __ Mov(x0, 0x1); - __ Mov(x1, 0x1); - __ Mov(x2, 0x8000000000000000L); - - // For each 'cmp' instruction below, condition codes other than the ones - // following it would branch. - - __ Cmp(x1, 0); - __ B(&wrong, eq); - __ B(&wrong, lo); - __ B(&wrong, mi); - __ B(&wrong, vs); - __ B(&wrong, ls); - __ B(&wrong, lt); - __ B(&wrong, le); - Label ok_1; - __ B(&ok_1, ne); - __ Mov(x0, 0x0); - __ Bind(&ok_1); - - __ Cmp(x1, 1); - __ B(&wrong, ne); - __ B(&wrong, lo); - __ B(&wrong, mi); - __ B(&wrong, vs); - __ B(&wrong, hi); - __ B(&wrong, lt); - __ B(&wrong, gt); - Label ok_2; - __ B(&ok_2, pl); - __ Mov(x0, 0x0); - __ Bind(&ok_2); - - __ Cmp(x1, 2); - __ B(&wrong, eq); - __ B(&wrong, hs); - __ B(&wrong, pl); - __ B(&wrong, vs); - __ B(&wrong, hi); - __ B(&wrong, ge); - __ B(&wrong, gt); - Label ok_3; - __ B(&ok_3, vc); - __ Mov(x0, 0x0); - __ Bind(&ok_3); - - __ Cmp(x2, 1); - __ B(&wrong, eq); - __ B(&wrong, lo); - __ B(&wrong, mi); - __ B(&wrong, vc); - __ B(&wrong, ls); - __ B(&wrong, ge); - __ B(&wrong, gt); - Label ok_4; - __ B(&ok_4, le); - __ Mov(x0, 0x0); - __ Bind(&ok_4); - - Label ok_5; - __ b(&ok_5, al); - __ Mov(x0, 0x0); - __ Bind(&ok_5); - - Label ok_6; - __ b(&ok_6, nv); - __ Mov(x0, 0x0); - __ Bind(&ok_6); - - END(); - - __ Bind(&wrong); - __ Mov(x0, 0x0); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x1, x0); - - TEARDOWN(); -} - - -TEST(branch_to_reg) { - INIT_V8(); - SETUP(); - - // Test br. - Label fn1, after_fn1; - - START(); - __ Mov(x29, lr); - - __ Mov(x1, 0); - __ B(&after_fn1); - - __ Bind(&fn1); - __ Mov(x0, lr); - __ Mov(x1, 42); - __ Br(x0); - - __ Bind(&after_fn1); - __ Bl(&fn1); - - // Test blr. - Label fn2, after_fn2; - - __ Mov(x2, 0); - __ B(&after_fn2); - - __ Bind(&fn2); - __ Mov(x0, lr); - __ Mov(x2, 84); - __ Blr(x0); - - __ Bind(&after_fn2); - __ Bl(&fn2); - __ Mov(x3, lr); - - __ Mov(lr, x29); - END(); - - RUN(); - - ASSERT_EQUAL_64(core.xreg(3) + kInstructionSize, x0); - ASSERT_EQUAL_64(42, x1); - ASSERT_EQUAL_64(84, x2); - - TEARDOWN(); -} - - -TEST(compare_branch) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0); - __ Mov(x1, 0); - __ Mov(x2, 0); - __ Mov(x3, 0); - __ Mov(x4, 0); - __ Mov(x5, 0); - __ Mov(x16, 0); - __ Mov(x17, 42); - - Label zt, zt_end; - __ Cbz(w16, &zt); - __ B(&zt_end); - __ Bind(&zt); - __ Mov(x0, 1); - __ Bind(&zt_end); - - Label zf, zf_end; - __ Cbz(x17, &zf); - __ B(&zf_end); - __ Bind(&zf); - __ Mov(x1, 1); - __ Bind(&zf_end); - - Label nzt, nzt_end; - __ Cbnz(w17, &nzt); - __ B(&nzt_end); - __ Bind(&nzt); - __ Mov(x2, 1); - __ Bind(&nzt_end); - - Label nzf, nzf_end; - __ Cbnz(x16, &nzf); - __ B(&nzf_end); - __ Bind(&nzf); - __ Mov(x3, 1); - __ Bind(&nzf_end); - - __ Mov(x18, 0xffffffff00000000UL); - - Label a, a_end; - __ Cbz(w18, &a); - __ B(&a_end); - __ Bind(&a); - __ Mov(x4, 1); - __ Bind(&a_end); - - Label b, b_end; - __ Cbnz(w18, &b); - __ B(&b_end); - __ Bind(&b); - __ Mov(x5, 1); - __ Bind(&b_end); - - END(); - - RUN(); - - ASSERT_EQUAL_64(1, x0); - ASSERT_EQUAL_64(0, x1); - ASSERT_EQUAL_64(1, x2); - ASSERT_EQUAL_64(0, x3); - ASSERT_EQUAL_64(1, x4); - ASSERT_EQUAL_64(0, x5); - - TEARDOWN(); -} - - -TEST(test_branch) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0); - __ Mov(x1, 0); - __ Mov(x2, 0); - __ Mov(x3, 0); - __ Mov(x16, 0xaaaaaaaaaaaaaaaaUL); - - Label bz, bz_end; - __ Tbz(w16, 0, &bz); - __ B(&bz_end); - __ Bind(&bz); - __ Mov(x0, 1); - __ Bind(&bz_end); - - Label bo, bo_end; - __ Tbz(x16, 63, &bo); - __ B(&bo_end); - __ Bind(&bo); - __ Mov(x1, 1); - __ Bind(&bo_end); - - Label nbz, nbz_end; - __ Tbnz(x16, 61, &nbz); - __ B(&nbz_end); - __ Bind(&nbz); - __ Mov(x2, 1); - __ Bind(&nbz_end); - - Label nbo, nbo_end; - __ Tbnz(w16, 2, &nbo); - __ B(&nbo_end); - __ Bind(&nbo); - __ Mov(x3, 1); - __ Bind(&nbo_end); - END(); - - RUN(); - - ASSERT_EQUAL_64(1, x0); - ASSERT_EQUAL_64(0, x1); - ASSERT_EQUAL_64(1, x2); - ASSERT_EQUAL_64(0, x3); - - TEARDOWN(); -} - - -TEST(far_branch_backward) { - INIT_V8(); - - // Test that the MacroAssembler correctly resolves backward branches to labels - // that are outside the immediate range of branch instructions. - int max_range = - std::max(Instruction::ImmBranchRange(TestBranchType), - std::max(Instruction::ImmBranchRange(CompareBranchType), - Instruction::ImmBranchRange(CondBranchType))); - - SETUP_SIZE(max_range + 1000 * kInstructionSize); - - START(); - - Label done, fail; - Label test_tbz, test_cbz, test_bcond; - Label success_tbz, success_cbz, success_bcond; - - __ Mov(x0, 0); - __ Mov(x1, 1); - __ Mov(x10, 0); - - __ B(&test_tbz); - __ Bind(&success_tbz); - __ Orr(x0, x0, 1 << 0); - __ B(&test_cbz); - __ Bind(&success_cbz); - __ Orr(x0, x0, 1 << 1); - __ B(&test_bcond); - __ Bind(&success_bcond); - __ Orr(x0, x0, 1 << 2); - - __ B(&done); - - // Generate enough code to overflow the immediate range of the three types of - // branches below. - for (unsigned i = 0; i < max_range / kInstructionSize + 1; ++i) { - if (i % 100 == 0) { - // If we do land in this code, we do not want to execute so many nops - // before reaching the end of test (especially if tracing is activated). - __ B(&fail); - } else { - __ Nop(); - } - } - __ B(&fail); - - __ Bind(&test_tbz); - __ Tbz(x10, 7, &success_tbz); - __ Bind(&test_cbz); - __ Cbz(x10, &success_cbz); - __ Bind(&test_bcond); - __ Cmp(x10, 0); - __ B(eq, &success_bcond); - - // For each out-of-range branch instructions, at least two instructions should - // have been generated. - CHECK_GE(7 * kInstructionSize, __ SizeOfCodeGeneratedSince(&test_tbz)); - - __ Bind(&fail); - __ Mov(x1, 0); - __ Bind(&done); - - END(); - - RUN(); - - ASSERT_EQUAL_64(0x7, x0); - ASSERT_EQUAL_64(0x1, x1); - - TEARDOWN(); -} - - -TEST(far_branch_simple_veneer) { - INIT_V8(); - - // Test that the MacroAssembler correctly emits veneers for forward branches - // to labels that are outside the immediate range of branch instructions. - int max_range = - std::max(Instruction::ImmBranchRange(TestBranchType), - std::max(Instruction::ImmBranchRange(CompareBranchType), - Instruction::ImmBranchRange(CondBranchType))); - - SETUP_SIZE(max_range + 1000 * kInstructionSize); - - START(); - - Label done, fail; - Label test_tbz, test_cbz, test_bcond; - Label success_tbz, success_cbz, success_bcond; - - __ Mov(x0, 0); - __ Mov(x1, 1); - __ Mov(x10, 0); - - __ Bind(&test_tbz); - __ Tbz(x10, 7, &success_tbz); - __ Bind(&test_cbz); - __ Cbz(x10, &success_cbz); - __ Bind(&test_bcond); - __ Cmp(x10, 0); - __ B(eq, &success_bcond); - - // Generate enough code to overflow the immediate range of the three types of - // branches below. - for (unsigned i = 0; i < max_range / kInstructionSize + 1; ++i) { - if (i % 100 == 0) { - // If we do land in this code, we do not want to execute so many nops - // before reaching the end of test (especially if tracing is activated). - // Also, the branches give the MacroAssembler the opportunity to emit the - // veneers. - __ B(&fail); - } else { - __ Nop(); - } - } - __ B(&fail); - - __ Bind(&success_tbz); - __ Orr(x0, x0, 1 << 0); - __ B(&test_cbz); - __ Bind(&success_cbz); - __ Orr(x0, x0, 1 << 1); - __ B(&test_bcond); - __ Bind(&success_bcond); - __ Orr(x0, x0, 1 << 2); - - __ B(&done); - __ Bind(&fail); - __ Mov(x1, 0); - __ Bind(&done); - - END(); - - RUN(); - - ASSERT_EQUAL_64(0x7, x0); - ASSERT_EQUAL_64(0x1, x1); - - TEARDOWN(); -} - - -TEST(far_branch_veneer_link_chain) { - INIT_V8(); - - // Test that the MacroAssembler correctly emits veneers for forward branches - // that target out-of-range labels and are part of multiple instructions - // jumping to that label. - // - // We test the three situations with the different types of instruction: - // (1)- When the branch is at the start of the chain with tbz. - // (2)- When the branch is in the middle of the chain with cbz. - // (3)- When the branch is at the end of the chain with bcond. - int max_range = - std::max(Instruction::ImmBranchRange(TestBranchType), - std::max(Instruction::ImmBranchRange(CompareBranchType), - Instruction::ImmBranchRange(CondBranchType))); - - SETUP_SIZE(max_range + 1000 * kInstructionSize); - - START(); - - Label skip, fail, done; - Label test_tbz, test_cbz, test_bcond; - Label success_tbz, success_cbz, success_bcond; - - __ Mov(x0, 0); - __ Mov(x1, 1); - __ Mov(x10, 0); - - __ B(&skip); - // Branches at the start of the chain for situations (2) and (3). - __ B(&success_cbz); - __ B(&success_bcond); - __ Nop(); - __ B(&success_bcond); - __ B(&success_cbz); - __ Bind(&skip); - - __ Bind(&test_tbz); - __ Tbz(x10, 7, &success_tbz); - __ Bind(&test_cbz); - __ Cbz(x10, &success_cbz); - __ Bind(&test_bcond); - __ Cmp(x10, 0); - __ B(eq, &success_bcond); - - skip.Unuse(); - __ B(&skip); - // Branches at the end of the chain for situations (1) and (2). - __ B(&success_cbz); - __ B(&success_tbz); - __ Nop(); - __ B(&success_tbz); - __ B(&success_cbz); - __ Bind(&skip); - - // Generate enough code to overflow the immediate range of the three types of - // branches below. - for (unsigned i = 0; i < max_range / kInstructionSize + 1; ++i) { - if (i % 100 == 0) { - // If we do land in this code, we do not want to execute so many nops - // before reaching the end of test (especially if tracing is activated). - // Also, the branches give the MacroAssembler the opportunity to emit the - // veneers. - __ B(&fail); - } else { - __ Nop(); - } - } - __ B(&fail); - - __ Bind(&success_tbz); - __ Orr(x0, x0, 1 << 0); - __ B(&test_cbz); - __ Bind(&success_cbz); - __ Orr(x0, x0, 1 << 1); - __ B(&test_bcond); - __ Bind(&success_bcond); - __ Orr(x0, x0, 1 << 2); - - __ B(&done); - __ Bind(&fail); - __ Mov(x1, 0); - __ Bind(&done); - - END(); - - RUN(); - - ASSERT_EQUAL_64(0x7, x0); - ASSERT_EQUAL_64(0x1, x1); - - TEARDOWN(); -} - - -TEST(far_branch_veneer_broken_link_chain) { - INIT_V8(); - - // Check that the MacroAssembler correctly handles the situation when removing - // a branch from the link chain of a label and the two links on each side of - // the removed branch cannot be linked together (out of range). - // - // We test with tbz because it has a small range. - int max_range = Instruction::ImmBranchRange(TestBranchType); - int inter_range = max_range / 2 + max_range / 10; - - SETUP_SIZE(3 * inter_range + 1000 * kInstructionSize); - - START(); - - Label skip, fail, done; - Label test_1, test_2, test_3; - Label far_target; - - __ Mov(x0, 0); // Indicates the origin of the branch. - __ Mov(x1, 1); - __ Mov(x10, 0); - - // First instruction in the label chain. - __ Bind(&test_1); - __ Mov(x0, 1); - __ B(&far_target); - - for (unsigned i = 0; i < inter_range / kInstructionSize; ++i) { - if (i % 100 == 0) { - // Do not allow generating veneers. They should not be needed. - __ b(&fail); - } else { - __ Nop(); - } - } - - // Will need a veneer to point to reach the target. - __ Bind(&test_2); - __ Mov(x0, 2); - __ Tbz(x10, 7, &far_target); - - for (unsigned i = 0; i < inter_range / kInstructionSize; ++i) { - if (i % 100 == 0) { - // Do not allow generating veneers. They should not be needed. - __ b(&fail); - } else { - __ Nop(); - } - } - - // Does not need a veneer to reach the target, but the initial branch - // instruction is out of range. - __ Bind(&test_3); - __ Mov(x0, 3); - __ Tbz(x10, 7, &far_target); - - for (unsigned i = 0; i < inter_range / kInstructionSize; ++i) { - if (i % 100 == 0) { - // Allow generating veneers. - __ B(&fail); - } else { - __ Nop(); - } - } - - __ B(&fail); - - __ Bind(&far_target); - __ Cmp(x0, 1); - __ B(eq, &test_2); - __ Cmp(x0, 2); - __ B(eq, &test_3); - - __ B(&done); - __ Bind(&fail); - __ Mov(x1, 0); - __ Bind(&done); - - END(); - - RUN(); - - ASSERT_EQUAL_64(0x3, x0); - ASSERT_EQUAL_64(0x1, x1); - - TEARDOWN(); -} - - -TEST(ldr_str_offset) { - INIT_V8(); - SETUP(); - - uint64_t src[2] = {0xfedcba9876543210UL, 0x0123456789abcdefUL}; - uint64_t dst[5] = {0, 0, 0, 0, 0}; - uintptr_t src_base = reinterpret_cast<uintptr_t>(src); - uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); - - START(); - __ Mov(x17, src_base); - __ Mov(x18, dst_base); - __ Ldr(w0, MemOperand(x17)); - __ Str(w0, MemOperand(x18)); - __ Ldr(w1, MemOperand(x17, 4)); - __ Str(w1, MemOperand(x18, 12)); - __ Ldr(x2, MemOperand(x17, 8)); - __ Str(x2, MemOperand(x18, 16)); - __ Ldrb(w3, MemOperand(x17, 1)); - __ Strb(w3, MemOperand(x18, 25)); - __ Ldrh(w4, MemOperand(x17, 2)); - __ Strh(w4, MemOperand(x18, 33)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x76543210, x0); - ASSERT_EQUAL_64(0x76543210, dst[0]); - ASSERT_EQUAL_64(0xfedcba98, x1); - ASSERT_EQUAL_64(0xfedcba9800000000UL, dst[1]); - ASSERT_EQUAL_64(0x0123456789abcdefUL, x2); - ASSERT_EQUAL_64(0x0123456789abcdefUL, dst[2]); - ASSERT_EQUAL_64(0x32, x3); - ASSERT_EQUAL_64(0x3200, dst[3]); - ASSERT_EQUAL_64(0x7654, x4); - ASSERT_EQUAL_64(0x765400, dst[4]); - ASSERT_EQUAL_64(src_base, x17); - ASSERT_EQUAL_64(dst_base, x18); - - TEARDOWN(); -} - - -TEST(ldr_str_wide) { - INIT_V8(); - SETUP(); - - uint32_t src[8192]; - uint32_t dst[8192]; - uintptr_t src_base = reinterpret_cast<uintptr_t>(src); - uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); - memset(src, 0xaa, 8192 * sizeof(src[0])); - memset(dst, 0xaa, 8192 * sizeof(dst[0])); - src[0] = 0; - src[6144] = 6144; - src[8191] = 8191; - - START(); - __ Mov(x22, src_base); - __ Mov(x23, dst_base); - __ Mov(x24, src_base); - __ Mov(x25, dst_base); - __ Mov(x26, src_base); - __ Mov(x27, dst_base); - - __ Ldr(w0, MemOperand(x22, 8191 * sizeof(src[0]))); - __ Str(w0, MemOperand(x23, 8191 * sizeof(dst[0]))); - __ Ldr(w1, MemOperand(x24, 4096 * sizeof(src[0]), PostIndex)); - __ Str(w1, MemOperand(x25, 4096 * sizeof(dst[0]), PostIndex)); - __ Ldr(w2, MemOperand(x26, 6144 * sizeof(src[0]), PreIndex)); - __ Str(w2, MemOperand(x27, 6144 * sizeof(dst[0]), PreIndex)); - END(); - - RUN(); - - ASSERT_EQUAL_32(8191, w0); - ASSERT_EQUAL_32(8191, dst[8191]); - ASSERT_EQUAL_64(src_base, x22); - ASSERT_EQUAL_64(dst_base, x23); - ASSERT_EQUAL_32(0, w1); - ASSERT_EQUAL_32(0, dst[0]); - ASSERT_EQUAL_64(src_base + 4096 * sizeof(src[0]), x24); - ASSERT_EQUAL_64(dst_base + 4096 * sizeof(dst[0]), x25); - ASSERT_EQUAL_32(6144, w2); - ASSERT_EQUAL_32(6144, dst[6144]); - ASSERT_EQUAL_64(src_base + 6144 * sizeof(src[0]), x26); - ASSERT_EQUAL_64(dst_base + 6144 * sizeof(dst[0]), x27); - - TEARDOWN(); -} - - -TEST(ldr_str_preindex) { - INIT_V8(); - SETUP(); - - uint64_t src[2] = {0xfedcba9876543210UL, 0x0123456789abcdefUL}; - uint64_t dst[6] = {0, 0, 0, 0, 0, 0}; - uintptr_t src_base = reinterpret_cast<uintptr_t>(src); - uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); - - START(); - __ Mov(x17, src_base); - __ Mov(x18, dst_base); - __ Mov(x19, src_base); - __ Mov(x20, dst_base); - __ Mov(x21, src_base + 16); - __ Mov(x22, dst_base + 40); - __ Mov(x23, src_base); - __ Mov(x24, dst_base); - __ Mov(x25, src_base); - __ Mov(x26, dst_base); - __ Ldr(w0, MemOperand(x17, 4, PreIndex)); - __ Str(w0, MemOperand(x18, 12, PreIndex)); - __ Ldr(x1, MemOperand(x19, 8, PreIndex)); - __ Str(x1, MemOperand(x20, 16, PreIndex)); - __ Ldr(w2, MemOperand(x21, -4, PreIndex)); - __ Str(w2, MemOperand(x22, -4, PreIndex)); - __ Ldrb(w3, MemOperand(x23, 1, PreIndex)); - __ Strb(w3, MemOperand(x24, 25, PreIndex)); - __ Ldrh(w4, MemOperand(x25, 3, PreIndex)); - __ Strh(w4, MemOperand(x26, 41, PreIndex)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0xfedcba98, x0); - ASSERT_EQUAL_64(0xfedcba9800000000UL, dst[1]); - ASSERT_EQUAL_64(0x0123456789abcdefUL, x1); - ASSERT_EQUAL_64(0x0123456789abcdefUL, dst[2]); - ASSERT_EQUAL_64(0x01234567, x2); - ASSERT_EQUAL_64(0x0123456700000000UL, dst[4]); - ASSERT_EQUAL_64(0x32, x3); - ASSERT_EQUAL_64(0x3200, dst[3]); - ASSERT_EQUAL_64(0x9876, x4); - ASSERT_EQUAL_64(0x987600, dst[5]); - ASSERT_EQUAL_64(src_base + 4, x17); - ASSERT_EQUAL_64(dst_base + 12, x18); - ASSERT_EQUAL_64(src_base + 8, x19); - ASSERT_EQUAL_64(dst_base + 16, x20); - ASSERT_EQUAL_64(src_base + 12, x21); - ASSERT_EQUAL_64(dst_base + 36, x22); - ASSERT_EQUAL_64(src_base + 1, x23); - ASSERT_EQUAL_64(dst_base + 25, x24); - ASSERT_EQUAL_64(src_base + 3, x25); - ASSERT_EQUAL_64(dst_base + 41, x26); - - TEARDOWN(); -} - - -TEST(ldr_str_postindex) { - INIT_V8(); - SETUP(); - - uint64_t src[2] = {0xfedcba9876543210UL, 0x0123456789abcdefUL}; - uint64_t dst[6] = {0, 0, 0, 0, 0, 0}; - uintptr_t src_base = reinterpret_cast<uintptr_t>(src); - uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); - - START(); - __ Mov(x17, src_base + 4); - __ Mov(x18, dst_base + 12); - __ Mov(x19, src_base + 8); - __ Mov(x20, dst_base + 16); - __ Mov(x21, src_base + 8); - __ Mov(x22, dst_base + 32); - __ Mov(x23, src_base + 1); - __ Mov(x24, dst_base + 25); - __ Mov(x25, src_base + 3); - __ Mov(x26, dst_base + 41); - __ Ldr(w0, MemOperand(x17, 4, PostIndex)); - __ Str(w0, MemOperand(x18, 12, PostIndex)); - __ Ldr(x1, MemOperand(x19, 8, PostIndex)); - __ Str(x1, MemOperand(x20, 16, PostIndex)); - __ Ldr(x2, MemOperand(x21, -8, PostIndex)); - __ Str(x2, MemOperand(x22, -32, PostIndex)); - __ Ldrb(w3, MemOperand(x23, 1, PostIndex)); - __ Strb(w3, MemOperand(x24, 5, PostIndex)); - __ Ldrh(w4, MemOperand(x25, -3, PostIndex)); - __ Strh(w4, MemOperand(x26, -41, PostIndex)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0xfedcba98, x0); - ASSERT_EQUAL_64(0xfedcba9800000000UL, dst[1]); - ASSERT_EQUAL_64(0x0123456789abcdefUL, x1); - ASSERT_EQUAL_64(0x0123456789abcdefUL, dst[2]); - ASSERT_EQUAL_64(0x0123456789abcdefUL, x2); - ASSERT_EQUAL_64(0x0123456789abcdefUL, dst[4]); - ASSERT_EQUAL_64(0x32, x3); - ASSERT_EQUAL_64(0x3200, dst[3]); - ASSERT_EQUAL_64(0x9876, x4); - ASSERT_EQUAL_64(0x987600, dst[5]); - ASSERT_EQUAL_64(src_base + 8, x17); - ASSERT_EQUAL_64(dst_base + 24, x18); - ASSERT_EQUAL_64(src_base + 16, x19); - ASSERT_EQUAL_64(dst_base + 32, x20); - ASSERT_EQUAL_64(src_base, x21); - ASSERT_EQUAL_64(dst_base, x22); - ASSERT_EQUAL_64(src_base + 2, x23); - ASSERT_EQUAL_64(dst_base + 30, x24); - ASSERT_EQUAL_64(src_base, x25); - ASSERT_EQUAL_64(dst_base, x26); - - TEARDOWN(); -} - - -TEST(load_signed) { - INIT_V8(); - SETUP(); - - uint32_t src[2] = {0x80008080, 0x7fff7f7f}; - uintptr_t src_base = reinterpret_cast<uintptr_t>(src); - - START(); - __ Mov(x24, src_base); - __ Ldrsb(w0, MemOperand(x24)); - __ Ldrsb(w1, MemOperand(x24, 4)); - __ Ldrsh(w2, MemOperand(x24)); - __ Ldrsh(w3, MemOperand(x24, 4)); - __ Ldrsb(x4, MemOperand(x24)); - __ Ldrsb(x5, MemOperand(x24, 4)); - __ Ldrsh(x6, MemOperand(x24)); - __ Ldrsh(x7, MemOperand(x24, 4)); - __ Ldrsw(x8, MemOperand(x24)); - __ Ldrsw(x9, MemOperand(x24, 4)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0xffffff80, x0); - ASSERT_EQUAL_64(0x0000007f, x1); - ASSERT_EQUAL_64(0xffff8080, x2); - ASSERT_EQUAL_64(0x00007f7f, x3); - ASSERT_EQUAL_64(0xffffffffffffff80UL, x4); - ASSERT_EQUAL_64(0x000000000000007fUL, x5); - ASSERT_EQUAL_64(0xffffffffffff8080UL, x6); - ASSERT_EQUAL_64(0x0000000000007f7fUL, x7); - ASSERT_EQUAL_64(0xffffffff80008080UL, x8); - ASSERT_EQUAL_64(0x000000007fff7f7fUL, x9); - - TEARDOWN(); -} - - -TEST(load_store_regoffset) { - INIT_V8(); - SETUP(); - - uint32_t src[3] = {1, 2, 3}; - uint32_t dst[4] = {0, 0, 0, 0}; - uintptr_t src_base = reinterpret_cast<uintptr_t>(src); - uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); - - START(); - __ Mov(x16, src_base); - __ Mov(x17, dst_base); - __ Mov(x18, src_base + 3 * sizeof(src[0])); - __ Mov(x19, dst_base + 3 * sizeof(dst[0])); - __ Mov(x20, dst_base + 4 * sizeof(dst[0])); - __ Mov(x24, 0); - __ Mov(x25, 4); - __ Mov(x26, -4); - __ Mov(x27, 0xfffffffc); // 32-bit -4. - __ Mov(x28, 0xfffffffe); // 32-bit -2. - __ Mov(x29, 0xffffffff); // 32-bit -1. - - __ Ldr(w0, MemOperand(x16, x24)); - __ Ldr(x1, MemOperand(x16, x25)); - __ Ldr(w2, MemOperand(x18, x26)); - __ Ldr(w3, MemOperand(x18, x27, SXTW)); - __ Ldr(w4, MemOperand(x18, x28, SXTW, 2)); - __ Str(w0, MemOperand(x17, x24)); - __ Str(x1, MemOperand(x17, x25)); - __ Str(w2, MemOperand(x20, x29, SXTW, 2)); - END(); - - RUN(); - - ASSERT_EQUAL_64(1, x0); - ASSERT_EQUAL_64(0x0000000300000002UL, x1); - ASSERT_EQUAL_64(3, x2); - ASSERT_EQUAL_64(3, x3); - ASSERT_EQUAL_64(2, x4); - ASSERT_EQUAL_32(1, dst[0]); - ASSERT_EQUAL_32(2, dst[1]); - ASSERT_EQUAL_32(3, dst[2]); - ASSERT_EQUAL_32(3, dst[3]); - - TEARDOWN(); -} - - -TEST(load_store_float) { - INIT_V8(); - SETUP(); - - float src[3] = {1.0, 2.0, 3.0}; - float dst[3] = {0.0, 0.0, 0.0}; - uintptr_t src_base = reinterpret_cast<uintptr_t>(src); - uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); - - START(); - __ Mov(x17, src_base); - __ Mov(x18, dst_base); - __ Mov(x19, src_base); - __ Mov(x20, dst_base); - __ Mov(x21, src_base); - __ Mov(x22, dst_base); - __ Ldr(s0, MemOperand(x17, sizeof(src[0]))); - __ Str(s0, MemOperand(x18, sizeof(dst[0]), PostIndex)); - __ Ldr(s1, MemOperand(x19, sizeof(src[0]), PostIndex)); - __ Str(s1, MemOperand(x20, 2 * sizeof(dst[0]), PreIndex)); - __ Ldr(s2, MemOperand(x21, 2 * sizeof(src[0]), PreIndex)); - __ Str(s2, MemOperand(x22, sizeof(dst[0]))); - END(); - - RUN(); - - ASSERT_EQUAL_FP32(2.0, s0); - ASSERT_EQUAL_FP32(2.0, dst[0]); - ASSERT_EQUAL_FP32(1.0, s1); - ASSERT_EQUAL_FP32(1.0, dst[2]); - ASSERT_EQUAL_FP32(3.0, s2); - ASSERT_EQUAL_FP32(3.0, dst[1]); - ASSERT_EQUAL_64(src_base, x17); - ASSERT_EQUAL_64(dst_base + sizeof(dst[0]), x18); - ASSERT_EQUAL_64(src_base + sizeof(src[0]), x19); - ASSERT_EQUAL_64(dst_base + 2 * sizeof(dst[0]), x20); - ASSERT_EQUAL_64(src_base + 2 * sizeof(src[0]), x21); - ASSERT_EQUAL_64(dst_base, x22); - - TEARDOWN(); -} - - -TEST(load_store_double) { - INIT_V8(); - SETUP(); - - double src[3] = {1.0, 2.0, 3.0}; - double dst[3] = {0.0, 0.0, 0.0}; - uintptr_t src_base = reinterpret_cast<uintptr_t>(src); - uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); - - START(); - __ Mov(x17, src_base); - __ Mov(x18, dst_base); - __ Mov(x19, src_base); - __ Mov(x20, dst_base); - __ Mov(x21, src_base); - __ Mov(x22, dst_base); - __ Ldr(d0, MemOperand(x17, sizeof(src[0]))); - __ Str(d0, MemOperand(x18, sizeof(dst[0]), PostIndex)); - __ Ldr(d1, MemOperand(x19, sizeof(src[0]), PostIndex)); - __ Str(d1, MemOperand(x20, 2 * sizeof(dst[0]), PreIndex)); - __ Ldr(d2, MemOperand(x21, 2 * sizeof(src[0]), PreIndex)); - __ Str(d2, MemOperand(x22, sizeof(dst[0]))); - END(); - - RUN(); - - ASSERT_EQUAL_FP64(2.0, d0); - ASSERT_EQUAL_FP64(2.0, dst[0]); - ASSERT_EQUAL_FP64(1.0, d1); - ASSERT_EQUAL_FP64(1.0, dst[2]); - ASSERT_EQUAL_FP64(3.0, d2); - ASSERT_EQUAL_FP64(3.0, dst[1]); - ASSERT_EQUAL_64(src_base, x17); - ASSERT_EQUAL_64(dst_base + sizeof(dst[0]), x18); - ASSERT_EQUAL_64(src_base + sizeof(src[0]), x19); - ASSERT_EQUAL_64(dst_base + 2 * sizeof(dst[0]), x20); - ASSERT_EQUAL_64(src_base + 2 * sizeof(src[0]), x21); - ASSERT_EQUAL_64(dst_base, x22); - - TEARDOWN(); -} - - -TEST(ldp_stp_float) { - INIT_V8(); - SETUP(); - - float src[2] = {1.0, 2.0}; - float dst[3] = {0.0, 0.0, 0.0}; - uintptr_t src_base = reinterpret_cast<uintptr_t>(src); - uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); - - START(); - __ Mov(x16, src_base); - __ Mov(x17, dst_base); - __ Ldp(s31, s0, MemOperand(x16, 2 * sizeof(src[0]), PostIndex)); - __ Stp(s0, s31, MemOperand(x17, sizeof(dst[1]), PreIndex)); - END(); - - RUN(); - - ASSERT_EQUAL_FP32(1.0, s31); - ASSERT_EQUAL_FP32(2.0, s0); - ASSERT_EQUAL_FP32(0.0, dst[0]); - ASSERT_EQUAL_FP32(2.0, dst[1]); - ASSERT_EQUAL_FP32(1.0, dst[2]); - ASSERT_EQUAL_64(src_base + 2 * sizeof(src[0]), x16); - ASSERT_EQUAL_64(dst_base + sizeof(dst[1]), x17); - - TEARDOWN(); -} - - -TEST(ldp_stp_double) { - INIT_V8(); - SETUP(); - - double src[2] = {1.0, 2.0}; - double dst[3] = {0.0, 0.0, 0.0}; - uintptr_t src_base = reinterpret_cast<uintptr_t>(src); - uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); - - START(); - __ Mov(x16, src_base); - __ Mov(x17, dst_base); - __ Ldp(d31, d0, MemOperand(x16, 2 * sizeof(src[0]), PostIndex)); - __ Stp(d0, d31, MemOperand(x17, sizeof(dst[1]), PreIndex)); - END(); - - RUN(); - - ASSERT_EQUAL_FP64(1.0, d31); - ASSERT_EQUAL_FP64(2.0, d0); - ASSERT_EQUAL_FP64(0.0, dst[0]); - ASSERT_EQUAL_FP64(2.0, dst[1]); - ASSERT_EQUAL_FP64(1.0, dst[2]); - ASSERT_EQUAL_64(src_base + 2 * sizeof(src[0]), x16); - ASSERT_EQUAL_64(dst_base + sizeof(dst[1]), x17); - - TEARDOWN(); -} - - -TEST(ldp_stp_offset) { - INIT_V8(); - SETUP(); - - uint64_t src[3] = {0x0011223344556677UL, 0x8899aabbccddeeffUL, - 0xffeeddccbbaa9988UL}; - uint64_t dst[7] = {0, 0, 0, 0, 0, 0, 0}; - uintptr_t src_base = reinterpret_cast<uintptr_t>(src); - uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); - - START(); - __ Mov(x16, src_base); - __ Mov(x17, dst_base); - __ Mov(x18, src_base + 24); - __ Mov(x19, dst_base + 56); - __ Ldp(w0, w1, MemOperand(x16)); - __ Ldp(w2, w3, MemOperand(x16, 4)); - __ Ldp(x4, x5, MemOperand(x16, 8)); - __ Ldp(w6, w7, MemOperand(x18, -12)); - __ Ldp(x8, x9, MemOperand(x18, -16)); - __ Stp(w0, w1, MemOperand(x17)); - __ Stp(w2, w3, MemOperand(x17, 8)); - __ Stp(x4, x5, MemOperand(x17, 16)); - __ Stp(w6, w7, MemOperand(x19, -24)); - __ Stp(x8, x9, MemOperand(x19, -16)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x44556677, x0); - ASSERT_EQUAL_64(0x00112233, x1); - ASSERT_EQUAL_64(0x0011223344556677UL, dst[0]); - ASSERT_EQUAL_64(0x00112233, x2); - ASSERT_EQUAL_64(0xccddeeff, x3); - ASSERT_EQUAL_64(0xccddeeff00112233UL, dst[1]); - ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x4); - ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[2]); - ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x5); - ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[3]); - ASSERT_EQUAL_64(0x8899aabb, x6); - ASSERT_EQUAL_64(0xbbaa9988, x7); - ASSERT_EQUAL_64(0xbbaa99888899aabbUL, dst[4]); - ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x8); - ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[5]); - ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x9); - ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[6]); - ASSERT_EQUAL_64(src_base, x16); - ASSERT_EQUAL_64(dst_base, x17); - ASSERT_EQUAL_64(src_base + 24, x18); - ASSERT_EQUAL_64(dst_base + 56, x19); - - TEARDOWN(); -} - - -TEST(ldnp_stnp_offset) { - INIT_V8(); - SETUP(); - - uint64_t src[3] = {0x0011223344556677UL, 0x8899aabbccddeeffUL, - 0xffeeddccbbaa9988UL}; - uint64_t dst[7] = {0, 0, 0, 0, 0, 0, 0}; - uintptr_t src_base = reinterpret_cast<uintptr_t>(src); - uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); - - START(); - __ Mov(x16, src_base); - __ Mov(x17, dst_base); - __ Mov(x18, src_base + 24); - __ Mov(x19, dst_base + 56); - __ Ldnp(w0, w1, MemOperand(x16)); - __ Ldnp(w2, w3, MemOperand(x16, 4)); - __ Ldnp(x4, x5, MemOperand(x16, 8)); - __ Ldnp(w6, w7, MemOperand(x18, -12)); - __ Ldnp(x8, x9, MemOperand(x18, -16)); - __ Stnp(w0, w1, MemOperand(x17)); - __ Stnp(w2, w3, MemOperand(x17, 8)); - __ Stnp(x4, x5, MemOperand(x17, 16)); - __ Stnp(w6, w7, MemOperand(x19, -24)); - __ Stnp(x8, x9, MemOperand(x19, -16)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x44556677, x0); - ASSERT_EQUAL_64(0x00112233, x1); - ASSERT_EQUAL_64(0x0011223344556677UL, dst[0]); - ASSERT_EQUAL_64(0x00112233, x2); - ASSERT_EQUAL_64(0xccddeeff, x3); - ASSERT_EQUAL_64(0xccddeeff00112233UL, dst[1]); - ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x4); - ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[2]); - ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x5); - ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[3]); - ASSERT_EQUAL_64(0x8899aabb, x6); - ASSERT_EQUAL_64(0xbbaa9988, x7); - ASSERT_EQUAL_64(0xbbaa99888899aabbUL, dst[4]); - ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x8); - ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[5]); - ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x9); - ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[6]); - ASSERT_EQUAL_64(src_base, x16); - ASSERT_EQUAL_64(dst_base, x17); - ASSERT_EQUAL_64(src_base + 24, x18); - ASSERT_EQUAL_64(dst_base + 56, x19); - - TEARDOWN(); -} - - -TEST(ldp_stp_preindex) { - INIT_V8(); - SETUP(); - - uint64_t src[3] = {0x0011223344556677UL, 0x8899aabbccddeeffUL, - 0xffeeddccbbaa9988UL}; - uint64_t dst[5] = {0, 0, 0, 0, 0}; - uintptr_t src_base = reinterpret_cast<uintptr_t>(src); - uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); - - START(); - __ Mov(x16, src_base); - __ Mov(x17, dst_base); - __ Mov(x18, dst_base + 16); - __ Ldp(w0, w1, MemOperand(x16, 4, PreIndex)); - __ Mov(x19, x16); - __ Ldp(w2, w3, MemOperand(x16, -4, PreIndex)); - __ Stp(w2, w3, MemOperand(x17, 4, PreIndex)); - __ Mov(x20, x17); - __ Stp(w0, w1, MemOperand(x17, -4, PreIndex)); - __ Ldp(x4, x5, MemOperand(x16, 8, PreIndex)); - __ Mov(x21, x16); - __ Ldp(x6, x7, MemOperand(x16, -8, PreIndex)); - __ Stp(x7, x6, MemOperand(x18, 8, PreIndex)); - __ Mov(x22, x18); - __ Stp(x5, x4, MemOperand(x18, -8, PreIndex)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x00112233, x0); - ASSERT_EQUAL_64(0xccddeeff, x1); - ASSERT_EQUAL_64(0x44556677, x2); - ASSERT_EQUAL_64(0x00112233, x3); - ASSERT_EQUAL_64(0xccddeeff00112233UL, dst[0]); - ASSERT_EQUAL_64(0x0000000000112233UL, dst[1]); - ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x4); - ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x5); - ASSERT_EQUAL_64(0x0011223344556677UL, x6); - ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x7); - ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[2]); - ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[3]); - ASSERT_EQUAL_64(0x0011223344556677UL, dst[4]); - ASSERT_EQUAL_64(src_base, x16); - ASSERT_EQUAL_64(dst_base, x17); - ASSERT_EQUAL_64(dst_base + 16, x18); - ASSERT_EQUAL_64(src_base + 4, x19); - ASSERT_EQUAL_64(dst_base + 4, x20); - ASSERT_EQUAL_64(src_base + 8, x21); - ASSERT_EQUAL_64(dst_base + 24, x22); - - TEARDOWN(); -} - - -TEST(ldp_stp_postindex) { - INIT_V8(); - SETUP(); - - uint64_t src[4] = {0x0011223344556677UL, 0x8899aabbccddeeffUL, - 0xffeeddccbbaa9988UL, 0x7766554433221100UL}; - uint64_t dst[5] = {0, 0, 0, 0, 0}; - uintptr_t src_base = reinterpret_cast<uintptr_t>(src); - uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); - - START(); - __ Mov(x16, src_base); - __ Mov(x17, dst_base); - __ Mov(x18, dst_base + 16); - __ Ldp(w0, w1, MemOperand(x16, 4, PostIndex)); - __ Mov(x19, x16); - __ Ldp(w2, w3, MemOperand(x16, -4, PostIndex)); - __ Stp(w2, w3, MemOperand(x17, 4, PostIndex)); - __ Mov(x20, x17); - __ Stp(w0, w1, MemOperand(x17, -4, PostIndex)); - __ Ldp(x4, x5, MemOperand(x16, 8, PostIndex)); - __ Mov(x21, x16); - __ Ldp(x6, x7, MemOperand(x16, -8, PostIndex)); - __ Stp(x7, x6, MemOperand(x18, 8, PostIndex)); - __ Mov(x22, x18); - __ Stp(x5, x4, MemOperand(x18, -8, PostIndex)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x44556677, x0); - ASSERT_EQUAL_64(0x00112233, x1); - ASSERT_EQUAL_64(0x00112233, x2); - ASSERT_EQUAL_64(0xccddeeff, x3); - ASSERT_EQUAL_64(0x4455667700112233UL, dst[0]); - ASSERT_EQUAL_64(0x0000000000112233UL, dst[1]); - ASSERT_EQUAL_64(0x0011223344556677UL, x4); - ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x5); - ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x6); - ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x7); - ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[2]); - ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[3]); - ASSERT_EQUAL_64(0x0011223344556677UL, dst[4]); - ASSERT_EQUAL_64(src_base, x16); - ASSERT_EQUAL_64(dst_base, x17); - ASSERT_EQUAL_64(dst_base + 16, x18); - ASSERT_EQUAL_64(src_base + 4, x19); - ASSERT_EQUAL_64(dst_base + 4, x20); - ASSERT_EQUAL_64(src_base + 8, x21); - ASSERT_EQUAL_64(dst_base + 24, x22); - - TEARDOWN(); -} - - -TEST(ldp_sign_extend) { - INIT_V8(); - SETUP(); - - uint32_t src[2] = {0x80000000, 0x7fffffff}; - uintptr_t src_base = reinterpret_cast<uintptr_t>(src); - - START(); - __ Mov(x24, src_base); - __ Ldpsw(x0, x1, MemOperand(x24)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0xffffffff80000000UL, x0); - ASSERT_EQUAL_64(0x000000007fffffffUL, x1); - - TEARDOWN(); -} - - -TEST(ldur_stur) { - INIT_V8(); - SETUP(); - - int64_t src[2] = {0x0123456789abcdefUL, 0x0123456789abcdefUL}; - int64_t dst[5] = {0, 0, 0, 0, 0}; - uintptr_t src_base = reinterpret_cast<uintptr_t>(src); - uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst); - - START(); - __ Mov(x17, src_base); - __ Mov(x18, dst_base); - __ Mov(x19, src_base + 16); - __ Mov(x20, dst_base + 32); - __ Mov(x21, dst_base + 40); - __ Ldr(w0, MemOperand(x17, 1)); - __ Str(w0, MemOperand(x18, 2)); - __ Ldr(x1, MemOperand(x17, 3)); - __ Str(x1, MemOperand(x18, 9)); - __ Ldr(w2, MemOperand(x19, -9)); - __ Str(w2, MemOperand(x20, -5)); - __ Ldrb(w3, MemOperand(x19, -1)); - __ Strb(w3, MemOperand(x21, -1)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x6789abcd, x0); - ASSERT_EQUAL_64(0x6789abcd0000L, dst[0]); - ASSERT_EQUAL_64(0xabcdef0123456789L, x1); - ASSERT_EQUAL_64(0xcdef012345678900L, dst[1]); - ASSERT_EQUAL_64(0x000000ab, dst[2]); - ASSERT_EQUAL_64(0xabcdef01, x2); - ASSERT_EQUAL_64(0x00abcdef01000000L, dst[3]); - ASSERT_EQUAL_64(0x00000001, x3); - ASSERT_EQUAL_64(0x0100000000000000L, dst[4]); - ASSERT_EQUAL_64(src_base, x17); - ASSERT_EQUAL_64(dst_base, x18); - ASSERT_EQUAL_64(src_base + 16, x19); - ASSERT_EQUAL_64(dst_base + 32, x20); - - TEARDOWN(); -} - - -#if 0 // TODO(all) enable. -// TODO(rodolph): Adapt w16 Literal tests for RelocInfo. -TEST(ldr_literal) { - INIT_V8(); - SETUP(); - - START(); - __ Ldr(x2, 0x1234567890abcdefUL); - __ Ldr(w3, 0xfedcba09); - __ Ldr(d13, 1.234); - __ Ldr(s25, 2.5); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x1234567890abcdefUL, x2); - ASSERT_EQUAL_64(0xfedcba09, x3); - ASSERT_EQUAL_FP64(1.234, d13); - ASSERT_EQUAL_FP32(2.5, s25); - - TEARDOWN(); -} - - -static void LdrLiteralRangeHelper(ptrdiff_t range_, - LiteralPoolEmitOption option, - bool expect_dump) { - ASSERT(range_ > 0); - SETUP_SIZE(range_ + 1024); - - Label label_1, label_2; - - size_t range = static_cast<size_t>(range_); - size_t code_size = 0; - size_t pool_guard_size; - - if (option == NoJumpRequired) { - // Space for an explicit branch. - pool_guard_size = sizeof(Instr); - } else { - pool_guard_size = 0; - } - - START(); - // Force a pool dump so the pool starts off empty. - __ EmitLiteralPool(JumpRequired); - ASSERT_LITERAL_POOL_SIZE(0); - - __ Ldr(x0, 0x1234567890abcdefUL); - __ Ldr(w1, 0xfedcba09); - __ Ldr(d0, 1.234); - __ Ldr(s1, 2.5); - ASSERT_LITERAL_POOL_SIZE(4); - - code_size += 4 * sizeof(Instr); - - // Check that the requested range (allowing space for a branch over the pool) - // can be handled by this test. - ASSERT((code_size + pool_guard_size) <= range); - - // Emit NOPs up to 'range', leaving space for the pool guard. - while ((code_size + pool_guard_size) < range) { - __ Nop(); - code_size += sizeof(Instr); - } - - // Emit the guard sequence before the literal pool. - if (option == NoJumpRequired) { - __ B(&label_1); - code_size += sizeof(Instr); - } - - ASSERT(code_size == range); - ASSERT_LITERAL_POOL_SIZE(4); - - // Possibly generate a literal pool. - __ CheckLiteralPool(option); - __ Bind(&label_1); - if (expect_dump) { - ASSERT_LITERAL_POOL_SIZE(0); - } else { - ASSERT_LITERAL_POOL_SIZE(4); - } - - // Force a pool flush to check that a second pool functions correctly. - __ EmitLiteralPool(JumpRequired); - ASSERT_LITERAL_POOL_SIZE(0); - - // These loads should be after the pool (and will require a new one). - __ Ldr(x4, 0x34567890abcdef12UL); - __ Ldr(w5, 0xdcba09fe); - __ Ldr(d4, 123.4); - __ Ldr(s5, 250.0); - ASSERT_LITERAL_POOL_SIZE(4); - END(); - - RUN(); - - // Check that the literals loaded correctly. - ASSERT_EQUAL_64(0x1234567890abcdefUL, x0); - ASSERT_EQUAL_64(0xfedcba09, x1); - ASSERT_EQUAL_FP64(1.234, d0); - ASSERT_EQUAL_FP32(2.5, s1); - ASSERT_EQUAL_64(0x34567890abcdef12UL, x4); - ASSERT_EQUAL_64(0xdcba09fe, x5); - ASSERT_EQUAL_FP64(123.4, d4); - ASSERT_EQUAL_FP32(250.0, s5); - - TEARDOWN(); -} - - -TEST(ldr_literal_range_1) { - INIT_V8(); - LdrLiteralRangeHelper(kRecommendedLiteralPoolRange, - NoJumpRequired, - true); -} - - -TEST(ldr_literal_range_2) { - INIT_V8(); - LdrLiteralRangeHelper(kRecommendedLiteralPoolRange-sizeof(Instr), - NoJumpRequired, - false); -} - - -TEST(ldr_literal_range_3) { - INIT_V8(); - LdrLiteralRangeHelper(2 * kRecommendedLiteralPoolRange, - JumpRequired, - true); -} - - -TEST(ldr_literal_range_4) { - INIT_V8(); - LdrLiteralRangeHelper(2 * kRecommendedLiteralPoolRange-sizeof(Instr), - JumpRequired, - false); -} - - -TEST(ldr_literal_range_5) { - INIT_V8(); - LdrLiteralRangeHelper(kLiteralPoolCheckInterval, - JumpRequired, - false); -} - - -TEST(ldr_literal_range_6) { - INIT_V8(); - LdrLiteralRangeHelper(kLiteralPoolCheckInterval-sizeof(Instr), - JumpRequired, - false); -} -#endif - -TEST(add_sub_imm) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0x0); - __ Mov(x1, 0x1111); - __ Mov(x2, 0xffffffffffffffffL); - __ Mov(x3, 0x8000000000000000L); - - __ Add(x10, x0, Operand(0x123)); - __ Add(x11, x1, Operand(0x122000)); - __ Add(x12, x0, Operand(0xabc << 12)); - __ Add(x13, x2, Operand(1)); - - __ Add(w14, w0, Operand(0x123)); - __ Add(w15, w1, Operand(0x122000)); - __ Add(w16, w0, Operand(0xabc << 12)); - __ Add(w17, w2, Operand(1)); - - __ Sub(x20, x0, Operand(0x1)); - __ Sub(x21, x1, Operand(0x111)); - __ Sub(x22, x1, Operand(0x1 << 12)); - __ Sub(x23, x3, Operand(1)); - - __ Sub(w24, w0, Operand(0x1)); - __ Sub(w25, w1, Operand(0x111)); - __ Sub(w26, w1, Operand(0x1 << 12)); - __ Sub(w27, w3, Operand(1)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x123, x10); - ASSERT_EQUAL_64(0x123111, x11); - ASSERT_EQUAL_64(0xabc000, x12); - ASSERT_EQUAL_64(0x0, x13); - - ASSERT_EQUAL_32(0x123, w14); - ASSERT_EQUAL_32(0x123111, w15); - ASSERT_EQUAL_32(0xabc000, w16); - ASSERT_EQUAL_32(0x0, w17); - - ASSERT_EQUAL_64(0xffffffffffffffffL, x20); - ASSERT_EQUAL_64(0x1000, x21); - ASSERT_EQUAL_64(0x111, x22); - ASSERT_EQUAL_64(0x7fffffffffffffffL, x23); - - ASSERT_EQUAL_32(0xffffffff, w24); - ASSERT_EQUAL_32(0x1000, w25); - ASSERT_EQUAL_32(0x111, w26); - ASSERT_EQUAL_32(0xffffffff, w27); - - TEARDOWN(); -} - - -TEST(add_sub_wide_imm) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0x0); - __ Mov(x1, 0x1); - - __ Add(x10, x0, Operand(0x1234567890abcdefUL)); - __ Add(x11, x1, Operand(0xffffffff)); - - __ Add(w12, w0, Operand(0x12345678)); - __ Add(w13, w1, Operand(0xffffffff)); - - __ Sub(x20, x0, Operand(0x1234567890abcdefUL)); - - __ Sub(w21, w0, Operand(0x12345678)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x1234567890abcdefUL, x10); - ASSERT_EQUAL_64(0x100000000UL, x11); - - ASSERT_EQUAL_32(0x12345678, w12); - ASSERT_EQUAL_64(0x0, x13); - - ASSERT_EQUAL_64(-0x1234567890abcdefUL, x20); - - ASSERT_EQUAL_32(-0x12345678, w21); - - TEARDOWN(); -} - - -TEST(add_sub_shifted) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0); - __ Mov(x1, 0x0123456789abcdefL); - __ Mov(x2, 0xfedcba9876543210L); - __ Mov(x3, 0xffffffffffffffffL); - - __ Add(x10, x1, Operand(x2)); - __ Add(x11, x0, Operand(x1, LSL, 8)); - __ Add(x12, x0, Operand(x1, LSR, 8)); - __ Add(x13, x0, Operand(x1, ASR, 8)); - __ Add(x14, x0, Operand(x2, ASR, 8)); - __ Add(w15, w0, Operand(w1, ASR, 8)); - __ Add(w18, w3, Operand(w1, ROR, 8)); - __ Add(x19, x3, Operand(x1, ROR, 8)); - - __ Sub(x20, x3, Operand(x2)); - __ Sub(x21, x3, Operand(x1, LSL, 8)); - __ Sub(x22, x3, Operand(x1, LSR, 8)); - __ Sub(x23, x3, Operand(x1, ASR, 8)); - __ Sub(x24, x3, Operand(x2, ASR, 8)); - __ Sub(w25, w3, Operand(w1, ASR, 8)); - __ Sub(w26, w3, Operand(w1, ROR, 8)); - __ Sub(x27, x3, Operand(x1, ROR, 8)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0xffffffffffffffffL, x10); - ASSERT_EQUAL_64(0x23456789abcdef00L, x11); - ASSERT_EQUAL_64(0x000123456789abcdL, x12); - ASSERT_EQUAL_64(0x000123456789abcdL, x13); - ASSERT_EQUAL_64(0xfffedcba98765432L, x14); - ASSERT_EQUAL_64(0xff89abcd, x15); - ASSERT_EQUAL_64(0xef89abcc, x18); - ASSERT_EQUAL_64(0xef0123456789abccL, x19); - - ASSERT_EQUAL_64(0x0123456789abcdefL, x20); - ASSERT_EQUAL_64(0xdcba9876543210ffL, x21); - ASSERT_EQUAL_64(0xfffedcba98765432L, x22); - ASSERT_EQUAL_64(0xfffedcba98765432L, x23); - ASSERT_EQUAL_64(0x000123456789abcdL, x24); - ASSERT_EQUAL_64(0x00765432, x25); - ASSERT_EQUAL_64(0x10765432, x26); - ASSERT_EQUAL_64(0x10fedcba98765432L, x27); - - TEARDOWN(); -} - - -TEST(add_sub_extended) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0); - __ Mov(x1, 0x0123456789abcdefL); - __ Mov(x2, 0xfedcba9876543210L); - __ Mov(w3, 0x80); - - __ Add(x10, x0, Operand(x1, UXTB, 0)); - __ Add(x11, x0, Operand(x1, UXTB, 1)); - __ Add(x12, x0, Operand(x1, UXTH, 2)); - __ Add(x13, x0, Operand(x1, UXTW, 4)); - - __ Add(x14, x0, Operand(x1, SXTB, 0)); - __ Add(x15, x0, Operand(x1, SXTB, 1)); - __ Add(x16, x0, Operand(x1, SXTH, 2)); - __ Add(x17, x0, Operand(x1, SXTW, 3)); - __ Add(x18, x0, Operand(x2, SXTB, 0)); - __ Add(x19, x0, Operand(x2, SXTB, 1)); - __ Add(x20, x0, Operand(x2, SXTH, 2)); - __ Add(x21, x0, Operand(x2, SXTW, 3)); - - __ Add(x22, x1, Operand(x2, SXTB, 1)); - __ Sub(x23, x1, Operand(x2, SXTB, 1)); - - __ Add(w24, w1, Operand(w2, UXTB, 2)); - __ Add(w25, w0, Operand(w1, SXTB, 0)); - __ Add(w26, w0, Operand(w1, SXTB, 1)); - __ Add(w27, w2, Operand(w1, SXTW, 3)); - - __ Add(w28, w0, Operand(w1, SXTW, 3)); - __ Add(x29, x0, Operand(w1, SXTW, 3)); - - __ Sub(x30, x0, Operand(w3, SXTB, 1)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0xefL, x10); - ASSERT_EQUAL_64(0x1deL, x11); - ASSERT_EQUAL_64(0x337bcL, x12); - ASSERT_EQUAL_64(0x89abcdef0L, x13); - - ASSERT_EQUAL_64(0xffffffffffffffefL, x14); - ASSERT_EQUAL_64(0xffffffffffffffdeL, x15); - ASSERT_EQUAL_64(0xffffffffffff37bcL, x16); - ASSERT_EQUAL_64(0xfffffffc4d5e6f78L, x17); - ASSERT_EQUAL_64(0x10L, x18); - ASSERT_EQUAL_64(0x20L, x19); - ASSERT_EQUAL_64(0xc840L, x20); - ASSERT_EQUAL_64(0x3b2a19080L, x21); - - ASSERT_EQUAL_64(0x0123456789abce0fL, x22); - ASSERT_EQUAL_64(0x0123456789abcdcfL, x23); - - ASSERT_EQUAL_32(0x89abce2f, w24); - ASSERT_EQUAL_32(0xffffffef, w25); - ASSERT_EQUAL_32(0xffffffde, w26); - ASSERT_EQUAL_32(0xc3b2a188, w27); - - ASSERT_EQUAL_32(0x4d5e6f78, w28); - ASSERT_EQUAL_64(0xfffffffc4d5e6f78L, x29); - - ASSERT_EQUAL_64(256, x30); - - TEARDOWN(); -} - - -TEST(add_sub_negative) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0); - __ Mov(x1, 4687); - __ Mov(x2, 0x1122334455667788); - __ Mov(w3, 0x11223344); - __ Mov(w4, 400000); - - __ Add(x10, x0, -42); - __ Add(x11, x1, -687); - __ Add(x12, x2, -0x88); - - __ Sub(x13, x0, -600); - __ Sub(x14, x1, -313); - __ Sub(x15, x2, -0x555); - - __ Add(w19, w3, -0x344); - __ Add(w20, w4, -2000); - - __ Sub(w21, w3, -0xbc); - __ Sub(w22, w4, -2000); - END(); - - RUN(); - - ASSERT_EQUAL_64(-42, x10); - ASSERT_EQUAL_64(4000, x11); - ASSERT_EQUAL_64(0x1122334455667700, x12); - - ASSERT_EQUAL_64(600, x13); - ASSERT_EQUAL_64(5000, x14); - ASSERT_EQUAL_64(0x1122334455667cdd, x15); - - ASSERT_EQUAL_32(0x11223000, w19); - ASSERT_EQUAL_32(398000, w20); - - ASSERT_EQUAL_32(0x11223400, w21); - ASSERT_EQUAL_32(402000, w22); - - TEARDOWN(); -} - - -TEST(add_sub_zero) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0); - __ Mov(x1, 0); - __ Mov(x2, 0); - - Label blob1; - __ Bind(&blob1); - __ Add(x0, x0, 0); - __ Sub(x1, x1, 0); - __ Sub(x2, x2, xzr); - CHECK_EQ(0, __ SizeOfCodeGeneratedSince(&blob1)); - - Label blob2; - __ Bind(&blob2); - __ Add(w3, w3, 0); - CHECK_NE(0, __ SizeOfCodeGeneratedSince(&blob2)); - - Label blob3; - __ Bind(&blob3); - __ Sub(w3, w3, wzr); - CHECK_NE(0, __ SizeOfCodeGeneratedSince(&blob3)); - - END(); - - RUN(); - - ASSERT_EQUAL_64(0, x0); - ASSERT_EQUAL_64(0, x1); - ASSERT_EQUAL_64(0, x2); - - TEARDOWN(); -} - - -TEST(claim_drop_zero) { - INIT_V8(); - SETUP(); - - START(); - - Label start; - __ Bind(&start); - __ Claim(0); - __ Drop(0); - __ Claim(xzr, 8); - __ Drop(xzr, 8); - __ Claim(xzr, 0); - __ Drop(xzr, 0); - __ Claim(x7, 0); - __ Drop(x7, 0); - __ ClaimBySMI(xzr, 8); - __ DropBySMI(xzr, 8); - __ ClaimBySMI(xzr, 0); - __ DropBySMI(xzr, 0); - CHECK_EQ(0, __ SizeOfCodeGeneratedSince(&start)); - - END(); - - RUN(); - - TEARDOWN(); -} - - -TEST(neg) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0xf123456789abcdefL); - - // Immediate. - __ Neg(x1, 0x123); - __ Neg(w2, 0x123); - - // Shifted. - __ Neg(x3, Operand(x0, LSL, 1)); - __ Neg(w4, Operand(w0, LSL, 2)); - __ Neg(x5, Operand(x0, LSR, 3)); - __ Neg(w6, Operand(w0, LSR, 4)); - __ Neg(x7, Operand(x0, ASR, 5)); - __ Neg(w8, Operand(w0, ASR, 6)); - - // Extended. - __ Neg(w9, Operand(w0, UXTB)); - __ Neg(x10, Operand(x0, SXTB, 1)); - __ Neg(w11, Operand(w0, UXTH, 2)); - __ Neg(x12, Operand(x0, SXTH, 3)); - __ Neg(w13, Operand(w0, UXTW, 4)); - __ Neg(x14, Operand(x0, SXTW, 4)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0xfffffffffffffeddUL, x1); - ASSERT_EQUAL_64(0xfffffedd, x2); - ASSERT_EQUAL_64(0x1db97530eca86422UL, x3); - ASSERT_EQUAL_64(0xd950c844, x4); - ASSERT_EQUAL_64(0xe1db97530eca8643UL, x5); - ASSERT_EQUAL_64(0xf7654322, x6); - ASSERT_EQUAL_64(0x0076e5d4c3b2a191UL, x7); - ASSERT_EQUAL_64(0x01d950c9, x8); - ASSERT_EQUAL_64(0xffffff11, x9); - ASSERT_EQUAL_64(0x0000000000000022UL, x10); - ASSERT_EQUAL_64(0xfffcc844, x11); - ASSERT_EQUAL_64(0x0000000000019088UL, x12); - ASSERT_EQUAL_64(0x65432110, x13); - ASSERT_EQUAL_64(0x0000000765432110UL, x14); - - TEARDOWN(); -} - - -TEST(adc_sbc_shift) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0); - __ Mov(x1, 1); - __ Mov(x2, 0x0123456789abcdefL); - __ Mov(x3, 0xfedcba9876543210L); - __ Mov(x4, 0xffffffffffffffffL); - - // Clear the C flag. - __ Adds(x0, x0, Operand(0)); - - __ Adc(x5, x2, Operand(x3)); - __ Adc(x6, x0, Operand(x1, LSL, 60)); - __ Sbc(x7, x4, Operand(x3, LSR, 4)); - __ Adc(x8, x2, Operand(x3, ASR, 4)); - __ Adc(x9, x2, Operand(x3, ROR, 8)); - - __ Adc(w10, w2, Operand(w3)); - __ Adc(w11, w0, Operand(w1, LSL, 30)); - __ Sbc(w12, w4, Operand(w3, LSR, 4)); - __ Adc(w13, w2, Operand(w3, ASR, 4)); - __ Adc(w14, w2, Operand(w3, ROR, 8)); - - // Set the C flag. - __ Cmp(w0, Operand(w0)); - - __ Adc(x18, x2, Operand(x3)); - __ Adc(x19, x0, Operand(x1, LSL, 60)); - __ Sbc(x20, x4, Operand(x3, LSR, 4)); - __ Adc(x21, x2, Operand(x3, ASR, 4)); - __ Adc(x22, x2, Operand(x3, ROR, 8)); - - __ Adc(w23, w2, Operand(w3)); - __ Adc(w24, w0, Operand(w1, LSL, 30)); - __ Sbc(w25, w4, Operand(w3, LSR, 4)); - __ Adc(w26, w2, Operand(w3, ASR, 4)); - __ Adc(w27, w2, Operand(w3, ROR, 8)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0xffffffffffffffffL, x5); - ASSERT_EQUAL_64(1L << 60, x6); - ASSERT_EQUAL_64(0xf0123456789abcddL, x7); - ASSERT_EQUAL_64(0x0111111111111110L, x8); - ASSERT_EQUAL_64(0x1222222222222221L, x9); - - ASSERT_EQUAL_32(0xffffffff, w10); - ASSERT_EQUAL_32(1 << 30, w11); - ASSERT_EQUAL_32(0xf89abcdd, w12); - ASSERT_EQUAL_32(0x91111110, w13); - ASSERT_EQUAL_32(0x9a222221, w14); - - ASSERT_EQUAL_64(0xffffffffffffffffL + 1, x18); - ASSERT_EQUAL_64((1L << 60) + 1, x19); - ASSERT_EQUAL_64(0xf0123456789abcddL + 1, x20); - ASSERT_EQUAL_64(0x0111111111111110L + 1, x21); - ASSERT_EQUAL_64(0x1222222222222221L + 1, x22); - - ASSERT_EQUAL_32(0xffffffff + 1, w23); - ASSERT_EQUAL_32((1 << 30) + 1, w24); - ASSERT_EQUAL_32(0xf89abcdd + 1, w25); - ASSERT_EQUAL_32(0x91111110 + 1, w26); - ASSERT_EQUAL_32(0x9a222221 + 1, w27); - - // Check that adc correctly sets the condition flags. - START(); - __ Mov(x0, 1); - __ Mov(x1, 0xffffffffffffffffL); - // Clear the C flag. - __ Adds(x0, x0, Operand(0)); - __ Adcs(x10, x0, Operand(x1)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(ZCFlag); - ASSERT_EQUAL_64(0, x10); - - START(); - __ Mov(x0, 1); - __ Mov(x1, 0x8000000000000000L); - // Clear the C flag. - __ Adds(x0, x0, Operand(0)); - __ Adcs(x10, x0, Operand(x1, ASR, 63)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(ZCFlag); - ASSERT_EQUAL_64(0, x10); - - START(); - __ Mov(x0, 0x10); - __ Mov(x1, 0x07ffffffffffffffL); - // Clear the C flag. - __ Adds(x0, x0, Operand(0)); - __ Adcs(x10, x0, Operand(x1, LSL, 4)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(NVFlag); - ASSERT_EQUAL_64(0x8000000000000000L, x10); - - // Check that sbc correctly sets the condition flags. - START(); - __ Mov(x0, 0); - __ Mov(x1, 0xffffffffffffffffL); - // Clear the C flag. - __ Adds(x0, x0, Operand(0)); - __ Sbcs(x10, x0, Operand(x1)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(ZFlag); - ASSERT_EQUAL_64(0, x10); - - START(); - __ Mov(x0, 1); - __ Mov(x1, 0xffffffffffffffffL); - // Clear the C flag. - __ Adds(x0, x0, Operand(0)); - __ Sbcs(x10, x0, Operand(x1, LSR, 1)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(NFlag); - ASSERT_EQUAL_64(0x8000000000000001L, x10); - - START(); - __ Mov(x0, 0); - // Clear the C flag. - __ Adds(x0, x0, Operand(0)); - __ Sbcs(x10, x0, Operand(0xffffffffffffffffL)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(ZFlag); - ASSERT_EQUAL_64(0, x10); - - START() - __ Mov(w0, 0x7fffffff); - // Clear the C flag. - __ Adds(x0, x0, Operand(0)); - __ Ngcs(w10, w0); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(NFlag); - ASSERT_EQUAL_64(0x80000000, x10); - - START(); - // Clear the C flag. - __ Adds(x0, x0, Operand(0)); - __ Ngcs(x10, 0x7fffffffffffffffL); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(NFlag); - ASSERT_EQUAL_64(0x8000000000000000L, x10); - - START() - __ Mov(x0, 0); - // Set the C flag. - __ Cmp(x0, Operand(x0)); - __ Sbcs(x10, x0, Operand(1)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(NFlag); - ASSERT_EQUAL_64(0xffffffffffffffffL, x10); - - START() - __ Mov(x0, 0); - // Set the C flag. - __ Cmp(x0, Operand(x0)); - __ Ngcs(x10, 0x7fffffffffffffffL); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(NFlag); - ASSERT_EQUAL_64(0x8000000000000001L, x10); - - TEARDOWN(); -} - - -TEST(adc_sbc_extend) { - INIT_V8(); - SETUP(); - - START(); - // Clear the C flag. - __ Adds(x0, x0, Operand(0)); - - __ Mov(x0, 0); - __ Mov(x1, 1); - __ Mov(x2, 0x0123456789abcdefL); - - __ Adc(x10, x1, Operand(w2, UXTB, 1)); - __ Adc(x11, x1, Operand(x2, SXTH, 2)); - __ Sbc(x12, x1, Operand(w2, UXTW, 4)); - __ Adc(x13, x1, Operand(x2, UXTX, 4)); - - __ Adc(w14, w1, Operand(w2, UXTB, 1)); - __ Adc(w15, w1, Operand(w2, SXTH, 2)); - __ Adc(w9, w1, Operand(w2, UXTW, 4)); - - // Set the C flag. - __ Cmp(w0, Operand(w0)); - - __ Adc(x20, x1, Operand(w2, UXTB, 1)); - __ Adc(x21, x1, Operand(x2, SXTH, 2)); - __ Sbc(x22, x1, Operand(w2, UXTW, 4)); - __ Adc(x23, x1, Operand(x2, UXTX, 4)); - - __ Adc(w24, w1, Operand(w2, UXTB, 1)); - __ Adc(w25, w1, Operand(w2, SXTH, 2)); - __ Adc(w26, w1, Operand(w2, UXTW, 4)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x1df, x10); - ASSERT_EQUAL_64(0xffffffffffff37bdL, x11); - ASSERT_EQUAL_64(0xfffffff765432110L, x12); - ASSERT_EQUAL_64(0x123456789abcdef1L, x13); - - ASSERT_EQUAL_32(0x1df, w14); - ASSERT_EQUAL_32(0xffff37bd, w15); - ASSERT_EQUAL_32(0x9abcdef1, w9); - - ASSERT_EQUAL_64(0x1df + 1, x20); - ASSERT_EQUAL_64(0xffffffffffff37bdL + 1, x21); - ASSERT_EQUAL_64(0xfffffff765432110L + 1, x22); - ASSERT_EQUAL_64(0x123456789abcdef1L + 1, x23); - - ASSERT_EQUAL_32(0x1df + 1, w24); - ASSERT_EQUAL_32(0xffff37bd + 1, w25); - ASSERT_EQUAL_32(0x9abcdef1 + 1, w26); - - // Check that adc correctly sets the condition flags. - START(); - __ Mov(x0, 0xff); - __ Mov(x1, 0xffffffffffffffffL); - // Clear the C flag. - __ Adds(x0, x0, Operand(0)); - __ Adcs(x10, x0, Operand(x1, SXTX, 1)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(CFlag); - - START(); - __ Mov(x0, 0x7fffffffffffffffL); - __ Mov(x1, 1); - // Clear the C flag. - __ Adds(x0, x0, Operand(0)); - __ Adcs(x10, x0, Operand(x1, UXTB, 2)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(NVFlag); - - START(); - __ Mov(x0, 0x7fffffffffffffffL); - // Clear the C flag. - __ Adds(x0, x0, Operand(0)); - __ Adcs(x10, x0, Operand(1)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(NVFlag); - - TEARDOWN(); -} - - -TEST(adc_sbc_wide_imm) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0); - - // Clear the C flag. - __ Adds(x0, x0, Operand(0)); - - __ Adc(x7, x0, Operand(0x1234567890abcdefUL)); - __ Adc(w8, w0, Operand(0xffffffff)); - __ Sbc(x9, x0, Operand(0x1234567890abcdefUL)); - __ Sbc(w10, w0, Operand(0xffffffff)); - __ Ngc(x11, Operand(0xffffffff00000000UL)); - __ Ngc(w12, Operand(0xffff0000)); - - // Set the C flag. - __ Cmp(w0, Operand(w0)); - - __ Adc(x18, x0, Operand(0x1234567890abcdefUL)); - __ Adc(w19, w0, Operand(0xffffffff)); - __ Sbc(x20, x0, Operand(0x1234567890abcdefUL)); - __ Sbc(w21, w0, Operand(0xffffffff)); - __ Ngc(x22, Operand(0xffffffff00000000UL)); - __ Ngc(w23, Operand(0xffff0000)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x1234567890abcdefUL, x7); - ASSERT_EQUAL_64(0xffffffff, x8); - ASSERT_EQUAL_64(0xedcba9876f543210UL, x9); - ASSERT_EQUAL_64(0, x10); - ASSERT_EQUAL_64(0xffffffff, x11); - ASSERT_EQUAL_64(0xffff, x12); - - ASSERT_EQUAL_64(0x1234567890abcdefUL + 1, x18); - ASSERT_EQUAL_64(0, x19); - ASSERT_EQUAL_64(0xedcba9876f543211UL, x20); - ASSERT_EQUAL_64(1, x21); - ASSERT_EQUAL_64(0x100000000UL, x22); - ASSERT_EQUAL_64(0x10000, x23); - - TEARDOWN(); -} - - -TEST(flags) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x0, 0); - __ Mov(x1, 0x1111111111111111L); - __ Neg(x10, Operand(x0)); - __ Neg(x11, Operand(x1)); - __ Neg(w12, Operand(w1)); - // Clear the C flag. - __ Adds(x0, x0, Operand(0)); - __ Ngc(x13, Operand(x0)); - // Set the C flag. - __ Cmp(x0, Operand(x0)); - __ Ngc(w14, Operand(w0)); - END(); - - RUN(); - - ASSERT_EQUAL_64(0, x10); - ASSERT_EQUAL_64(-0x1111111111111111L, x11); - ASSERT_EQUAL_32(-0x11111111, w12); - ASSERT_EQUAL_64(-1L, x13); - ASSERT_EQUAL_32(0, w14); - - START(); - __ Mov(x0, 0); - __ Cmp(x0, Operand(x0)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(ZCFlag); - - START(); - __ Mov(w0, 0); - __ Cmp(w0, Operand(w0)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(ZCFlag); - - START(); - __ Mov(x0, 0); - __ Mov(x1, 0x1111111111111111L); - __ Cmp(x0, Operand(x1)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(NFlag); - - START(); - __ Mov(w0, 0); - __ Mov(w1, 0x11111111); - __ Cmp(w0, Operand(w1)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(NFlag); - - START(); - __ Mov(x1, 0x1111111111111111L); - __ Cmp(x1, Operand(0)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(CFlag); - - START(); - __ Mov(w1, 0x11111111); - __ Cmp(w1, Operand(0)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(CFlag); - - START(); - __ Mov(x0, 1); - __ Mov(x1, 0x7fffffffffffffffL); - __ Cmn(x1, Operand(x0)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(NVFlag); - - START(); - __ Mov(w0, 1); - __ Mov(w1, 0x7fffffff); - __ Cmn(w1, Operand(w0)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(NVFlag); - - START(); - __ Mov(x0, 1); - __ Mov(x1, 0xffffffffffffffffL); - __ Cmn(x1, Operand(x0)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(ZCFlag); - - START(); - __ Mov(w0, 1); - __ Mov(w1, 0xffffffff); - __ Cmn(w1, Operand(w0)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(ZCFlag); - - START(); - __ Mov(w0, 0); - __ Mov(w1, 1); - // Clear the C flag. - __ Adds(w0, w0, Operand(0)); - __ Ngcs(w0, Operand(w1)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(NFlag); - - START(); - __ Mov(w0, 0); - __ Mov(w1, 0); - // Set the C flag. - __ Cmp(w0, Operand(w0)); - __ Ngcs(w0, Operand(w1)); - END(); - - RUN(); - - ASSERT_EQUAL_NZCV(ZCFlag); - - TEARDOWN(); -} - - -TEST(cmp_shift) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x18, 0xf0000000); - __ Mov(x19, 0xf000000010000000UL); - __ Mov(x20, 0xf0000000f0000000UL); - __ Mov(x21, 0x7800000078000000UL); - __ Mov(x22, 0x3c0000003c000000UL); - __ Mov(x23, 0x8000000780000000UL); - __ Mov(x24, 0x0000000f00000000UL); - __ Mov(x25, 0x00000003c0000000UL); - __ Mov(x26, 0x8000000780000000UL); - __ Mov(x27, 0xc0000003); - - __ Cmp(w20, Operand(w21, LSL, 1)); - __ Mrs(x0, NZCV); - - __ Cmp(x20, Operand(x22, LSL, 2)); - __ Mrs(x1, NZCV); - - __ Cmp(w19, Operand(w23, LSR, 3)); - __ Mrs(x2, NZCV); - - __ Cmp(x18, Operand(x24, LSR, 4)); - __ Mrs(x3, NZCV); - - __ Cmp(w20, Operand(w25, ASR, 2)); - __ Mrs(x4, NZCV); - - __ Cmp(x20, Operand(x26, ASR, 3)); - __ Mrs(x5, NZCV); - - __ Cmp(w27, Operand(w22, ROR, 28)); - __ Mrs(x6, NZCV); - - __ Cmp(x20, Operand(x21, ROR, 31)); - __ Mrs(x7, NZCV); - END(); - - RUN(); - - ASSERT_EQUAL_32(ZCFlag, w0); - ASSERT_EQUAL_32(ZCFlag, w1); - ASSERT_EQUAL_32(ZCFlag, w2); - ASSERT_EQUAL_32(ZCFlag, w3); - ASSERT_EQUAL_32(ZCFlag, w4); - ASSERT_EQUAL_32(ZCFlag, w5); - ASSERT_EQUAL_32(ZCFlag, w6); - ASSERT_EQUAL_32(ZCFlag, w7); - - TEARDOWN(); -} - - -TEST(cmp_extend) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(w20, 0x2); - __ Mov(w21, 0x1); - __ Mov(x22, 0xffffffffffffffffUL); - __ Mov(x23, 0xff); - __ Mov(x24, 0xfffffffffffffffeUL); - __ Mov(x25, 0xffff); - __ Mov(x26, 0xffffffff); - - __ Cmp(w20, Operand(w21, LSL, 1)); - __ Mrs(x0, NZCV); - - __ Cmp(x22, Operand(x23, SXTB, 0)); - __ Mrs(x1, NZCV); - - __ Cmp(x24, Operand(x23, SXTB, 1)); - __ Mrs(x2, NZCV); - - __ Cmp(x24, Operand(x23, UXTB, 1)); - __ Mrs(x3, NZCV); - - __ Cmp(w22, Operand(w25, UXTH)); - __ Mrs(x4, NZCV); - - __ Cmp(x22, Operand(x25, SXTH)); - __ Mrs(x5, NZCV); - - __ Cmp(x22, Operand(x26, UXTW)); - __ Mrs(x6, NZCV); - - __ Cmp(x24, Operand(x26, SXTW, 1)); - __ Mrs(x7, NZCV); - END(); - - RUN(); - - ASSERT_EQUAL_32(ZCFlag, w0); - ASSERT_EQUAL_32(ZCFlag, w1); - ASSERT_EQUAL_32(ZCFlag, w2); - ASSERT_EQUAL_32(NCFlag, w3); - ASSERT_EQUAL_32(NCFlag, w4); - ASSERT_EQUAL_32(ZCFlag, w5); - ASSERT_EQUAL_32(NCFlag, w6); - ASSERT_EQUAL_32(ZCFlag, w7); - - TEARDOWN(); -} - - -TEST(ccmp) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(w16, 0); - __ Mov(w17, 1); - __ Cmp(w16, w16); - __ Ccmp(w16, w17, NCFlag, eq); - __ Mrs(x0, NZCV); - - __ Cmp(w16, w16); - __ Ccmp(w16, w17, NCFlag, ne); - __ Mrs(x1, NZCV); - - __ Cmp(x16, x16); - __ Ccmn(x16, 2, NZCVFlag, eq); - __ Mrs(x2, NZCV); - - __ Cmp(x16, x16); - __ Ccmn(x16, 2, NZCVFlag, ne); - __ Mrs(x3, NZCV); - - __ ccmp(x16, x16, NZCVFlag, al); - __ Mrs(x4, NZCV); - - __ ccmp(x16, x16, NZCVFlag, nv); - __ Mrs(x5, NZCV); - - END(); - - RUN(); - - ASSERT_EQUAL_32(NFlag, w0); - ASSERT_EQUAL_32(NCFlag, w1); - ASSERT_EQUAL_32(NoFlag, w2); - ASSERT_EQUAL_32(NZCVFlag, w3); - ASSERT_EQUAL_32(ZCFlag, w4); - ASSERT_EQUAL_32(ZCFlag, w5); - - TEARDOWN(); -} - - -TEST(ccmp_wide_imm) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(w20, 0); - - __ Cmp(w20, Operand(w20)); - __ Ccmp(w20, Operand(0x12345678), NZCVFlag, eq); - __ Mrs(x0, NZCV); - - __ Cmp(w20, Operand(w20)); - __ Ccmp(x20, Operand(0xffffffffffffffffUL), NZCVFlag, eq); - __ Mrs(x1, NZCV); - END(); - - RUN(); - - ASSERT_EQUAL_32(NFlag, w0); - ASSERT_EQUAL_32(NoFlag, w1); - - TEARDOWN(); -} - - -TEST(ccmp_shift_extend) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(w20, 0x2); - __ Mov(w21, 0x1); - __ Mov(x22, 0xffffffffffffffffUL); - __ Mov(x23, 0xff); - __ Mov(x24, 0xfffffffffffffffeUL); - - __ Cmp(w20, Operand(w20)); - __ Ccmp(w20, Operand(w21, LSL, 1), NZCVFlag, eq); - __ Mrs(x0, NZCV); - - __ Cmp(w20, Operand(w20)); - __ Ccmp(x22, Operand(x23, SXTB, 0), NZCVFlag, eq); - __ Mrs(x1, NZCV); - - __ Cmp(w20, Operand(w20)); - __ Ccmp(x24, Operand(x23, SXTB, 1), NZCVFlag, eq); - __ Mrs(x2, NZCV); - - __ Cmp(w20, Operand(w20)); - __ Ccmp(x24, Operand(x23, UXTB, 1), NZCVFlag, eq); - __ Mrs(x3, NZCV); - - __ Cmp(w20, Operand(w20)); - __ Ccmp(x24, Operand(x23, UXTB, 1), NZCVFlag, ne); - __ Mrs(x4, NZCV); - END(); - - RUN(); - - ASSERT_EQUAL_32(ZCFlag, w0); - ASSERT_EQUAL_32(ZCFlag, w1); - ASSERT_EQUAL_32(ZCFlag, w2); - ASSERT_EQUAL_32(NCFlag, w3); - ASSERT_EQUAL_32(NZCVFlag, w4); - - TEARDOWN(); -} - - -TEST(csel) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x16, 0); - __ Mov(x24, 0x0000000f0000000fUL); - __ Mov(x25, 0x0000001f0000001fUL); - __ Mov(x26, 0); - __ Mov(x27, 0); - - __ Cmp(w16, 0); - __ Csel(w0, w24, w25, eq); - __ Csel(w1, w24, w25, ne); - __ Csinc(w2, w24, w25, mi); - __ Csinc(w3, w24, w25, pl); - - __ csel(w13, w24, w25, al); - __ csel(x14, x24, x25, nv); - - __ Cmp(x16, 1); - __ Csinv(x4, x24, x25, gt); - __ Csinv(x5, x24, x25, le); - __ Csneg(x6, x24, x25, hs); - __ Csneg(x7, x24, x25, lo); - - __ Cset(w8, ne); - __ Csetm(w9, ne); - __ Cinc(x10, x25, ne); - __ Cinv(x11, x24, ne); - __ Cneg(x12, x24, ne); - - __ csel(w15, w24, w25, al); - __ csel(x18, x24, x25, nv); - - __ CzeroX(x24, ne); - __ CzeroX(x25, eq); - - __ CmovX(x26, x25, ne); - __ CmovX(x27, x25, eq); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x0000000f, x0); - ASSERT_EQUAL_64(0x0000001f, x1); - ASSERT_EQUAL_64(0x00000020, x2); - ASSERT_EQUAL_64(0x0000000f, x3); - ASSERT_EQUAL_64(0xffffffe0ffffffe0UL, x4); - ASSERT_EQUAL_64(0x0000000f0000000fUL, x5); - ASSERT_EQUAL_64(0xffffffe0ffffffe1UL, x6); - ASSERT_EQUAL_64(0x0000000f0000000fUL, x7); - ASSERT_EQUAL_64(0x00000001, x8); - ASSERT_EQUAL_64(0xffffffff, x9); - ASSERT_EQUAL_64(0x0000001f00000020UL, x10); - ASSERT_EQUAL_64(0xfffffff0fffffff0UL, x11); - ASSERT_EQUAL_64(0xfffffff0fffffff1UL, x12); - ASSERT_EQUAL_64(0x0000000f, x13); - ASSERT_EQUAL_64(0x0000000f0000000fUL, x14); - ASSERT_EQUAL_64(0x0000000f, x15); - ASSERT_EQUAL_64(0x0000000f0000000fUL, x18); - ASSERT_EQUAL_64(0, x24); - ASSERT_EQUAL_64(0x0000001f0000001fUL, x25); - ASSERT_EQUAL_64(0x0000001f0000001fUL, x26); - ASSERT_EQUAL_64(0, x27); - - TEARDOWN(); -} - - -TEST(csel_imm) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x18, 0); - __ Mov(x19, 0x80000000); - __ Mov(x20, 0x8000000000000000UL); - - __ Cmp(x18, Operand(0)); - __ Csel(w0, w19, -2, ne); - __ Csel(w1, w19, -1, ne); - __ Csel(w2, w19, 0, ne); - __ Csel(w3, w19, 1, ne); - __ Csel(w4, w19, 2, ne); - __ Csel(w5, w19, Operand(w19, ASR, 31), ne); - __ Csel(w6, w19, Operand(w19, ROR, 1), ne); - __ Csel(w7, w19, 3, eq); - - __ Csel(x8, x20, -2, ne); - __ Csel(x9, x20, -1, ne); - __ Csel(x10, x20, 0, ne); - __ Csel(x11, x20, 1, ne); - __ Csel(x12, x20, 2, ne); - __ Csel(x13, x20, Operand(x20, ASR, 63), ne); - __ Csel(x14, x20, Operand(x20, ROR, 1), ne); - __ Csel(x15, x20, 3, eq); - - END(); - - RUN(); - - ASSERT_EQUAL_32(-2, w0); - ASSERT_EQUAL_32(-1, w1); - ASSERT_EQUAL_32(0, w2); - ASSERT_EQUAL_32(1, w3); - ASSERT_EQUAL_32(2, w4); - ASSERT_EQUAL_32(-1, w5); - ASSERT_EQUAL_32(0x40000000, w6); - ASSERT_EQUAL_32(0x80000000, w7); - - ASSERT_EQUAL_64(-2, x8); - ASSERT_EQUAL_64(-1, x9); - ASSERT_EQUAL_64(0, x10); - ASSERT_EQUAL_64(1, x11); - ASSERT_EQUAL_64(2, x12); - ASSERT_EQUAL_64(-1, x13); - ASSERT_EQUAL_64(0x4000000000000000UL, x14); - ASSERT_EQUAL_64(0x8000000000000000UL, x15); - - TEARDOWN(); -} - - -TEST(lslv) { - INIT_V8(); - SETUP(); - - uint64_t value = 0x0123456789abcdefUL; - int shift[] = {1, 3, 5, 9, 17, 33}; - - START(); - __ Mov(x0, value); - __ Mov(w1, shift[0]); - __ Mov(w2, shift[1]); - __ Mov(w3, shift[2]); - __ Mov(w4, shift[3]); - __ Mov(w5, shift[4]); - __ Mov(w6, shift[5]); - - __ lslv(x0, x0, xzr); - - __ Lsl(x16, x0, x1); - __ Lsl(x17, x0, x2); - __ Lsl(x18, x0, x3); - __ Lsl(x19, x0, x4); - __ Lsl(x20, x0, x5); - __ Lsl(x21, x0, x6); - - __ Lsl(w22, w0, w1); - __ Lsl(w23, w0, w2); - __ Lsl(w24, w0, w3); - __ Lsl(w25, w0, w4); - __ Lsl(w26, w0, w5); - __ Lsl(w27, w0, w6); - END(); - - RUN(); - - ASSERT_EQUAL_64(value, x0); - ASSERT_EQUAL_64(value << (shift[0] & 63), x16); - ASSERT_EQUAL_64(value << (shift[1] & 63), x17); - ASSERT_EQUAL_64(value << (shift[2] & 63), x18); - ASSERT_EQUAL_64(value << (shift[3] & 63), x19); - ASSERT_EQUAL_64(value << (shift[4] & 63), x20); - ASSERT_EQUAL_64(value << (shift[5] & 63), x21); - ASSERT_EQUAL_32(value << (shift[0] & 31), w22); - ASSERT_EQUAL_32(value << (shift[1] & 31), w23); - ASSERT_EQUAL_32(value << (shift[2] & 31), w24); - ASSERT_EQUAL_32(value << (shift[3] & 31), w25); - ASSERT_EQUAL_32(value << (shift[4] & 31), w26); - ASSERT_EQUAL_32(value << (shift[5] & 31), w27); - - TEARDOWN(); -} - - -TEST(lsrv) { - INIT_V8(); - SETUP(); - - uint64_t value = 0x0123456789abcdefUL; - int shift[] = {1, 3, 5, 9, 17, 33}; - - START(); - __ Mov(x0, value); - __ Mov(w1, shift[0]); - __ Mov(w2, shift[1]); - __ Mov(w3, shift[2]); - __ Mov(w4, shift[3]); - __ Mov(w5, shift[4]); - __ Mov(w6, shift[5]); - - __ lsrv(x0, x0, xzr); - - __ Lsr(x16, x0, x1); - __ Lsr(x17, x0, x2); - __ Lsr(x18, x0, x3); - __ Lsr(x19, x0, x4); - __ Lsr(x20, x0, x5); - __ Lsr(x21, x0, x6); - - __ Lsr(w22, w0, w1); - __ Lsr(w23, w0, w2); - __ Lsr(w24, w0, w3); - __ Lsr(w25, w0, w4); - __ Lsr(w26, w0, w5); - __ Lsr(w27, w0, w6); - END(); - - RUN(); - - ASSERT_EQUAL_64(value, x0); - ASSERT_EQUAL_64(value >> (shift[0] & 63), x16); - ASSERT_EQUAL_64(value >> (shift[1] & 63), x17); - ASSERT_EQUAL_64(value >> (shift[2] & 63), x18); - ASSERT_EQUAL_64(value >> (shift[3] & 63), x19); - ASSERT_EQUAL_64(value >> (shift[4] & 63), x20); - ASSERT_EQUAL_64(value >> (shift[5] & 63), x21); - - value &= 0xffffffffUL; - ASSERT_EQUAL_32(value >> (shift[0] & 31), w22); - ASSERT_EQUAL_32(value >> (shift[1] & 31), w23); - ASSERT_EQUAL_32(value >> (shift[2] & 31), w24); - ASSERT_EQUAL_32(value >> (shift[3] & 31), w25); - ASSERT_EQUAL_32(value >> (shift[4] & 31), w26); - ASSERT_EQUAL_32(value >> (shift[5] & 31), w27); - - TEARDOWN(); -} - - -TEST(asrv) { - INIT_V8(); - SETUP(); - - int64_t value = 0xfedcba98fedcba98UL; - int shift[] = {1, 3, 5, 9, 17, 33}; - - START(); - __ Mov(x0, value); - __ Mov(w1, shift[0]); - __ Mov(w2, shift[1]); - __ Mov(w3, shift[2]); - __ Mov(w4, shift[3]); - __ Mov(w5, shift[4]); - __ Mov(w6, shift[5]); - - __ asrv(x0, x0, xzr); - - __ Asr(x16, x0, x1); - __ Asr(x17, x0, x2); - __ Asr(x18, x0, x3); - __ Asr(x19, x0, x4); - __ Asr(x20, x0, x5); - __ Asr(x21, x0, x6); - - __ Asr(w22, w0, w1); - __ Asr(w23, w0, w2); - __ Asr(w24, w0, w3); - __ Asr(w25, w0, w4); - __ Asr(w26, w0, w5); - __ Asr(w27, w0, w6); - END(); - - RUN(); - - ASSERT_EQUAL_64(value, x0); - ASSERT_EQUAL_64(value >> (shift[0] & 63), x16); - ASSERT_EQUAL_64(value >> (shift[1] & 63), x17); - ASSERT_EQUAL_64(value >> (shift[2] & 63), x18); - ASSERT_EQUAL_64(value >> (shift[3] & 63), x19); - ASSERT_EQUAL_64(value >> (shift[4] & 63), x20); - ASSERT_EQUAL_64(value >> (shift[5] & 63), x21); - - int32_t value32 = static_cast<int32_t>(value & 0xffffffffUL); - ASSERT_EQUAL_32(value32 >> (shift[0] & 31), w22); - ASSERT_EQUAL_32(value32 >> (shift[1] & 31), w23); - ASSERT_EQUAL_32(value32 >> (shift[2] & 31), w24); - ASSERT_EQUAL_32(value32 >> (shift[3] & 31), w25); - ASSERT_EQUAL_32(value32 >> (shift[4] & 31), w26); - ASSERT_EQUAL_32(value32 >> (shift[5] & 31), w27); - - TEARDOWN(); -} - - -TEST(rorv) { - INIT_V8(); - SETUP(); - - uint64_t value = 0x0123456789abcdefUL; - int shift[] = {4, 8, 12, 16, 24, 36}; - - START(); - __ Mov(x0, value); - __ Mov(w1, shift[0]); - __ Mov(w2, shift[1]); - __ Mov(w3, shift[2]); - __ Mov(w4, shift[3]); - __ Mov(w5, shift[4]); - __ Mov(w6, shift[5]); - - __ rorv(x0, x0, xzr); - - __ Ror(x16, x0, x1); - __ Ror(x17, x0, x2); - __ Ror(x18, x0, x3); - __ Ror(x19, x0, x4); - __ Ror(x20, x0, x5); - __ Ror(x21, x0, x6); - - __ Ror(w22, w0, w1); - __ Ror(w23, w0, w2); - __ Ror(w24, w0, w3); - __ Ror(w25, w0, w4); - __ Ror(w26, w0, w5); - __ Ror(w27, w0, w6); - END(); - - RUN(); - - ASSERT_EQUAL_64(value, x0); - ASSERT_EQUAL_64(0xf0123456789abcdeUL, x16); - ASSERT_EQUAL_64(0xef0123456789abcdUL, x17); - ASSERT_EQUAL_64(0xdef0123456789abcUL, x18); - ASSERT_EQUAL_64(0xcdef0123456789abUL, x19); - ASSERT_EQUAL_64(0xabcdef0123456789UL, x20); - ASSERT_EQUAL_64(0x789abcdef0123456UL, x21); - ASSERT_EQUAL_32(0xf89abcde, w22); - ASSERT_EQUAL_32(0xef89abcd, w23); - ASSERT_EQUAL_32(0xdef89abc, w24); - ASSERT_EQUAL_32(0xcdef89ab, w25); - ASSERT_EQUAL_32(0xabcdef89, w26); - ASSERT_EQUAL_32(0xf89abcde, w27); - - TEARDOWN(); -} - - -TEST(bfm) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x1, 0x0123456789abcdefL); - - __ Mov(x10, 0x8888888888888888L); - __ Mov(x11, 0x8888888888888888L); - __ Mov(x12, 0x8888888888888888L); - __ Mov(x13, 0x8888888888888888L); - __ Mov(w20, 0x88888888); - __ Mov(w21, 0x88888888); - - __ bfm(x10, x1, 16, 31); - __ bfm(x11, x1, 32, 15); - - __ bfm(w20, w1, 16, 23); - __ bfm(w21, w1, 24, 15); - - // Aliases. - __ Bfi(x12, x1, 16, 8); - __ Bfxil(x13, x1, 16, 8); - END(); - - RUN(); - - - ASSERT_EQUAL_64(0x88888888888889abL, x10); - ASSERT_EQUAL_64(0x8888cdef88888888L, x11); - - ASSERT_EQUAL_32(0x888888ab, w20); - ASSERT_EQUAL_32(0x88cdef88, w21); - - ASSERT_EQUAL_64(0x8888888888ef8888L, x12); - ASSERT_EQUAL_64(0x88888888888888abL, x13); - - TEARDOWN(); -} - - -TEST(sbfm) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x1, 0x0123456789abcdefL); - __ Mov(x2, 0xfedcba9876543210L); - - __ sbfm(x10, x1, 16, 31); - __ sbfm(x11, x1, 32, 15); - __ sbfm(x12, x1, 32, 47); - __ sbfm(x13, x1, 48, 35); - - __ sbfm(w14, w1, 16, 23); - __ sbfm(w15, w1, 24, 15); - __ sbfm(w16, w2, 16, 23); - __ sbfm(w17, w2, 24, 15); - - // Aliases. - __ Asr(x18, x1, 32); - __ Asr(x19, x2, 32); - __ Sbfiz(x20, x1, 8, 16); - __ Sbfiz(x21, x2, 8, 16); - __ Sbfx(x22, x1, 8, 16); - __ Sbfx(x23, x2, 8, 16); - __ Sxtb(x24, w1); - __ Sxtb(x25, x2); - __ Sxth(x26, w1); - __ Sxth(x27, x2); - __ Sxtw(x28, w1); - __ Sxtw(x29, x2); - END(); - - RUN(); - - - ASSERT_EQUAL_64(0xffffffffffff89abL, x10); - ASSERT_EQUAL_64(0xffffcdef00000000L, x11); - ASSERT_EQUAL_64(0x4567L, x12); - ASSERT_EQUAL_64(0x789abcdef0000L, x13); - - ASSERT_EQUAL_32(0xffffffab, w14); - ASSERT_EQUAL_32(0xffcdef00, w15); - ASSERT_EQUAL_32(0x54, w16); - ASSERT_EQUAL_32(0x00321000, w17); - - ASSERT_EQUAL_64(0x01234567L, x18); - ASSERT_EQUAL_64(0xfffffffffedcba98L, x19); - ASSERT_EQUAL_64(0xffffffffffcdef00L, x20); - ASSERT_EQUAL_64(0x321000L, x21); - ASSERT_EQUAL_64(0xffffffffffffabcdL, x22); - ASSERT_EQUAL_64(0x5432L, x23); - ASSERT_EQUAL_64(0xffffffffffffffefL, x24); - ASSERT_EQUAL_64(0x10, x25); - ASSERT_EQUAL_64(0xffffffffffffcdefL, x26); - ASSERT_EQUAL_64(0x3210, x27); - ASSERT_EQUAL_64(0xffffffff89abcdefL, x28); - ASSERT_EQUAL_64(0x76543210, x29); - - TEARDOWN(); -} - - -TEST(ubfm) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x1, 0x0123456789abcdefL); - __ Mov(x2, 0xfedcba9876543210L); - - __ Mov(x10, 0x8888888888888888L); - __ Mov(x11, 0x8888888888888888L); - - __ ubfm(x10, x1, 16, 31); - __ ubfm(x11, x1, 32, 15); - __ ubfm(x12, x1, 32, 47); - __ ubfm(x13, x1, 48, 35); - - __ ubfm(w25, w1, 16, 23); - __ ubfm(w26, w1, 24, 15); - __ ubfm(w27, w2, 16, 23); - __ ubfm(w28, w2, 24, 15); - - // Aliases - __ Lsl(x15, x1, 63); - __ Lsl(x16, x1, 0); - __ Lsr(x17, x1, 32); - __ Ubfiz(x18, x1, 8, 16); - __ Ubfx(x19, x1, 8, 16); - __ Uxtb(x20, x1); - __ Uxth(x21, x1); - __ Uxtw(x22, x1); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x00000000000089abL, x10); - ASSERT_EQUAL_64(0x0000cdef00000000L, x11); - ASSERT_EQUAL_64(0x4567L, x12); - ASSERT_EQUAL_64(0x789abcdef0000L, x13); - - ASSERT_EQUAL_32(0x000000ab, w25); - ASSERT_EQUAL_32(0x00cdef00, w26); - ASSERT_EQUAL_32(0x54, w27); - ASSERT_EQUAL_32(0x00321000, w28); - - ASSERT_EQUAL_64(0x8000000000000000L, x15); - ASSERT_EQUAL_64(0x0123456789abcdefL, x16); - ASSERT_EQUAL_64(0x01234567L, x17); - ASSERT_EQUAL_64(0xcdef00L, x18); - ASSERT_EQUAL_64(0xabcdL, x19); - ASSERT_EQUAL_64(0xefL, x20); - ASSERT_EQUAL_64(0xcdefL, x21); - ASSERT_EQUAL_64(0x89abcdefL, x22); - - TEARDOWN(); -} - - -TEST(extr) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x1, 0x0123456789abcdefL); - __ Mov(x2, 0xfedcba9876543210L); - - __ Extr(w10, w1, w2, 0); - __ Extr(w11, w1, w2, 1); - __ Extr(x12, x2, x1, 2); - - __ Ror(w13, w1, 0); - __ Ror(w14, w2, 17); - __ Ror(w15, w1, 31); - __ Ror(x18, x2, 1); - __ Ror(x19, x1, 63); - END(); - - RUN(); - - ASSERT_EQUAL_64(0x76543210, x10); - ASSERT_EQUAL_64(0xbb2a1908, x11); - ASSERT_EQUAL_64(0x0048d159e26af37bUL, x12); - ASSERT_EQUAL_64(0x89abcdef, x13); - ASSERT_EQUAL_64(0x19083b2a, x14); - ASSERT_EQUAL_64(0x13579bdf, x15); - ASSERT_EQUAL_64(0x7f6e5d4c3b2a1908UL, x18); - ASSERT_EQUAL_64(0x02468acf13579bdeUL, x19); - - TEARDOWN(); -} - - -TEST(fmov_imm) { - INIT_V8(); - SETUP(); - - START(); - __ Fmov(s11, 1.0); - __ Fmov(d22, -13.0); - __ Fmov(s1, 255.0); - __ Fmov(d2, 12.34567); - __ Fmov(s3, 0.0); - __ Fmov(d4, 0.0); - __ Fmov(s5, kFP32PositiveInfinity); - __ Fmov(d6, kFP64NegativeInfinity); - END(); - - RUN(); - - ASSERT_EQUAL_FP32(1.0, s11); - ASSERT_EQUAL_FP64(-13.0, d22); - ASSERT_EQUAL_FP32(255.0, s1); - ASSERT_EQUAL_FP64(12.34567, d2); - ASSERT_EQUAL_FP32(0.0, s3); - ASSERT_EQUAL_FP64(0.0, d4); - ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s5); - ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d6); - - TEARDOWN(); -} - - -TEST(fmov_reg) { - INIT_V8(); - SETUP(); - - START(); - __ Fmov(s20, 1.0); - __ Fmov(w10, s20); - __ Fmov(s30, w10); - __ Fmov(s5, s20); - __ Fmov(d1, -13.0); - __ Fmov(x1, d1); - __ Fmov(d2, x1); - __ Fmov(d4, d1); - __ Fmov(d6, rawbits_to_double(0x0123456789abcdefL)); - __ Fmov(s6, s6); - END(); - - RUN(); - - ASSERT_EQUAL_32(float_to_rawbits(1.0), w10); - ASSERT_EQUAL_FP32(1.0, s30); - ASSERT_EQUAL_FP32(1.0, s5); - ASSERT_EQUAL_64(double_to_rawbits(-13.0), x1); - ASSERT_EQUAL_FP64(-13.0, d2); - ASSERT_EQUAL_FP64(-13.0, d4); - ASSERT_EQUAL_FP32(rawbits_to_float(0x89abcdef), s6); - - TEARDOWN(); -} - - -TEST(fadd) { - INIT_V8(); - SETUP(); - - START(); - __ Fmov(s13, -0.0); - __ Fmov(s14, kFP32PositiveInfinity); - __ Fmov(s15, kFP32NegativeInfinity); - __ Fmov(s16, 3.25); - __ Fmov(s17, 1.0); - __ Fmov(s18, 0); - - __ Fmov(d26, -0.0); - __ Fmov(d27, kFP64PositiveInfinity); - __ Fmov(d28, kFP64NegativeInfinity); - __ Fmov(d29, 0); - __ Fmov(d30, -2.0); - __ Fmov(d31, 2.25); - - __ Fadd(s0, s16, s17); - __ Fadd(s1, s17, s18); - __ Fadd(s2, s13, s17); - __ Fadd(s3, s14, s17); - __ Fadd(s4, s15, s17); - - __ Fadd(d5, d30, d31); - __ Fadd(d6, d29, d31); - __ Fadd(d7, d26, d31); - __ Fadd(d8, d27, d31); - __ Fadd(d9, d28, d31); - END(); - - RUN(); - - ASSERT_EQUAL_FP32(4.25, s0); - ASSERT_EQUAL_FP32(1.0, s1); - ASSERT_EQUAL_FP32(1.0, s2); - ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s3); - ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s4); - ASSERT_EQUAL_FP64(0.25, d5); - ASSERT_EQUAL_FP64(2.25, d6); - ASSERT_EQUAL_FP64(2.25, d7); - ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d8); - ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d9); - - TEARDOWN(); -} - - -TEST(fsub) { - INIT_V8(); - SETUP(); - - START(); - __ Fmov(s13, -0.0); - __ Fmov(s14, kFP32PositiveInfinity); - __ Fmov(s15, kFP32NegativeInfinity); - __ Fmov(s16, 3.25); - __ Fmov(s17, 1.0); - __ Fmov(s18, 0); - - __ Fmov(d26, -0.0); - __ Fmov(d27, kFP64PositiveInfinity); - __ Fmov(d28, kFP64NegativeInfinity); - __ Fmov(d29, 0); - __ Fmov(d30, -2.0); - __ Fmov(d31, 2.25); - - __ Fsub(s0, s16, s17); - __ Fsub(s1, s17, s18); - __ Fsub(s2, s13, s17); - __ Fsub(s3, s17, s14); - __ Fsub(s4, s17, s15); - - __ Fsub(d5, d30, d31); - __ Fsub(d6, d29, d31); - __ Fsub(d7, d26, d31); - __ Fsub(d8, d31, d27); - __ Fsub(d9, d31, d28); - END(); - - RUN(); - - ASSERT_EQUAL_FP32(2.25, s0); - ASSERT_EQUAL_FP32(1.0, s1); - ASSERT_EQUAL_FP32(-1.0, s2); - ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s3); - ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s4); - ASSERT_EQUAL_FP64(-4.25, d5); - ASSERT_EQUAL_FP64(-2.25, d6); - ASSERT_EQUAL_FP64(-2.25, d7); - ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d8); - ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d9); - - TEARDOWN(); -} - - -TEST(fmul) { - INIT_V8(); - SETUP(); - - START(); - __ Fmov(s13, -0.0); - __ Fmov(s14, kFP32PositiveInfinity); - __ Fmov(s15, kFP32NegativeInfinity); - __ Fmov(s16, 3.25); - __ Fmov(s17, 2.0); - __ Fmov(s18, 0); - __ Fmov(s19, -2.0); - - __ Fmov(d26, -0.0); - __ Fmov(d27, kFP64PositiveInfinity); - __ Fmov(d28, kFP64NegativeInfinity); - __ Fmov(d29, 0); - __ Fmov(d30, -2.0); - __ Fmov(d31, 2.25); - - __ Fmul(s0, s16, s17); - __ Fmul(s1, s17, s18); - __ Fmul(s2, s13, s13); - __ Fmul(s3, s14, s19); - __ Fmul(s4, s15, s19); - - __ Fmul(d5, d30, d31); - __ Fmul(d6, d29, d31); - __ Fmul(d7, d26, d26); - __ Fmul(d8, d27, d30); - __ Fmul(d9, d28, d30); - END(); - - RUN(); - - ASSERT_EQUAL_FP32(6.5, s0); - ASSERT_EQUAL_FP32(0.0, s1); - ASSERT_EQUAL_FP32(0.0, s2); - ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s3); - ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s4); - ASSERT_EQUAL_FP64(-4.5, d5); - ASSERT_EQUAL_FP64(0.0, d6); - ASSERT_EQUAL_FP64(0.0, d7); - ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d8); - ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d9); - - TEARDOWN(); -} - - -static void FmaddFmsubDoubleHelper(double n, double m, double a, - double fmadd, double fmsub) { - SETUP(); - START(); - - __ Fmov(d0, n); - __ Fmov(d1, m); - __ Fmov(d2, a); - __ Fmadd(d28, d0, d1, d2); - __ Fmsub(d29, d0, d1, d2); - __ Fnmadd(d30, d0, d1, d2); - __ Fnmsub(d31, d0, d1, d2); - - END(); - RUN(); - - ASSERT_EQUAL_FP64(fmadd, d28); - ASSERT_EQUAL_FP64(fmsub, d29); - ASSERT_EQUAL_FP64(-fmadd, d30); - ASSERT_EQUAL_FP64(-fmsub, d31); - - TEARDOWN(); -} - - -TEST(fmadd_fmsub_double) { - INIT_V8(); - double inputs[] = { - // Normal numbers, including -0.0. - DBL_MAX, DBL_MIN, 3.25, 2.0, 0.0, - -DBL_MAX, -DBL_MIN, -3.25, -2.0, -0.0, - // Infinities. - kFP64NegativeInfinity, kFP64PositiveInfinity, - // Subnormal numbers. - rawbits_to_double(0x000fffffffffffff), - rawbits_to_double(0x0000000000000001), - rawbits_to_double(0x000123456789abcd), - -rawbits_to_double(0x000fffffffffffff), - -rawbits_to_double(0x0000000000000001), - -rawbits_to_double(0x000123456789abcd), - // NaN. - kFP64QuietNaN, - -kFP64QuietNaN, - }; - const int count = sizeof(inputs) / sizeof(inputs[0]); - - for (int in = 0; in < count; in++) { - double n = inputs[in]; - for (int im = 0; im < count; im++) { - double m = inputs[im]; - for (int ia = 0; ia < count; ia++) { - double a = inputs[ia]; - double fmadd = fma(n, m, a); - double fmsub = fma(-n, m, a); - - FmaddFmsubDoubleHelper(n, m, a, fmadd, fmsub); - } - } - } -} - - -TEST(fmadd_fmsub_double_rounding) { - INIT_V8(); - // Make sure we run plenty of tests where an intermediate rounding stage would - // produce an incorrect result. - const int limit = 1000; - int count_fmadd = 0; - int count_fmsub = 0; - - uint16_t seed[3] = {42, 43, 44}; - seed48(seed); - - while ((count_fmadd < limit) || (count_fmsub < limit)) { - double n, m, a; - uint32_t r[2]; - ASSERT(sizeof(r) == sizeof(n)); - - r[0] = mrand48(); - r[1] = mrand48(); - memcpy(&n, r, sizeof(r)); - r[0] = mrand48(); - r[1] = mrand48(); - memcpy(&m, r, sizeof(r)); - r[0] = mrand48(); - r[1] = mrand48(); - memcpy(&a, r, sizeof(r)); - - if (!std::isfinite(a) || !std::isfinite(n) || !std::isfinite(m)) { - continue; - } - - // Calculate the expected results. - double fmadd = fma(n, m, a); - double fmsub = fma(-n, m, a); - - bool test_fmadd = (fmadd != (a + n * m)); - bool test_fmsub = (fmsub != (a - n * m)); - - // If rounding would produce a different result, increment the test count. - count_fmadd += test_fmadd; - count_fmsub += test_fmsub; - - if (test_fmadd || test_fmsub) { - FmaddFmsubDoubleHelper(n, m, a, fmadd, fmsub); - } - } -} - - -static void FmaddFmsubFloatHelper(float n, float m, float a, - float fmadd, float fmsub) { - SETUP(); - START(); - - __ Fmov(s0, n); - __ Fmov(s1, m); - __ Fmov(s2, a); - __ Fmadd(s30, s0, s1, s2); - __ Fmsub(s31, s0, s1, s2); - - END(); - RUN(); - - ASSERT_EQUAL_FP32(fmadd, s30); - ASSERT_EQUAL_FP32(fmsub, s31); - - TEARDOWN(); -} - - -TEST(fmadd_fmsub_float) { - INIT_V8(); - float inputs[] = { - // Normal numbers, including -0.0f. - FLT_MAX, FLT_MIN, 3.25f, 2.0f, 0.0f, - -FLT_MAX, -FLT_MIN, -3.25f, -2.0f, -0.0f, - // Infinities. - kFP32NegativeInfinity, kFP32PositiveInfinity, - // Subnormal numbers. - rawbits_to_float(0x07ffffff), - rawbits_to_float(0x00000001), - rawbits_to_float(0x01234567), - -rawbits_to_float(0x07ffffff), - -rawbits_to_float(0x00000001), - -rawbits_to_float(0x01234567), - // NaN. - kFP32QuietNaN, - -kFP32QuietNaN, - }; - const int count = sizeof(inputs) / sizeof(inputs[0]); - - for (int in = 0; in < count; in++) { - float n = inputs[in]; - for (int im = 0; im < count; im++) { - float m = inputs[im]; - for (int ia = 0; ia < count; ia++) { - float a = inputs[ia]; - float fmadd = fmaf(n, m, a); - float fmsub = fmaf(-n, m, a); - - FmaddFmsubFloatHelper(n, m, a, fmadd, fmsub); - } - } - } -} - - -TEST(fmadd_fmsub_float_rounding) { - INIT_V8(); - // Make sure we run plenty of tests where an intermediate rounding stage would - // produce an incorrect result. - const int limit = 1000; - int count_fmadd = 0; - int count_fmsub = 0; - - uint16_t seed[3] = {42, 43, 44}; - seed48(seed); - - while ((count_fmadd < limit) || (count_fmsub < limit)) { - float n, m, a; - uint32_t r; - ASSERT(sizeof(r) == sizeof(n)); - - r = mrand48(); - memcpy(&n, &r, sizeof(r)); - r = mrand48(); - memcpy(&m, &r, sizeof(r)); - r = mrand48(); - memcpy(&a, &r, sizeof(r)); - - if (!std::isfinite(a) || !std::isfinite(n) || !std::isfinite(m)) { - continue; - } - - // Calculate the expected results. - float fmadd = fmaf(n, m, a); - float fmsub = fmaf(-n, m, a); - - bool test_fmadd = (fmadd != (a + n * m)); - bool test_fmsub = (fmsub != (a - n * m)); - - // If rounding would produce a different result, increment the test count. - count_fmadd += test_fmadd; - count_fmsub += test_fmsub; - - if (test_fmadd || test_fmsub) { - FmaddFmsubFloatHelper(n, m, a, fmadd, fmsub); - } - } -} - - -TEST(fdiv) { - INIT_V8(); - SETUP(); - - START(); - __ Fmov(s13, -0.0); - __ Fmov(s14, kFP32PositiveInfinity); - __ Fmov(s15, kFP32NegativeInfinity); - __ Fmov(s16, 3.25); - __ Fmov(s17, 2.0); - __ Fmov(s18, 2.0); - __ Fmov(s19, -2.0); - - __ Fmov(d26, -0.0); - __ Fmov(d27, kFP64PositiveInfinity); - __ Fmov(d28, kFP64NegativeInfinity); - __ Fmov(d29, 0); - __ Fmov(d30, -2.0); - __ Fmov(d31, 2.25); - - __ Fdiv(s0, s16, s17); - __ Fdiv(s1, s17, s18); - __ Fdiv(s2, s13, s17); - __ Fdiv(s3, s17, s14); - __ Fdiv(s4, s17, s15); - __ Fdiv(d5, d31, d30); - __ Fdiv(d6, d29, d31); - __ Fdiv(d7, d26, d31); - __ Fdiv(d8, d31, d27); - __ Fdiv(d9, d31, d28); - END(); - - RUN(); - - ASSERT_EQUAL_FP32(1.625, s0); - ASSERT_EQUAL_FP32(1.0, s1); - ASSERT_EQUAL_FP32(-0.0, s2); - ASSERT_EQUAL_FP32(0.0, s3); - ASSERT_EQUAL_FP32(-0.0, s4); - ASSERT_EQUAL_FP64(-1.125, d5); - ASSERT_EQUAL_FP64(0.0, d6); - ASSERT_EQUAL_FP64(-0.0, d7); - ASSERT_EQUAL_FP64(0.0, d8); - ASSERT_EQUAL_FP64(-0.0, d9); - - TEARDOWN(); -} - - -static float MinMaxHelper(float n, - float m, - bool min, - float quiet_nan_substitute = 0.0) { - const uint64_t kFP32QuietNaNMask = 0x00400000UL; - uint32_t raw_n = float_to_rawbits(n); - uint32_t raw_m = float_to_rawbits(m); - - if (std::isnan(n) && ((raw_n & kFP32QuietNaNMask) == 0)) { - // n is signalling NaN. - return n; - } else if (std::isnan(m) && ((raw_m & kFP32QuietNaNMask) == 0)) { - // m is signalling NaN. - return m; - } else if (quiet_nan_substitute == 0.0) { - if (std::isnan(n)) { - // n is quiet NaN. - return n; - } else if (std::isnan(m)) { - // m is quiet NaN. - return m; - } - } else { - // Substitute n or m if one is quiet, but not both. - if (std::isnan(n) && !std::isnan(m)) { - // n is quiet NaN: replace with substitute. - n = quiet_nan_substitute; - } else if (!std::isnan(n) && std::isnan(m)) { - // m is quiet NaN: replace with substitute. - m = quiet_nan_substitute; - } - } - - if ((n == 0.0) && (m == 0.0) && - (copysign(1.0, n) != copysign(1.0, m))) { - return min ? -0.0 : 0.0; - } - - return min ? fminf(n, m) : fmaxf(n, m); -} - - -static double MinMaxHelper(double n, - double m, - bool min, - double quiet_nan_substitute = 0.0) { - const uint64_t kFP64QuietNaNMask = 0x0008000000000000UL; - uint64_t raw_n = double_to_rawbits(n); - uint64_t raw_m = double_to_rawbits(m); - - if (std::isnan(n) && ((raw_n & kFP64QuietNaNMask) == 0)) { - // n is signalling NaN. - return n; - } else if (std::isnan(m) && ((raw_m & kFP64QuietNaNMask) == 0)) { - // m is signalling NaN. - return m; - } else if (quiet_nan_substitute == 0.0) { - if (std::isnan(n)) { - // n is quiet NaN. - return n; - } else if (std::isnan(m)) { - // m is quiet NaN. - return m; - } - } else { - // Substitute n or m if one is quiet, but not both. - if (std::isnan(n) && !std::isnan(m)) { - // n is quiet NaN: replace with substitute. - n = quiet_nan_substitute; - } else if (!std::isnan(n) && std::isnan(m)) { - // m is quiet NaN: replace with substitute. - m = quiet_nan_substitute; - } - } - - if ((n == 0.0) && (m == 0.0) && - (copysign(1.0, n) != copysign(1.0, m))) { - return min ? -0.0 : 0.0; - } - - return min ? fmin(n, m) : fmax(n, m); -} - - -static void FminFmaxDoubleHelper(double n, double m, double min, double max, - double minnm, double maxnm) { - SETUP(); - - START(); - __ Fmov(d0, n); - __ Fmov(d1, m); - __ Fmin(d28, d0, d1); - __ Fmax(d29, d0, d1); - __ Fminnm(d30, d0, d1); - __ Fmaxnm(d31, d0, d1); - END(); - - RUN(); - - ASSERT_EQUAL_FP64(min, d28); - ASSERT_EQUAL_FP64(max, d29); - ASSERT_EQUAL_FP64(minnm, d30); - ASSERT_EQUAL_FP64(maxnm, d31); - - TEARDOWN(); -} - - -TEST(fmax_fmin_d) { - INIT_V8(); - // Bootstrap tests. - FminFmaxDoubleHelper(0, 0, 0, 0, 0, 0); - FminFmaxDoubleHelper(0, 1, 0, 1, 0, 1); - FminFmaxDoubleHelper(kFP64PositiveInfinity, kFP64NegativeInfinity, - kFP64NegativeInfinity, kFP64PositiveInfinity, - kFP64NegativeInfinity, kFP64PositiveInfinity); - FminFmaxDoubleHelper(kFP64SignallingNaN, 0, - kFP64SignallingNaN, kFP64SignallingNaN, - kFP64SignallingNaN, kFP64SignallingNaN); - FminFmaxDoubleHelper(kFP64QuietNaN, 0, - kFP64QuietNaN, kFP64QuietNaN, - 0, 0); - FminFmaxDoubleHelper(kFP64QuietNaN, kFP64SignallingNaN, - kFP64SignallingNaN, kFP64SignallingNaN, - kFP64SignallingNaN, kFP64SignallingNaN); - - // Iterate over all combinations of inputs. - double inputs[] = { DBL_MAX, DBL_MIN, 1.0, 0.0, - -DBL_MAX, -DBL_MIN, -1.0, -0.0, - kFP64PositiveInfinity, kFP64NegativeInfinity, - kFP64QuietNaN, kFP64SignallingNaN }; - - const int count = sizeof(inputs) / sizeof(inputs[0]); - - for (int in = 0; in < count; in++) { - double n = inputs[in]; - for (int im = 0; im < count; im++) { - double m = inputs[im]; - FminFmaxDoubleHelper(n, m, - MinMaxHelper(n, m, true), - MinMaxHelper(n, m, false), - MinMaxHelper(n, m, true, kFP64PositiveInfinity), - MinMaxHelper(n, m, false, kFP64NegativeInfinity)); - } - } -} - - -static void FminFmaxFloatHelper(float n, float m, float min, float max, - float minnm, float maxnm) { - SETUP(); - - START(); - // TODO(all): Signalling NaNs are sometimes converted by the C compiler to - // quiet NaNs on implicit casts from float to double. Here, we move the raw - // bits into a W register first, so we get the correct value. Fix Fmov so this - // additional step is no longer needed. - __ Mov(w0, float_to_rawbits(n)); - __ Fmov(s0, w0); - __ Mov(w0, float_to_rawbits(m)); - __ Fmov(s1, w0); - __ Fmin(s28, s0, s1); - __ Fmax(s29, s0, s1); - __ Fminnm(s30, s0, s1); - __ Fmaxnm(s31, s0, s1); - END(); - - RUN(); - - ASSERT_EQUAL_FP32(min, s28); - ASSERT_EQUAL_FP32(max, s29); - ASSERT_EQUAL_FP32(minnm, s30); - ASSERT_EQUAL_FP32(maxnm, s31); - - TEARDOWN(); -} - - -TEST(fmax_fmin_s) { - INIT_V8(); - // Bootstrap tests. - FminFmaxFloatHelper(0, 0, 0, 0, 0, 0); - FminFmaxFloatHelper(0, 1, 0, 1, 0, 1); - FminFmaxFloatHelper(kFP32PositiveInfinity, kFP32NegativeInfinity, - kFP32NegativeInfinity, kFP32PositiveInfinity, - kFP32NegativeInfinity, kFP32PositiveInfinity); - FminFmaxFloatHelper(kFP32SignallingNaN, 0, - kFP32SignallingNaN, kFP32SignallingNaN, - kFP32SignallingNaN, kFP32SignallingNaN); - FminFmaxFloatHelper(kFP32QuietNaN, 0, - kFP32QuietNaN, kFP32QuietNaN, - 0, 0); - FminFmaxFloatHelper(kFP32QuietNaN, kFP32SignallingNaN, - kFP32SignallingNaN, kFP32SignallingNaN, - kFP32SignallingNaN, kFP32SignallingNaN); - - // Iterate over all combinations of inputs. - float inputs[] = { FLT_MAX, FLT_MIN, 1.0, 0.0, - -FLT_MAX, -FLT_MIN, -1.0, -0.0, - kFP32PositiveInfinity, kFP32NegativeInfinity, - kFP32QuietNaN, kFP32SignallingNaN }; - - const int count = sizeof(inputs) / sizeof(inputs[0]); - - for (int in = 0; in < count; in++) { - float n = inputs[in]; - for (int im = 0; im < count; im++) { - float m = inputs[im]; - FminFmaxFloatHelper(n, m, - MinMaxHelper(n, m, true), - MinMaxHelper(n, m, false), - MinMaxHelper(n, m, true, kFP32PositiveInfinity), - MinMaxHelper(n, m, false, kFP32NegativeInfinity)); - } - } -} - - -TEST(fccmp) { - INIT_V8(); - SETUP(); - - START(); - __ Fmov(s16, 0.0); - __ Fmov(s17, 0.5); - __ Fmov(d18, -0.5); - __ Fmov(d19, -1.0); - __ Mov(x20, 0); - - __ Cmp(x20, 0); - __ Fccmp(s16, s16, NoFlag, eq); - __ Mrs(x0, NZCV); - - __ Cmp(x20, 0); - __ Fccmp(s16, s16, VFlag, ne); - __ Mrs(x1, NZCV); - - __ Cmp(x20, 0); - __ Fccmp(s16, s17, CFlag, ge); - __ Mrs(x2, NZCV); - - __ Cmp(x20, 0); - __ Fccmp(s16, s17, CVFlag, lt); - __ Mrs(x3, NZCV); - - __ Cmp(x20, 0); - __ Fccmp(d18, d18, ZFlag, le); - __ Mrs(x4, NZCV); - - __ Cmp(x20, 0); - __ Fccmp(d18, d18, ZVFlag, gt); - __ Mrs(x5, NZCV); - - __ Cmp(x20, 0); - __ Fccmp(d18, d19, ZCVFlag, ls); - __ Mrs(x6, NZCV); - - __ Cmp(x20, 0); - __ Fccmp(d18, d19, NFlag, hi); - __ Mrs(x7, NZCV); - - __ fccmp(s16, s16, NFlag, al); - __ Mrs(x8, NZCV); - - __ fccmp(d18, d18, NFlag, nv); - __ Mrs(x9, NZCV); - - END(); - - RUN(); - - ASSERT_EQUAL_32(ZCFlag, w0); - ASSERT_EQUAL_32(VFlag, w1); - ASSERT_EQUAL_32(NFlag, w2); - ASSERT_EQUAL_32(CVFlag, w3); - ASSERT_EQUAL_32(ZCFlag, w4); - ASSERT_EQUAL_32(ZVFlag, w5); - ASSERT_EQUAL_32(CFlag, w6); - ASSERT_EQUAL_32(NFlag, w7); - ASSERT_EQUAL_32(ZCFlag, w8); - ASSERT_EQUAL_32(ZCFlag, w9); - - TEARDOWN(); -} - - -TEST(fcmp) { - INIT_V8(); - SETUP(); - - START(); - - // Some of these tests require a floating-point scratch register assigned to - // the macro assembler, but most do not. - __ SetFPScratchRegister(NoFPReg); - - __ Fmov(s8, 0.0); - __ Fmov(s9, 0.5); - __ Mov(w18, 0x7f800001); // Single precision NaN. - __ Fmov(s18, w18); - - __ Fcmp(s8, s8); - __ Mrs(x0, NZCV); - __ Fcmp(s8, s9); - __ Mrs(x1, NZCV); - __ Fcmp(s9, s8); - __ Mrs(x2, NZCV); - __ Fcmp(s8, s18); - __ Mrs(x3, NZCV); - __ Fcmp(s18, s18); - __ Mrs(x4, NZCV); - __ Fcmp(s8, 0.0); - __ Mrs(x5, NZCV); - __ SetFPScratchRegister(d0); - __ Fcmp(s8, 255.0); - __ SetFPScratchRegister(NoFPReg); - __ Mrs(x6, NZCV); - - __ Fmov(d19, 0.0); - __ Fmov(d20, 0.5); - __ Mov(x21, 0x7ff0000000000001UL); // Double precision NaN. - __ Fmov(d21, x21); - - __ Fcmp(d19, d19); - __ Mrs(x10, NZCV); - __ Fcmp(d19, d20); - __ Mrs(x11, NZCV); - __ Fcmp(d20, d19); - __ Mrs(x12, NZCV); - __ Fcmp(d19, d21); - __ Mrs(x13, NZCV); - __ Fcmp(d21, d21); - __ Mrs(x14, NZCV); - __ Fcmp(d19, 0.0); - __ Mrs(x15, NZCV); - __ SetFPScratchRegister(d0); - __ Fcmp(d19, 12.3456); - __ SetFPScratchRegister(NoFPReg); - __ Mrs(x16, NZCV); - END(); - - RUN(); - - ASSERT_EQUAL_32(ZCFlag, w0); - ASSERT_EQUAL_32(NFlag, w1); - ASSERT_EQUAL_32(CFlag, w2); - ASSERT_EQUAL_32(CVFlag, w3); - ASSERT_EQUAL_32(CVFlag, w4); - ASSERT_EQUAL_32(ZCFlag, w5); - ASSERT_EQUAL_32(NFlag, w6); - ASSERT_EQUAL_32(ZCFlag, w10); - ASSERT_EQUAL_32(NFlag, w11); - ASSERT_EQUAL_32(CFlag, w12); - ASSERT_EQUAL_32(CVFlag, w13); - ASSERT_EQUAL_32(CVFlag, w14); - ASSERT_EQUAL_32(ZCFlag, w15); - ASSERT_EQUAL_32(NFlag, w16); - - TEARDOWN(); -} - - -TEST(fcsel) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(x16, 0); - __ Fmov(s16, 1.0); - __ Fmov(s17, 2.0); - __ Fmov(d18, 3.0); - __ Fmov(d19, 4.0); - - __ Cmp(x16, 0); - __ Fcsel(s0, s16, s17, eq); - __ Fcsel(s1, s16, s17, ne); - __ Fcsel(d2, d18, d19, eq); - __ Fcsel(d3, d18, d19, ne); - __ fcsel(s4, s16, s17, al); - __ fcsel(d5, d18, d19, nv); - END(); - - RUN(); - - ASSERT_EQUAL_FP32(1.0, s0); - ASSERT_EQUAL_FP32(2.0, s1); - ASSERT_EQUAL_FP64(3.0, d2); - ASSERT_EQUAL_FP64(4.0, d3); - ASSERT_EQUAL_FP32(1.0, s4); - ASSERT_EQUAL_FP64(3.0, d5); - - TEARDOWN(); -} - - -TEST(fneg) { - INIT_V8(); - SETUP(); - - START(); - __ Fmov(s16, 1.0); - __ Fmov(s17, 0.0); - __ Fmov(s18, kFP32PositiveInfinity); - __ Fmov(d19, 1.0); - __ Fmov(d20, 0.0); - __ Fmov(d21, kFP64PositiveInfinity); - - __ Fneg(s0, s16); - __ Fneg(s1, s0); - __ Fneg(s2, s17); - __ Fneg(s3, s2); - __ Fneg(s4, s18); - __ Fneg(s5, s4); - __ Fneg(d6, d19); - __ Fneg(d7, d6); - __ Fneg(d8, d20); - __ Fneg(d9, d8); - __ Fneg(d10, d21); - __ Fneg(d11, d10); - END(); - - RUN(); - - ASSERT_EQUAL_FP32(-1.0, s0); - ASSERT_EQUAL_FP32(1.0, s1); - ASSERT_EQUAL_FP32(-0.0, s2); - ASSERT_EQUAL_FP32(0.0, s3); - ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s4); - ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s5); - ASSERT_EQUAL_FP64(-1.0, d6); - ASSERT_EQUAL_FP64(1.0, d7); - ASSERT_EQUAL_FP64(-0.0, d8); - ASSERT_EQUAL_FP64(0.0, d9); - ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d10); - ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d11); - - TEARDOWN(); -} - - -TEST(fabs) { - INIT_V8(); - SETUP(); - - START(); - __ Fmov(s16, -1.0); - __ Fmov(s17, -0.0); - __ Fmov(s18, kFP32NegativeInfinity); - __ Fmov(d19, -1.0); - __ Fmov(d20, -0.0); - __ Fmov(d21, kFP64NegativeInfinity); - - __ Fabs(s0, s16); - __ Fabs(s1, s0); - __ Fabs(s2, s17); - __ Fabs(s3, s18); - __ Fabs(d4, d19); - __ Fabs(d5, d4); - __ Fabs(d6, d20); - __ Fabs(d7, d21); - END(); - - RUN(); - - ASSERT_EQUAL_FP32(1.0, s0); - ASSERT_EQUAL_FP32(1.0, s1); - ASSERT_EQUAL_FP32(0.0, s2); - ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s3); - ASSERT_EQUAL_FP64(1.0, d4); - ASSERT_EQUAL_FP64(1.0, d5); - ASSERT_EQUAL_FP64(0.0, d6); - ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d7); - - TEARDOWN(); -} - - -TEST(fsqrt) { - INIT_V8(); - SETUP(); - - START(); - __ Fmov(s16, 0.0); - __ Fmov(s17, 1.0); - __ Fmov(s18, 0.25); - __ Fmov(s19, 65536.0); - __ Fmov(s20, -0.0); - __ Fmov(s21, kFP32PositiveInfinity); - __ Fmov(d22, 0.0); - __ Fmov(d23, 1.0); - __ Fmov(d24, 0.25); - __ Fmov(d25, 4294967296.0); - __ Fmov(d26, -0.0); - __ Fmov(d27, kFP64PositiveInfinity); - - __ Fsqrt(s0, s16); - __ Fsqrt(s1, s17); - __ Fsqrt(s2, s18); - __ Fsqrt(s3, s19); - __ Fsqrt(s4, s20); - __ Fsqrt(s5, s21); - __ Fsqrt(d6, d22); - __ Fsqrt(d7, d23); - __ Fsqrt(d8, d24); - __ Fsqrt(d9, d25); - __ Fsqrt(d10, d26); - __ Fsqrt(d11, d27); - END(); - - RUN(); - - ASSERT_EQUAL_FP32(0.0, s0); - ASSERT_EQUAL_FP32(1.0, s1); - ASSERT_EQUAL_FP32(0.5, s2); - ASSERT_EQUAL_FP32(256.0, s3); - ASSERT_EQUAL_FP32(-0.0, s4); - ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s5); - ASSERT_EQUAL_FP64(0.0, d6); - ASSERT_EQUAL_FP64(1.0, d7); - ASSERT_EQUAL_FP64(0.5, d8); - ASSERT_EQUAL_FP64(65536.0, d9); - ASSERT_EQUAL_FP64(-0.0, d10); - ASSERT_EQUAL_FP64(kFP32PositiveInfinity, d11); - - TEARDOWN(); -} - - -TEST(frinta) { - INIT_V8(); - SETUP(); - - START(); - __ Fmov(s16, 1.0); - __ Fmov(s17, 1.1); - __ Fmov(s18, 1.5); - __ Fmov(s19, 1.9); - __ Fmov(s20, 2.5); - __ Fmov(s21, -1.5); - __ Fmov(s22, -2.5); - __ Fmov(s23, kFP32PositiveInfinity); - __ Fmov(s24, kFP32NegativeInfinity); - __ Fmov(s25, 0.0); - __ Fmov(s26, -0.0); - - __ Frinta(s0, s16); - __ Frinta(s1, s17); - __ Frinta(s2, s18); - __ Frinta(s3, s19); - __ Frinta(s4, s20); - __ Frinta(s5, s21); - __ Frinta(s6, s22); - __ Frinta(s7, s23); - __ Frinta(s8, s24); - __ Frinta(s9, s25); - __ Frinta(s10, s26); - - __ Fmov(d16, 1.0); - __ Fmov(d17, 1.1); - __ Fmov(d18, 1.5); - __ Fmov(d19, 1.9); - __ Fmov(d20, 2.5); - __ Fmov(d21, -1.5); - __ Fmov(d22, -2.5); - __ Fmov(d23, kFP32PositiveInfinity); - __ Fmov(d24, kFP32NegativeInfinity); - __ Fmov(d25, 0.0); - __ Fmov(d26, -0.0); - - __ Frinta(d11, d16); - __ Frinta(d12, d17); - __ Frinta(d13, d18); - __ Frinta(d14, d19); - __ Frinta(d15, d20); - __ Frinta(d16, d21); - __ Frinta(d17, d22); - __ Frinta(d18, d23); - __ Frinta(d19, d24); - __ Frinta(d20, d25); - __ Frinta(d21, d26); - END(); - - RUN(); - - ASSERT_EQUAL_FP32(1.0, s0); - ASSERT_EQUAL_FP32(1.0, s1); - ASSERT_EQUAL_FP32(2.0, s2); - ASSERT_EQUAL_FP32(2.0, s3); - ASSERT_EQUAL_FP32(3.0, s4); - ASSERT_EQUAL_FP32(-2.0, s5); - ASSERT_EQUAL_FP32(-3.0, s6); - ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s7); - ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s8); - ASSERT_EQUAL_FP32(0.0, s9); - ASSERT_EQUAL_FP32(-0.0, s10); - ASSERT_EQUAL_FP64(1.0, d11); - ASSERT_EQUAL_FP64(1.0, d12); - ASSERT_EQUAL_FP64(2.0, d13); - ASSERT_EQUAL_FP64(2.0, d14); - ASSERT_EQUAL_FP64(3.0, d15); - ASSERT_EQUAL_FP64(-2.0, d16); - ASSERT_EQUAL_FP64(-3.0, d17); - ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d18); - ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d19); - ASSERT_EQUAL_FP64(0.0, d20); - ASSERT_EQUAL_FP64(-0.0, d21); - - TEARDOWN(); -} - - -TEST(frintn) { - INIT_V8(); - SETUP(); - - START(); - __ Fmov(s16, 1.0); - __ Fmov(s17, 1.1); - __ Fmov(s18, 1.5); - __ Fmov(s19, 1.9); - __ Fmov(s20, 2.5); - __ Fmov(s21, -1.5); - __ Fmov(s22, -2.5); - __ Fmov(s23, kFP32PositiveInfinity); - __ Fmov(s24, kFP32NegativeInfinity); - __ Fmov(s25, 0.0); - __ Fmov(s26, -0.0); - - __ Frintn(s0, s16); - __ Frintn(s1, s17); - __ Frintn(s2, s18); - __ Frintn(s3, s19); - __ Frintn(s4, s20); - __ Frintn(s5, s21); - __ Frintn(s6, s22); - __ Frintn(s7, s23); - __ Frintn(s8, s24); - __ Frintn(s9, s25); - __ Frintn(s10, s26); - - __ Fmov(d16, 1.0); - __ Fmov(d17, 1.1); - __ Fmov(d18, 1.5); - __ Fmov(d19, 1.9); - __ Fmov(d20, 2.5); - __ Fmov(d21, -1.5); - __ Fmov(d22, -2.5); - __ Fmov(d23, kFP32PositiveInfinity); - __ Fmov(d24, kFP32NegativeInfinity); - __ Fmov(d25, 0.0); - __ Fmov(d26, -0.0); - - __ Frintn(d11, d16); - __ Frintn(d12, d17); - __ Frintn(d13, d18); - __ Frintn(d14, d19); - __ Frintn(d15, d20); - __ Frintn(d16, d21); - __ Frintn(d17, d22); - __ Frintn(d18, d23); - __ Frintn(d19, d24); - __ Frintn(d20, d25); - __ Frintn(d21, d26); - END(); - - RUN(); - - ASSERT_EQUAL_FP32(1.0, s0); - ASSERT_EQUAL_FP32(1.0, s1); - ASSERT_EQUAL_FP32(2.0, s2); - ASSERT_EQUAL_FP32(2.0, s3); - ASSERT_EQUAL_FP32(2.0, s4); - ASSERT_EQUAL_FP32(-2.0, s5); - ASSERT_EQUAL_FP32(-2.0, s6); - ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s7); - ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s8); - ASSERT_EQUAL_FP32(0.0, s9); - ASSERT_EQUAL_FP32(-0.0, s10); - ASSERT_EQUAL_FP64(1.0, d11); - ASSERT_EQUAL_FP64(1.0, d12); - ASSERT_EQUAL_FP64(2.0, d13); - ASSERT_EQUAL_FP64(2.0, d14); - ASSERT_EQUAL_FP64(2.0, d15); - ASSERT_EQUAL_FP64(-2.0, d16); - ASSERT_EQUAL_FP64(-2.0, d17); - ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d18); - ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d19); - ASSERT_EQUAL_FP64(0.0, d20); - ASSERT_EQUAL_FP64(-0.0, d21); - - TEARDOWN(); -} - - -TEST(frintz) { - INIT_V8(); - SETUP(); - - START(); - __ Fmov(s16, 1.0); - __ Fmov(s17, 1.1); - __ Fmov(s18, 1.5); - __ Fmov(s19, 1.9); - __ Fmov(s20, 2.5); - __ Fmov(s21, -1.5); - __ Fmov(s22, -2.5); - __ Fmov(s23, kFP32PositiveInfinity); - __ Fmov(s24, kFP32NegativeInfinity); - __ Fmov(s25, 0.0); - __ Fmov(s26, -0.0); - - __ Frintz(s0, s16); - __ Frintz(s1, s17); - __ Frintz(s2, s18); - __ Frintz(s3, s19); - __ Frintz(s4, s20); - __ Frintz(s5, s21); - __ Frintz(s6, s22); - __ Frintz(s7, s23); - __ Frintz(s8, s24); - __ Frintz(s9, s25); - __ Frintz(s10, s26); - - __ Fmov(d16, 1.0); - __ Fmov(d17, 1.1); - __ Fmov(d18, 1.5); - __ Fmov(d19, 1.9); - __ Fmov(d20, 2.5); - __ Fmov(d21, -1.5); - __ Fmov(d22, -2.5); - __ Fmov(d23, kFP32PositiveInfinity); - __ Fmov(d24, kFP32NegativeInfinity); - __ Fmov(d25, 0.0); - __ Fmov(d26, -0.0); - - __ Frintz(d11, d16); - __ Frintz(d12, d17); - __ Frintz(d13, d18); - __ Frintz(d14, d19); - __ Frintz(d15, d20); - __ Frintz(d16, d21); - __ Frintz(d17, d22); - __ Frintz(d18, d23); - __ Frintz(d19, d24); - __ Frintz(d20, d25); - __ Frintz(d21, d26); - END(); - - RUN(); - - ASSERT_EQUAL_FP32(1.0, s0); - ASSERT_EQUAL_FP32(1.0, s1); - ASSERT_EQUAL_FP32(1.0, s2); - ASSERT_EQUAL_FP32(1.0, s3); - ASSERT_EQUAL_FP32(2.0, s4); - ASSERT_EQUAL_FP32(-1.0, s5); - ASSERT_EQUAL_FP32(-2.0, s6); - ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s7); - ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s8); - ASSERT_EQUAL_FP32(0.0, s9); - ASSERT_EQUAL_FP32(-0.0, s10); - ASSERT_EQUAL_FP64(1.0, d11); - ASSERT_EQUAL_FP64(1.0, d12); - ASSERT_EQUAL_FP64(1.0, d13); - ASSERT_EQUAL_FP64(1.0, d14); - ASSERT_EQUAL_FP64(2.0, d15); - ASSERT_EQUAL_FP64(-1.0, d16); - ASSERT_EQUAL_FP64(-2.0, d17); - ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d18); - ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d19); - ASSERT_EQUAL_FP64(0.0, d20); - ASSERT_EQUAL_FP64(-0.0, d21); - - TEARDOWN(); -} - - -TEST(fcvt_ds) { - INIT_V8(); - SETUP(); - - START(); - __ Fmov(s16, 1.0); - __ Fmov(s17, 1.1); - __ Fmov(s18, 1.5); - __ Fmov(s19, 1.9); - __ Fmov(s20, 2.5); - __ Fmov(s21, -1.5); - __ Fmov(s22, -2.5); - __ Fmov(s23, kFP32PositiveInfinity); - __ Fmov(s24, kFP32NegativeInfinity); - __ Fmov(s25, 0.0); - __ Fmov(s26, -0.0); - __ Fmov(s27, FLT_MAX); - __ Fmov(s28, FLT_MIN); - __ Fmov(s29, rawbits_to_float(0x7fc12345)); // Quiet NaN. - __ Fmov(s30, rawbits_to_float(0x7f812345)); // Signalling NaN. - - __ Fcvt(d0, s16); - __ Fcvt(d1, s17); - __ Fcvt(d2, s18); - __ Fcvt(d3, s19); - __ Fcvt(d4, s20); - __ Fcvt(d5, s21); - __ Fcvt(d6, s22); - __ Fcvt(d7, s23); - __ Fcvt(d8, s24); - __ Fcvt(d9, s25); - __ Fcvt(d10, s26); - __ Fcvt(d11, s27); - __ Fcvt(d12, s28); - __ Fcvt(d13, s29); - __ Fcvt(d14, s30); - END(); - - RUN(); - - ASSERT_EQUAL_FP64(1.0f, d0); - ASSERT_EQUAL_FP64(1.1f, d1); - ASSERT_EQUAL_FP64(1.5f, d2); - ASSERT_EQUAL_FP64(1.9f, d3); - ASSERT_EQUAL_FP64(2.5f, d4); - ASSERT_EQUAL_FP64(-1.5f, d5); - ASSERT_EQUAL_FP64(-2.5f, d6); - ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d7); - ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d8); - ASSERT_EQUAL_FP64(0.0f, d9); - ASSERT_EQUAL_FP64(-0.0f, d10); - ASSERT_EQUAL_FP64(FLT_MAX, d11); - ASSERT_EQUAL_FP64(FLT_MIN, d12); - - // Check that the NaN payload is preserved according to A64 conversion rules: - // - The sign bit is preserved. - // - The top bit of the mantissa is forced to 1 (making it a quiet NaN). - // - The remaining mantissa bits are copied until they run out. - // - The low-order bits that haven't already been assigned are set to 0. - ASSERT_EQUAL_FP64(rawbits_to_double(0x7ff82468a0000000), d13); - ASSERT_EQUAL_FP64(rawbits_to_double(0x7ff82468a0000000), d14); - - TEARDOWN(); -} - - -TEST(fcvt_sd) { - INIT_V8(); - // There are a huge number of corner-cases to check, so this test iterates - // through a list. The list is then negated and checked again (since the sign - // is irrelevant in ties-to-even rounding), so the list shouldn't include any - // negative values. - // - // Note that this test only checks ties-to-even rounding, because that is all - // that the simulator supports. - struct {double in; float expected;} test[] = { - // Check some simple conversions. - {0.0, 0.0f}, - {1.0, 1.0f}, - {1.5, 1.5f}, - {2.0, 2.0f}, - {FLT_MAX, FLT_MAX}, - // - The smallest normalized float. - {pow(2.0, -126), powf(2, -126)}, - // - Normal floats that need (ties-to-even) rounding. - // For normalized numbers: - // bit 29 (0x0000000020000000) is the lowest-order bit which will - // fit in the float's mantissa. - {rawbits_to_double(0x3ff0000000000000), rawbits_to_float(0x3f800000)}, - {rawbits_to_double(0x3ff0000000000001), rawbits_to_float(0x3f800000)}, - {rawbits_to_double(0x3ff0000010000000), rawbits_to_float(0x3f800000)}, - {rawbits_to_double(0x3ff0000010000001), rawbits_to_float(0x3f800001)}, - {rawbits_to_double(0x3ff0000020000000), rawbits_to_float(0x3f800001)}, - {rawbits_to_double(0x3ff0000020000001), rawbits_to_float(0x3f800001)}, - {rawbits_to_double(0x3ff0000030000000), rawbits_to_float(0x3f800002)}, - {rawbits_to_double(0x3ff0000030000001), rawbits_to_float(0x3f800002)}, - {rawbits_to_double(0x3ff0000040000000), rawbits_to_float(0x3f800002)}, - {rawbits_to_double(0x3ff0000040000001), rawbits_to_float(0x3f800002)}, - {rawbits_to_double(0x3ff0000050000000), rawbits_to_float(0x3f800002)}, - {rawbits_to_double(0x3ff0000050000001), rawbits_to_float(0x3f800003)}, - {rawbits_to_double(0x3ff0000060000000), rawbits_to_float(0x3f800003)}, - // - A mantissa that overflows into the exponent during rounding. - {rawbits_to_double(0x3feffffff0000000), rawbits_to_float(0x3f800000)}, - // - The largest double that rounds to a normal float. - {rawbits_to_double(0x47efffffefffffff), rawbits_to_float(0x7f7fffff)}, - - // Doubles that are too big for a float. - {kFP64PositiveInfinity, kFP32PositiveInfinity}, - {DBL_MAX, kFP32PositiveInfinity}, - // - The smallest exponent that's too big for a float. - {pow(2.0, 128), kFP32PositiveInfinity}, - // - This exponent is in range, but the value rounds to infinity. - {rawbits_to_double(0x47effffff0000000), kFP32PositiveInfinity}, - - // Doubles that are too small for a float. - // - The smallest (subnormal) double. - {DBL_MIN, 0.0}, - // - The largest double which is too small for a subnormal float. - {rawbits_to_double(0x3690000000000000), rawbits_to_float(0x00000000)}, - - // Normal doubles that become subnormal floats. - // - The largest subnormal float. - {rawbits_to_double(0x380fffffc0000000), rawbits_to_float(0x007fffff)}, - // - The smallest subnormal float. - {rawbits_to_double(0x36a0000000000000), rawbits_to_float(0x00000001)}, - // - Subnormal floats that need (ties-to-even) rounding. - // For these subnormals: - // bit 34 (0x0000000400000000) is the lowest-order bit which will - // fit in the float's mantissa. - {rawbits_to_double(0x37c159e000000000), rawbits_to_float(0x00045678)}, - {rawbits_to_double(0x37c159e000000001), rawbits_to_float(0x00045678)}, - {rawbits_to_double(0x37c159e200000000), rawbits_to_float(0x00045678)}, - {rawbits_to_double(0x37c159e200000001), rawbits_to_float(0x00045679)}, - {rawbits_to_double(0x37c159e400000000), rawbits_to_float(0x00045679)}, - {rawbits_to_double(0x37c159e400000001), rawbits_to_float(0x00045679)}, - {rawbits_to_double(0x37c159e600000000), rawbits_to_float(0x0004567a)}, - {rawbits_to_double(0x37c159e600000001), rawbits_to_float(0x0004567a)}, - {rawbits_to_double(0x37c159e800000000), rawbits_to_float(0x0004567a)}, - {rawbits_to_double(0x37c159e800000001), rawbits_to_float(0x0004567a)}, - {rawbits_to_double(0x37c159ea00000000), rawbits_to_float(0x0004567a)}, - {rawbits_to_double(0x37c159ea00000001), rawbits_to_float(0x0004567b)}, - {rawbits_to_double(0x37c159ec00000000), rawbits_to_float(0x0004567b)}, - // - The smallest double which rounds up to become a subnormal float. - {rawbits_to_double(0x3690000000000001), rawbits_to_float(0x00000001)}, - - // Check NaN payload preservation. - {rawbits_to_double(0x7ff82468a0000000), rawbits_to_float(0x7fc12345)}, - {rawbits_to_double(0x7ff82468bfffffff), rawbits_to_float(0x7fc12345)}, - // - Signalling NaNs become quiet NaNs. - {rawbits_to_double(0x7ff02468a0000000), rawbits_to_float(0x7fc12345)}, - {rawbits_to_double(0x7ff02468bfffffff), rawbits_to_float(0x7fc12345)}, - {rawbits_to_double(0x7ff000001fffffff), rawbits_to_float(0x7fc00000)}, - }; - int count = sizeof(test) / sizeof(test[0]); - - for (int i = 0; i < count; i++) { - double in = test[i].in; - float expected = test[i].expected; - - // We only expect positive input. - ASSERT(std::signbit(in) == 0); - ASSERT(std::signbit(expected) == 0); - - SETUP(); - START(); - - __ Fmov(d10, in); - __ Fcvt(s20, d10); - - __ Fmov(d11, -in); - __ Fcvt(s21, d11); - - END(); - RUN(); - ASSERT_EQUAL_FP32(expected, s20); - ASSERT_EQUAL_FP32(-expected, s21); - TEARDOWN(); - } -} - - -TEST(fcvtas) { - INIT_V8(); - SETUP(); - - START(); - __ Fmov(s0, 1.0); - __ Fmov(s1, 1.1); - __ Fmov(s2, 2.5); - __ Fmov(s3, -2.5); - __ Fmov(s4, kFP32PositiveInfinity); - __ Fmov(s5, kFP32NegativeInfinity); - __ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX. - __ Fneg(s7, s6); // Smallest float > INT32_MIN. - __ Fmov(d8, 1.0); - __ Fmov(d9, 1.1); - __ Fmov(d10, 2.5); - __ Fmov(d11, -2.5); - __ Fmov(d12, kFP64PositiveInfinity); - __ Fmov(d13, kFP64NegativeInfinity); - __ Fmov(d14, kWMaxInt - 1); - __ Fmov(d15, kWMinInt + 1); - __ Fmov(s17, 1.1); - __ Fmov(s18, 2.5); - __ Fmov(s19, -2.5); - __ Fmov(s20, kFP32PositiveInfinity); - __ Fmov(s21, kFP32NegativeInfinity); - __ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX. - __ Fneg(s23, s22); // Smallest float > INT64_MIN. - __ Fmov(d24, 1.1); - __ Fmov(d25, 2.5); - __ Fmov(d26, -2.5); - __ Fmov(d27, kFP64PositiveInfinity); - __ Fmov(d28, kFP64NegativeInfinity); - __ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX. - __ Fneg(d30, d29); // Smallest double > INT64_MIN. - - __ Fcvtas(w0, s0); - __ Fcvtas(w1, s1); - __ Fcvtas(w2, s2); - __ Fcvtas(w3, s3); - __ Fcvtas(w4, s4); - __ Fcvtas(w5, s5); - __ Fcvtas(w6, s6); - __ Fcvtas(w7, s7); - __ Fcvtas(w8, d8); - __ Fcvtas(w9, d9); - __ Fcvtas(w10, d10); - __ Fcvtas(w11, d11); - __ Fcvtas(w12, d12); - __ Fcvtas(w13, d13); - __ Fcvtas(w14, d14); - __ Fcvtas(w15, d15); - __ Fcvtas(x17, s17); - __ Fcvtas(x18, s18); - __ Fcvtas(x19, s19); - __ Fcvtas(x20, s20); - __ Fcvtas(x21, s21); - __ Fcvtas(x22, s22); - __ Fcvtas(x23, s23); - __ Fcvtas(x24, d24); - __ Fcvtas(x25, d25); - __ Fcvtas(x26, d26); - __ Fcvtas(x27, d27); - __ Fcvtas(x28, d28); - __ Fcvtas(x29, d29); - __ Fcvtas(x30, d30); - END(); - - RUN(); - - ASSERT_EQUAL_64(1, x0); - ASSERT_EQUAL_64(1, x1); - ASSERT_EQUAL_64(3, x2); - ASSERT_EQUAL_64(0xfffffffd, x3); - ASSERT_EQUAL_64(0x7fffffff, x4); - ASSERT_EQUAL_64(0x80000000, x5); - ASSERT_EQUAL_64(0x7fffff80, x6); - ASSERT_EQUAL_64(0x80000080, x7); - ASSERT_EQUAL_64(1, x8); - ASSERT_EQUAL_64(1, x9); - ASSERT_EQUAL_64(3, x10); - ASSERT_EQUAL_64(0xfffffffd, x11); - ASSERT_EQUAL_64(0x7fffffff, x12); - ASSERT_EQUAL_64(0x80000000, x13); - ASSERT_EQUAL_64(0x7ffffffe, x14); - ASSERT_EQUAL_64(0x80000001, x15); - ASSERT_EQUAL_64(1, x17); - ASSERT_EQUAL_64(3, x18); - ASSERT_EQUAL_64(0xfffffffffffffffdUL, x19); - ASSERT_EQUAL_64(0x7fffffffffffffffUL, x20); - ASSERT_EQUAL_64(0x8000000000000000UL, x21); - ASSERT_EQUAL_64(0x7fffff8000000000UL, x22); - ASSERT_EQUAL_64(0x8000008000000000UL, x23); - ASSERT_EQUAL_64(1, x24); - ASSERT_EQUAL_64(3, x25); - ASSERT_EQUAL_64(0xfffffffffffffffdUL, x26); - ASSERT_EQUAL_64(0x7fffffffffffffffUL, x27); - ASSERT_EQUAL_64(0x8000000000000000UL, x28); - ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29); - ASSERT_EQUAL_64(0x8000000000000400UL, x30); - - TEARDOWN(); -} - - -TEST(fcvtau) { - INIT_V8(); - SETUP(); - - START(); - __ Fmov(s0, 1.0); - __ Fmov(s1, 1.1); - __ Fmov(s2, 2.5); - __ Fmov(s3, -2.5); - __ Fmov(s4, kFP32PositiveInfinity); - __ Fmov(s5, kFP32NegativeInfinity); - __ Fmov(s6, 0xffffff00); // Largest float < UINT32_MAX. - __ Fmov(d8, 1.0); - __ Fmov(d9, 1.1); - __ Fmov(d10, 2.5); - __ Fmov(d11, -2.5); - __ Fmov(d12, kFP64PositiveInfinity); - __ Fmov(d13, kFP64NegativeInfinity); - __ Fmov(d14, 0xfffffffe); - __ Fmov(s16, 1.0); - __ Fmov(s17, 1.1); - __ Fmov(s18, 2.5); - __ Fmov(s19, -2.5); - __ Fmov(s20, kFP32PositiveInfinity); - __ Fmov(s21, kFP32NegativeInfinity); - __ Fmov(s22, 0xffffff0000000000UL); // Largest float < UINT64_MAX. - __ Fmov(d24, 1.1); - __ Fmov(d25, 2.5); - __ Fmov(d26, -2.5); - __ Fmov(d27, kFP64PositiveInfinity); - __ Fmov(d28, kFP64NegativeInfinity); - __ Fmov(d29, 0xfffffffffffff800UL); // Largest double < UINT64_MAX. - __ Fmov(s30, 0x100000000UL); - - __ Fcvtau(w0, s0); - __ Fcvtau(w1, s1); - __ Fcvtau(w2, s2); - __ Fcvtau(w3, s3); - __ Fcvtau(w4, s4); - __ Fcvtau(w5, s5); - __ Fcvtau(w6, s6); - __ Fcvtau(w8, d8); - __ Fcvtau(w9, d9); - __ Fcvtau(w10, d10); - __ Fcvtau(w11, d11); - __ Fcvtau(w12, d12); - __ Fcvtau(w13, d13); - __ Fcvtau(w14, d14); - __ Fcvtau(w15, d15); - __ Fcvtau(x16, s16); - __ Fcvtau(x17, s17); - __ Fcvtau(x18, s18); - __ Fcvtau(x19, s19); - __ Fcvtau(x20, s20); - __ Fcvtau(x21, s21); - __ Fcvtau(x22, s22); - __ Fcvtau(x24, d24); - __ Fcvtau(x25, d25); - __ Fcvtau(x26, d26); - __ Fcvtau(x27, d27); - __ Fcvtau(x28, d28); - __ Fcvtau(x29, d29); - __ Fcvtau(w30, s30); - END(); - - RUN(); - - ASSERT_EQUAL_64(1, x0); - ASSERT_EQUAL_64(1, x1); - ASSERT_EQUAL_64(3, x2); - ASSERT_EQUAL_64(0, x3); - ASSERT_EQUAL_64(0xffffffff, x4); - ASSERT_EQUAL_64(0, x5); - ASSERT_EQUAL_64(0xffffff00, x6); - ASSERT_EQUAL_64(1, x8); - ASSERT_EQUAL_64(1, x9); - ASSERT_EQUAL_64(3, x10); - ASSERT_EQUAL_64(0, x11); - ASSERT_EQUAL_64(0xffffffff, x12); - ASSERT_EQUAL_64(0, x13); - ASSERT_EQUAL_64(0xfffffffe, x14); - ASSERT_EQUAL_64(1, x16); - ASSERT_EQUAL_64(1, x17); - ASSERT_EQUAL_64(3, x18); - ASSERT_EQUAL_64(0, x19); - ASSERT_EQUAL_64(0xffffffffffffffffUL, x20); - ASSERT_EQUAL_64(0, x21); - ASSERT_EQUAL_64(0xffffff0000000000UL, x22); - ASSERT_EQUAL_64(1, x24); - ASSERT_EQUAL_64(3, x25); - ASSERT_EQUAL_64(0, x26); - ASSERT_EQUAL_64(0xffffffffffffffffUL, x27); - ASSERT_EQUAL_64(0, x28); - ASSERT_EQUAL_64(0xfffffffffffff800UL, x29); - ASSERT_EQUAL_64(0xffffffff, x30); - - TEARDOWN(); -} - - -TEST(fcvtms) { - INIT_V8(); - SETUP(); - - START(); - __ Fmov(s0, 1.0); - __ Fmov(s1, 1.1); - __ Fmov(s2, 1.5); - __ Fmov(s3, -1.5); - __ Fmov(s4, kFP32PositiveInfinity); - __ Fmov(s5, kFP32NegativeInfinity); - __ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX. - __ Fneg(s7, s6); // Smallest float > INT32_MIN. - __ Fmov(d8, 1.0); - __ Fmov(d9, 1.1); - __ Fmov(d10, 1.5); - __ Fmov(d11, -1.5); - __ Fmov(d12, kFP64PositiveInfinity); - __ Fmov(d13, kFP64NegativeInfinity); - __ Fmov(d14, kWMaxInt - 1); - __ Fmov(d15, kWMinInt + 1); - __ Fmov(s17, 1.1); - __ Fmov(s18, 1.5); - __ Fmov(s19, -1.5); - __ Fmov(s20, kFP32PositiveInfinity); - __ Fmov(s21, kFP32NegativeInfinity); - __ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX. - __ Fneg(s23, s22); // Smallest float > INT64_MIN. - __ Fmov(d24, 1.1); - __ Fmov(d25, 1.5); - __ Fmov(d26, -1.5); - __ Fmov(d27, kFP64PositiveInfinity); - __ Fmov(d28, kFP64NegativeInfinity); - __ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX. - __ Fneg(d30, d29); // Smallest double > INT64_MIN. - - __ Fcvtms(w0, s0); - __ Fcvtms(w1, s1); - __ Fcvtms(w2, s2); - __ Fcvtms(w3, s3); - __ Fcvtms(w4, s4); - __ Fcvtms(w5, s5); - __ Fcvtms(w6, s6); - __ Fcvtms(w7, s7); - __ Fcvtms(w8, d8); - __ Fcvtms(w9, d9); - __ Fcvtms(w10, d10); - __ Fcvtms(w11, d11); - __ Fcvtms(w12, d12); - __ Fcvtms(w13, d13); - __ Fcvtms(w14, d14); - __ Fcvtms(w15, d15); - __ Fcvtms(x17, s17); - __ Fcvtms(x18, s18); - __ Fcvtms(x19, s19); - __ Fcvtms(x20, s20); - __ Fcvtms(x21, s21); - __ Fcvtms(x22, s22); - __ Fcvtms(x23, s23); - __ Fcvtms(x24, d24); - __ Fcvtms(x25, d25); - __ Fcvtms(x26, d26); - __ Fcvtms(x27, d27); - __ Fcvtms(x28, d28); - __ Fcvtms(x29, d29); - __ Fcvtms(x30, d30); - END(); - - RUN(); - - ASSERT_EQUAL_64(1, x0); - ASSERT_EQUAL_64(1, x1); - ASSERT_EQUAL_64(1, x2); - ASSERT_EQUAL_64(0xfffffffe, x3); - ASSERT_EQUAL_64(0x7fffffff, x4); - ASSERT_EQUAL_64(0x80000000, x5); - ASSERT_EQUAL_64(0x7fffff80, x6); - ASSERT_EQUAL_64(0x80000080, x7); - ASSERT_EQUAL_64(1, x8); - ASSERT_EQUAL_64(1, x9); - ASSERT_EQUAL_64(1, x10); - ASSERT_EQUAL_64(0xfffffffe, x11); - ASSERT_EQUAL_64(0x7fffffff, x12); - ASSERT_EQUAL_64(0x80000000, x13); - ASSERT_EQUAL_64(0x7ffffffe, x14); - ASSERT_EQUAL_64(0x80000001, x15); - ASSERT_EQUAL_64(1, x17); - ASSERT_EQUAL_64(1, x18); - ASSERT_EQUAL_64(0xfffffffffffffffeUL, x19); - ASSERT_EQUAL_64(0x7fffffffffffffffUL, x20); - ASSERT_EQUAL_64(0x8000000000000000UL, x21); - ASSERT_EQUAL_64(0x7fffff8000000000UL, x22); - ASSERT_EQUAL_64(0x8000008000000000UL, x23); - ASSERT_EQUAL_64(1, x24); - ASSERT_EQUAL_64(1, x25); - ASSERT_EQUAL_64(0xfffffffffffffffeUL, x26); - ASSERT_EQUAL_64(0x7fffffffffffffffUL, x27); - ASSERT_EQUAL_64(0x8000000000000000UL, x28); - ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29); - ASSERT_EQUAL_64(0x8000000000000400UL, x30); - - TEARDOWN(); -} - - -TEST(fcvtmu) { - INIT_V8(); - SETUP(); - - START(); - __ Fmov(s0, 1.0); - __ Fmov(s1, 1.1); - __ Fmov(s2, 1.5); - __ Fmov(s3, -1.5); - __ Fmov(s4, kFP32PositiveInfinity); - __ Fmov(s5, kFP32NegativeInfinity); - __ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX. - __ Fneg(s7, s6); // Smallest float > INT32_MIN. - __ Fmov(d8, 1.0); - __ Fmov(d9, 1.1); - __ Fmov(d10, 1.5); - __ Fmov(d11, -1.5); - __ Fmov(d12, kFP64PositiveInfinity); - __ Fmov(d13, kFP64NegativeInfinity); - __ Fmov(d14, kWMaxInt - 1); - __ Fmov(d15, kWMinInt + 1); - __ Fmov(s17, 1.1); - __ Fmov(s18, 1.5); - __ Fmov(s19, -1.5); - __ Fmov(s20, kFP32PositiveInfinity); - __ Fmov(s21, kFP32NegativeInfinity); - __ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX. - __ Fneg(s23, s22); // Smallest float > INT64_MIN. - __ Fmov(d24, 1.1); - __ Fmov(d25, 1.5); - __ Fmov(d26, -1.5); - __ Fmov(d27, kFP64PositiveInfinity); - __ Fmov(d28, kFP64NegativeInfinity); - __ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX. - __ Fneg(d30, d29); // Smallest double > INT64_MIN. - - __ Fcvtmu(w0, s0); - __ Fcvtmu(w1, s1); - __ Fcvtmu(w2, s2); - __ Fcvtmu(w3, s3); - __ Fcvtmu(w4, s4); - __ Fcvtmu(w5, s5); - __ Fcvtmu(w6, s6); - __ Fcvtmu(w7, s7); - __ Fcvtmu(w8, d8); - __ Fcvtmu(w9, d9); - __ Fcvtmu(w10, d10); - __ Fcvtmu(w11, d11); - __ Fcvtmu(w12, d12); - __ Fcvtmu(w13, d13); - __ Fcvtmu(w14, d14); - __ Fcvtmu(x17, s17); - __ Fcvtmu(x18, s18); - __ Fcvtmu(x19, s19); - __ Fcvtmu(x20, s20); - __ Fcvtmu(x21, s21); - __ Fcvtmu(x22, s22); - __ Fcvtmu(x23, s23); - __ Fcvtmu(x24, d24); - __ Fcvtmu(x25, d25); - __ Fcvtmu(x26, d26); - __ Fcvtmu(x27, d27); - __ Fcvtmu(x28, d28); - __ Fcvtmu(x29, d29); - __ Fcvtmu(x30, d30); - END(); - - RUN(); - - ASSERT_EQUAL_64(1, x0); - ASSERT_EQUAL_64(1, x1); - ASSERT_EQUAL_64(1, x2); - ASSERT_EQUAL_64(0, x3); - ASSERT_EQUAL_64(0xffffffff, x4); - ASSERT_EQUAL_64(0, x5); - ASSERT_EQUAL_64(0x7fffff80, x6); - ASSERT_EQUAL_64(0, x7); - ASSERT_EQUAL_64(1, x8); - ASSERT_EQUAL_64(1, x9); - ASSERT_EQUAL_64(1, x10); - ASSERT_EQUAL_64(0, x11); - ASSERT_EQUAL_64(0xffffffff, x12); - ASSERT_EQUAL_64(0, x13); - ASSERT_EQUAL_64(0x7ffffffe, x14); - ASSERT_EQUAL_64(1, x17); - ASSERT_EQUAL_64(1, x18); - ASSERT_EQUAL_64(0x0UL, x19); - ASSERT_EQUAL_64(0xffffffffffffffffUL, x20); - ASSERT_EQUAL_64(0x0UL, x21); - ASSERT_EQUAL_64(0x7fffff8000000000UL, x22); - ASSERT_EQUAL_64(0x0UL, x23); - ASSERT_EQUAL_64(1, x24); - ASSERT_EQUAL_64(1, x25); - ASSERT_EQUAL_64(0x0UL, x26); - ASSERT_EQUAL_64(0xffffffffffffffffUL, x27); - ASSERT_EQUAL_64(0x0UL, x28); - ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29); - ASSERT_EQUAL_64(0x0UL, x30); - - TEARDOWN(); -} - - -TEST(fcvtns) { - INIT_V8(); - SETUP(); - - START(); - __ Fmov(s0, 1.0); - __ Fmov(s1, 1.1); - __ Fmov(s2, 1.5); - __ Fmov(s3, -1.5); - __ Fmov(s4, kFP32PositiveInfinity); - __ Fmov(s5, kFP32NegativeInfinity); - __ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX. - __ Fneg(s7, s6); // Smallest float > INT32_MIN. - __ Fmov(d8, 1.0); - __ Fmov(d9, 1.1); - __ Fmov(d10, 1.5); - __ Fmov(d11, -1.5); - __ Fmov(d12, kFP64PositiveInfinity); - __ Fmov(d13, kFP64NegativeInfinity); - __ Fmov(d14, kWMaxInt - 1); - __ Fmov(d15, kWMinInt + 1); - __ Fmov(s17, 1.1); - __ Fmov(s18, 1.5); - __ Fmov(s19, -1.5); - __ Fmov(s20, kFP32PositiveInfinity); - __ Fmov(s21, kFP32NegativeInfinity); - __ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX. - __ Fneg(s23, s22); // Smallest float > INT64_MIN. - __ Fmov(d24, 1.1); - __ Fmov(d25, 1.5); - __ Fmov(d26, -1.5); - __ Fmov(d27, kFP64PositiveInfinity); - __ Fmov(d28, kFP64NegativeInfinity); - __ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX. - __ Fneg(d30, d29); // Smallest double > INT64_MIN. - - __ Fcvtns(w0, s0); - __ Fcvtns(w1, s1); - __ Fcvtns(w2, s2); - __ Fcvtns(w3, s3); - __ Fcvtns(w4, s4); - __ Fcvtns(w5, s5); - __ Fcvtns(w6, s6); - __ Fcvtns(w7, s7); - __ Fcvtns(w8, d8); - __ Fcvtns(w9, d9); - __ Fcvtns(w10, d10); - __ Fcvtns(w11, d11); - __ Fcvtns(w12, d12); - __ Fcvtns(w13, d13); - __ Fcvtns(w14, d14); - __ Fcvtns(w15, d15); - __ Fcvtns(x17, s17); - __ Fcvtns(x18, s18); - __ Fcvtns(x19, s19); - __ Fcvtns(x20, s20); - __ Fcvtns(x21, s21); - __ Fcvtns(x22, s22); - __ Fcvtns(x23, s23); - __ Fcvtns(x24, d24); - __ Fcvtns(x25, d25); - __ Fcvtns(x26, d26); - __ Fcvtns(x27, d27); -// __ Fcvtns(x28, d28); - __ Fcvtns(x29, d29); - __ Fcvtns(x30, d30); - END(); - - RUN(); - - ASSERT_EQUAL_64(1, x0); - ASSERT_EQUAL_64(1, x1); - ASSERT_EQUAL_64(2, x2); - ASSERT_EQUAL_64(0xfffffffe, x3); - ASSERT_EQUAL_64(0x7fffffff, x4); - ASSERT_EQUAL_64(0x80000000, x5); - ASSERT_EQUAL_64(0x7fffff80, x6); - ASSERT_EQUAL_64(0x80000080, x7); - ASSERT_EQUAL_64(1, x8); - ASSERT_EQUAL_64(1, x9); - ASSERT_EQUAL_64(2, x10); - ASSERT_EQUAL_64(0xfffffffe, x11); - ASSERT_EQUAL_64(0x7fffffff, x12); - ASSERT_EQUAL_64(0x80000000, x13); - ASSERT_EQUAL_64(0x7ffffffe, x14); - ASSERT_EQUAL_64(0x80000001, x15); - ASSERT_EQUAL_64(1, x17); - ASSERT_EQUAL_64(2, x18); - ASSERT_EQUAL_64(0xfffffffffffffffeUL, x19); - ASSERT_EQUAL_64(0x7fffffffffffffffUL, x20); - ASSERT_EQUAL_64(0x8000000000000000UL, x21); - ASSERT_EQUAL_64(0x7fffff8000000000UL, x22); - ASSERT_EQUAL_64(0x8000008000000000UL, x23); - ASSERT_EQUAL_64(1, x24); - ASSERT_EQUAL_64(2, x25); - ASSERT_EQUAL_64(0xfffffffffffffffeUL, x26); - ASSERT_EQUAL_64(0x7fffffffffffffffUL, x27); -// ASSERT_EQUAL_64(0x8000000000000000UL, x28); - ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29); - ASSERT_EQUAL_64(0x8000000000000400UL, x30); - - TEARDOWN(); -} - - -TEST(fcvtnu) { - INIT_V8(); - SETUP(); - - START(); - __ Fmov(s0, 1.0); - __ Fmov(s1, 1.1); - __ Fmov(s2, 1.5); - __ Fmov(s3, -1.5); - __ Fmov(s4, kFP32PositiveInfinity); - __ Fmov(s5, kFP32NegativeInfinity); - __ Fmov(s6, 0xffffff00); // Largest float < UINT32_MAX. - __ Fmov(d8, 1.0); - __ Fmov(d9, 1.1); - __ Fmov(d10, 1.5); - __ Fmov(d11, -1.5); - __ Fmov(d12, kFP64PositiveInfinity); - __ Fmov(d13, kFP64NegativeInfinity); - __ Fmov(d14, 0xfffffffe); - __ Fmov(s16, 1.0); - __ Fmov(s17, 1.1); - __ Fmov(s18, 1.5); - __ Fmov(s19, -1.5); - __ Fmov(s20, kFP32PositiveInfinity); - __ Fmov(s21, kFP32NegativeInfinity); - __ Fmov(s22, 0xffffff0000000000UL); // Largest float < UINT64_MAX. - __ Fmov(d24, 1.1); - __ Fmov(d25, 1.5); - __ Fmov(d26, -1.5); - __ Fmov(d27, kFP64PositiveInfinity); - __ Fmov(d28, kFP64NegativeInfinity); - __ Fmov(d29, 0xfffffffffffff800UL); // Largest double < UINT64_MAX. - __ Fmov(s30, 0x100000000UL); - - __ Fcvtnu(w0, s0); - __ Fcvtnu(w1, s1); - __ Fcvtnu(w2, s2); - __ Fcvtnu(w3, s3); - __ Fcvtnu(w4, s4); - __ Fcvtnu(w5, s5); - __ Fcvtnu(w6, s6); - __ Fcvtnu(w8, d8); - __ Fcvtnu(w9, d9); - __ Fcvtnu(w10, d10); - __ Fcvtnu(w11, d11); - __ Fcvtnu(w12, d12); - __ Fcvtnu(w13, d13); - __ Fcvtnu(w14, d14); - __ Fcvtnu(w15, d15); - __ Fcvtnu(x16, s16); - __ Fcvtnu(x17, s17); - __ Fcvtnu(x18, s18); - __ Fcvtnu(x19, s19); - __ Fcvtnu(x20, s20); - __ Fcvtnu(x21, s21); - __ Fcvtnu(x22, s22); - __ Fcvtnu(x24, d24); - __ Fcvtnu(x25, d25); - __ Fcvtnu(x26, d26); - __ Fcvtnu(x27, d27); -// __ Fcvtnu(x28, d28); - __ Fcvtnu(x29, d29); - __ Fcvtnu(w30, s30); - END(); - - RUN(); - - ASSERT_EQUAL_64(1, x0); - ASSERT_EQUAL_64(1, x1); - ASSERT_EQUAL_64(2, x2); - ASSERT_EQUAL_64(0, x3); - ASSERT_EQUAL_64(0xffffffff, x4); - ASSERT_EQUAL_64(0, x5); - ASSERT_EQUAL_64(0xffffff00, x6); - ASSERT_EQUAL_64(1, x8); - ASSERT_EQUAL_64(1, x9); - ASSERT_EQUAL_64(2, x10); - ASSERT_EQUAL_64(0, x11); - ASSERT_EQUAL_64(0xffffffff, x12); - ASSERT_EQUAL_64(0, x13); - ASSERT_EQUAL_64(0xfffffffe, x14); - ASSERT_EQUAL_64(1, x16); - ASSERT_EQUAL_64(1, x17); - ASSERT_EQUAL_64(2, x18); - ASSERT_EQUAL_64(0, x19); - ASSERT_EQUAL_64(0xffffffffffffffffUL, x20); - ASSERT_EQUAL_64(0, x21); - ASSERT_EQUAL_64(0xffffff0000000000UL, x22); - ASSERT_EQUAL_64(1, x24); - ASSERT_EQUAL_64(2, x25); - ASSERT_EQUAL_64(0, x26); - ASSERT_EQUAL_64(0xffffffffffffffffUL, x27); -// ASSERT_EQUAL_64(0, x28); - ASSERT_EQUAL_64(0xfffffffffffff800UL, x29); - ASSERT_EQUAL_64(0xffffffff, x30); - - TEARDOWN(); -} - - -TEST(fcvtzs) { - INIT_V8(); - SETUP(); - - START(); - __ Fmov(s0, 1.0); - __ Fmov(s1, 1.1); - __ Fmov(s2, 1.5); - __ Fmov(s3, -1.5); - __ Fmov(s4, kFP32PositiveInfinity); - __ Fmov(s5, kFP32NegativeInfinity); - __ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX. - __ Fneg(s7, s6); // Smallest float > INT32_MIN. - __ Fmov(d8, 1.0); - __ Fmov(d9, 1.1); - __ Fmov(d10, 1.5); - __ Fmov(d11, -1.5); - __ Fmov(d12, kFP64PositiveInfinity); - __ Fmov(d13, kFP64NegativeInfinity); - __ Fmov(d14, kWMaxInt - 1); - __ Fmov(d15, kWMinInt + 1); - __ Fmov(s17, 1.1); - __ Fmov(s18, 1.5); - __ Fmov(s19, -1.5); - __ Fmov(s20, kFP32PositiveInfinity); - __ Fmov(s21, kFP32NegativeInfinity); - __ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX. - __ Fneg(s23, s22); // Smallest float > INT64_MIN. - __ Fmov(d24, 1.1); - __ Fmov(d25, 1.5); - __ Fmov(d26, -1.5); - __ Fmov(d27, kFP64PositiveInfinity); - __ Fmov(d28, kFP64NegativeInfinity); - __ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX. - __ Fneg(d30, d29); // Smallest double > INT64_MIN. - - __ Fcvtzs(w0, s0); - __ Fcvtzs(w1, s1); - __ Fcvtzs(w2, s2); - __ Fcvtzs(w3, s3); - __ Fcvtzs(w4, s4); - __ Fcvtzs(w5, s5); - __ Fcvtzs(w6, s6); - __ Fcvtzs(w7, s7); - __ Fcvtzs(w8, d8); - __ Fcvtzs(w9, d9); - __ Fcvtzs(w10, d10); - __ Fcvtzs(w11, d11); - __ Fcvtzs(w12, d12); - __ Fcvtzs(w13, d13); - __ Fcvtzs(w14, d14); - __ Fcvtzs(w15, d15); - __ Fcvtzs(x17, s17); - __ Fcvtzs(x18, s18); - __ Fcvtzs(x19, s19); - __ Fcvtzs(x20, s20); - __ Fcvtzs(x21, s21); - __ Fcvtzs(x22, s22); - __ Fcvtzs(x23, s23); - __ Fcvtzs(x24, d24); - __ Fcvtzs(x25, d25); - __ Fcvtzs(x26, d26); - __ Fcvtzs(x27, d27); - __ Fcvtzs(x28, d28); - __ Fcvtzs(x29, d29); - __ Fcvtzs(x30, d30); - END(); - - RUN(); - - ASSERT_EQUAL_64(1, x0); - ASSERT_EQUAL_64(1, x1); - ASSERT_EQUAL_64(1, x2); - ASSERT_EQUAL_64(0xffffffff, x3); - ASSERT_EQUAL_64(0x7fffffff, x4); - ASSERT_EQUAL_64(0x80000000, x5); - ASSERT_EQUAL_64(0x7fffff80, x6); - ASSERT_EQUAL_64(0x80000080, x7); - ASSERT_EQUAL_64(1, x8); - ASSERT_EQUAL_64(1, x9); - ASSERT_EQUAL_64(1, x10); - ASSERT_EQUAL_64(0xffffffff, x11); - ASSERT_EQUAL_64(0x7fffffff, x12); - ASSERT_EQUAL_64(0x80000000, x13); - ASSERT_EQUAL_64(0x7ffffffe, x14); - ASSERT_EQUAL_64(0x80000001, x15); - ASSERT_EQUAL_64(1, x17); - ASSERT_EQUAL_64(1, x18); - ASSERT_EQUAL_64(0xffffffffffffffffUL, x19); - ASSERT_EQUAL_64(0x7fffffffffffffffUL, x20); - ASSERT_EQUAL_64(0x8000000000000000UL, x21); - ASSERT_EQUAL_64(0x7fffff8000000000UL, x22); - ASSERT_EQUAL_64(0x8000008000000000UL, x23); - ASSERT_EQUAL_64(1, x24); - ASSERT_EQUAL_64(1, x25); - ASSERT_EQUAL_64(0xffffffffffffffffUL, x26); - ASSERT_EQUAL_64(0x7fffffffffffffffUL, x27); - ASSERT_EQUAL_64(0x8000000000000000UL, x28); - ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29); - ASSERT_EQUAL_64(0x8000000000000400UL, x30); - - TEARDOWN(); -} - - -TEST(fcvtzu) { - INIT_V8(); - SETUP(); - - START(); - __ Fmov(s0, 1.0); - __ Fmov(s1, 1.1); - __ Fmov(s2, 1.5); - __ Fmov(s3, -1.5); - __ Fmov(s4, kFP32PositiveInfinity); - __ Fmov(s5, kFP32NegativeInfinity); - __ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX. - __ Fneg(s7, s6); // Smallest float > INT32_MIN. - __ Fmov(d8, 1.0); - __ Fmov(d9, 1.1); - __ Fmov(d10, 1.5); - __ Fmov(d11, -1.5); - __ Fmov(d12, kFP64PositiveInfinity); - __ Fmov(d13, kFP64NegativeInfinity); - __ Fmov(d14, kWMaxInt - 1); - __ Fmov(d15, kWMinInt + 1); - __ Fmov(s17, 1.1); - __ Fmov(s18, 1.5); - __ Fmov(s19, -1.5); - __ Fmov(s20, kFP32PositiveInfinity); - __ Fmov(s21, kFP32NegativeInfinity); - __ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX. - __ Fneg(s23, s22); // Smallest float > INT64_MIN. - __ Fmov(d24, 1.1); - __ Fmov(d25, 1.5); - __ Fmov(d26, -1.5); - __ Fmov(d27, kFP64PositiveInfinity); - __ Fmov(d28, kFP64NegativeInfinity); - __ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX. - __ Fneg(d30, d29); // Smallest double > INT64_MIN. - - __ Fcvtzu(w0, s0); - __ Fcvtzu(w1, s1); - __ Fcvtzu(w2, s2); - __ Fcvtzu(w3, s3); - __ Fcvtzu(w4, s4); - __ Fcvtzu(w5, s5); - __ Fcvtzu(w6, s6); - __ Fcvtzu(w7, s7); - __ Fcvtzu(w8, d8); - __ Fcvtzu(w9, d9); - __ Fcvtzu(w10, d10); - __ Fcvtzu(w11, d11); - __ Fcvtzu(w12, d12); - __ Fcvtzu(w13, d13); - __ Fcvtzu(w14, d14); - __ Fcvtzu(x17, s17); - __ Fcvtzu(x18, s18); - __ Fcvtzu(x19, s19); - __ Fcvtzu(x20, s20); - __ Fcvtzu(x21, s21); - __ Fcvtzu(x22, s22); - __ Fcvtzu(x23, s23); - __ Fcvtzu(x24, d24); - __ Fcvtzu(x25, d25); - __ Fcvtzu(x26, d26); - __ Fcvtzu(x27, d27); - __ Fcvtzu(x28, d28); - __ Fcvtzu(x29, d29); - __ Fcvtzu(x30, d30); - END(); - - RUN(); - - ASSERT_EQUAL_64(1, x0); - ASSERT_EQUAL_64(1, x1); - ASSERT_EQUAL_64(1, x2); - ASSERT_EQUAL_64(0, x3); - ASSERT_EQUAL_64(0xffffffff, x4); - ASSERT_EQUAL_64(0, x5); - ASSERT_EQUAL_64(0x7fffff80, x6); - ASSERT_EQUAL_64(0, x7); - ASSERT_EQUAL_64(1, x8); - ASSERT_EQUAL_64(1, x9); - ASSERT_EQUAL_64(1, x10); - ASSERT_EQUAL_64(0, x11); - ASSERT_EQUAL_64(0xffffffff, x12); - ASSERT_EQUAL_64(0, x13); - ASSERT_EQUAL_64(0x7ffffffe, x14); - ASSERT_EQUAL_64(1, x17); - ASSERT_EQUAL_64(1, x18); - ASSERT_EQUAL_64(0x0UL, x19); - ASSERT_EQUAL_64(0xffffffffffffffffUL, x20); - ASSERT_EQUAL_64(0x0UL, x21); - ASSERT_EQUAL_64(0x7fffff8000000000UL, x22); - ASSERT_EQUAL_64(0x0UL, x23); - ASSERT_EQUAL_64(1, x24); - ASSERT_EQUAL_64(1, x25); - ASSERT_EQUAL_64(0x0UL, x26); - ASSERT_EQUAL_64(0xffffffffffffffffUL, x27); - ASSERT_EQUAL_64(0x0UL, x28); - ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29); - ASSERT_EQUAL_64(0x0UL, x30); - - TEARDOWN(); -} - - -// Test that scvtf and ucvtf can convert the 64-bit input into the expected -// value. All possible values of 'fbits' are tested. The expected value is -// modified accordingly in each case. -// -// The expected value is specified as the bit encoding of the expected double -// produced by scvtf (expected_scvtf_bits) as well as ucvtf -// (expected_ucvtf_bits). -// -// Where the input value is representable by int32_t or uint32_t, conversions -// from W registers will also be tested. -static void TestUScvtfHelper(uint64_t in, - uint64_t expected_scvtf_bits, - uint64_t expected_ucvtf_bits) { - uint64_t u64 = in; - uint32_t u32 = u64 & 0xffffffff; - int64_t s64 = static_cast<int64_t>(in); - int32_t s32 = s64 & 0x7fffffff; - - bool cvtf_s32 = (s64 == s32); - bool cvtf_u32 = (u64 == u32); - - double results_scvtf_x[65]; - double results_ucvtf_x[65]; - double results_scvtf_w[33]; - double results_ucvtf_w[33]; - - SETUP(); - START(); - - __ Mov(x0, reinterpret_cast<int64_t>(results_scvtf_x)); - __ Mov(x1, reinterpret_cast<int64_t>(results_ucvtf_x)); - __ Mov(x2, reinterpret_cast<int64_t>(results_scvtf_w)); - __ Mov(x3, reinterpret_cast<int64_t>(results_ucvtf_w)); - - __ Mov(x10, s64); - - // Corrupt the top word, in case it is accidentally used during W-register - // conversions. - __ Mov(x11, 0x5555555555555555); - __ Bfi(x11, x10, 0, kWRegSize); - - // Test integer conversions. - __ Scvtf(d0, x10); - __ Ucvtf(d1, x10); - __ Scvtf(d2, w11); - __ Ucvtf(d3, w11); - __ Str(d0, MemOperand(x0)); - __ Str(d1, MemOperand(x1)); - __ Str(d2, MemOperand(x2)); - __ Str(d3, MemOperand(x3)); - - // Test all possible values of fbits. - for (int fbits = 1; fbits <= 32; fbits++) { - __ Scvtf(d0, x10, fbits); - __ Ucvtf(d1, x10, fbits); - __ Scvtf(d2, w11, fbits); - __ Ucvtf(d3, w11, fbits); - __ Str(d0, MemOperand(x0, fbits * kDRegSizeInBytes)); - __ Str(d1, MemOperand(x1, fbits * kDRegSizeInBytes)); - __ Str(d2, MemOperand(x2, fbits * kDRegSizeInBytes)); - __ Str(d3, MemOperand(x3, fbits * kDRegSizeInBytes)); - } - - // Conversions from W registers can only handle fbits values <= 32, so just - // test conversions from X registers for 32 < fbits <= 64. - for (int fbits = 33; fbits <= 64; fbits++) { - __ Scvtf(d0, x10, fbits); - __ Ucvtf(d1, x10, fbits); - __ Str(d0, MemOperand(x0, fbits * kDRegSizeInBytes)); - __ Str(d1, MemOperand(x1, fbits * kDRegSizeInBytes)); - } - - END(); - RUN(); - - // Check the results. - double expected_scvtf_base = rawbits_to_double(expected_scvtf_bits); - double expected_ucvtf_base = rawbits_to_double(expected_ucvtf_bits); - - for (int fbits = 0; fbits <= 32; fbits++) { - double expected_scvtf = expected_scvtf_base / pow(2.0, fbits); - double expected_ucvtf = expected_ucvtf_base / pow(2.0, fbits); - ASSERT_EQUAL_FP64(expected_scvtf, results_scvtf_x[fbits]); - ASSERT_EQUAL_FP64(expected_ucvtf, results_ucvtf_x[fbits]); - if (cvtf_s32) ASSERT_EQUAL_FP64(expected_scvtf, results_scvtf_w[fbits]); - if (cvtf_u32) ASSERT_EQUAL_FP64(expected_ucvtf, results_ucvtf_w[fbits]); - } - for (int fbits = 33; fbits <= 64; fbits++) { - double expected_scvtf = expected_scvtf_base / pow(2.0, fbits); - double expected_ucvtf = expected_ucvtf_base / pow(2.0, fbits); - ASSERT_EQUAL_FP64(expected_scvtf, results_scvtf_x[fbits]); - ASSERT_EQUAL_FP64(expected_ucvtf, results_ucvtf_x[fbits]); - } - - TEARDOWN(); -} - - -TEST(scvtf_ucvtf_double) { - INIT_V8(); - // Simple conversions of positive numbers which require no rounding; the - // results should not depened on the rounding mode, and ucvtf and scvtf should - // produce the same result. - TestUScvtfHelper(0x0000000000000000, 0x0000000000000000, 0x0000000000000000); - TestUScvtfHelper(0x0000000000000001, 0x3ff0000000000000, 0x3ff0000000000000); - TestUScvtfHelper(0x0000000040000000, 0x41d0000000000000, 0x41d0000000000000); - TestUScvtfHelper(0x0000000100000000, 0x41f0000000000000, 0x41f0000000000000); - TestUScvtfHelper(0x4000000000000000, 0x43d0000000000000, 0x43d0000000000000); - // Test mantissa extremities. - TestUScvtfHelper(0x4000000000000400, 0x43d0000000000001, 0x43d0000000000001); - // The largest int32_t that fits in a double. - TestUScvtfHelper(0x000000007fffffff, 0x41dfffffffc00000, 0x41dfffffffc00000); - // Values that would be negative if treated as an int32_t. - TestUScvtfHelper(0x00000000ffffffff, 0x41efffffffe00000, 0x41efffffffe00000); - TestUScvtfHelper(0x0000000080000000, 0x41e0000000000000, 0x41e0000000000000); - TestUScvtfHelper(0x0000000080000001, 0x41e0000000200000, 0x41e0000000200000); - // The largest int64_t that fits in a double. - TestUScvtfHelper(0x7ffffffffffffc00, 0x43dfffffffffffff, 0x43dfffffffffffff); - // Check for bit pattern reproduction. - TestUScvtfHelper(0x0123456789abcde0, 0x43723456789abcde, 0x43723456789abcde); - TestUScvtfHelper(0x0000000012345678, 0x41b2345678000000, 0x41b2345678000000); - - // Simple conversions of negative int64_t values. These require no rounding, - // and the results should not depend on the rounding mode. - TestUScvtfHelper(0xffffffffc0000000, 0xc1d0000000000000, 0x43effffffff80000); - TestUScvtfHelper(0xffffffff00000000, 0xc1f0000000000000, 0x43efffffffe00000); - TestUScvtfHelper(0xc000000000000000, 0xc3d0000000000000, 0x43e8000000000000); - - // Conversions which require rounding. - TestUScvtfHelper(0x1000000000000000, 0x43b0000000000000, 0x43b0000000000000); - TestUScvtfHelper(0x1000000000000001, 0x43b0000000000000, 0x43b0000000000000); - TestUScvtfHelper(0x1000000000000080, 0x43b0000000000000, 0x43b0000000000000); - TestUScvtfHelper(0x1000000000000081, 0x43b0000000000001, 0x43b0000000000001); - TestUScvtfHelper(0x1000000000000100, 0x43b0000000000001, 0x43b0000000000001); - TestUScvtfHelper(0x1000000000000101, 0x43b0000000000001, 0x43b0000000000001); - TestUScvtfHelper(0x1000000000000180, 0x43b0000000000002, 0x43b0000000000002); - TestUScvtfHelper(0x1000000000000181, 0x43b0000000000002, 0x43b0000000000002); - TestUScvtfHelper(0x1000000000000200, 0x43b0000000000002, 0x43b0000000000002); - TestUScvtfHelper(0x1000000000000201, 0x43b0000000000002, 0x43b0000000000002); - TestUScvtfHelper(0x1000000000000280, 0x43b0000000000002, 0x43b0000000000002); - TestUScvtfHelper(0x1000000000000281, 0x43b0000000000003, 0x43b0000000000003); - TestUScvtfHelper(0x1000000000000300, 0x43b0000000000003, 0x43b0000000000003); - // Check rounding of negative int64_t values (and large uint64_t values). - TestUScvtfHelper(0x8000000000000000, 0xc3e0000000000000, 0x43e0000000000000); - TestUScvtfHelper(0x8000000000000001, 0xc3e0000000000000, 0x43e0000000000000); - TestUScvtfHelper(0x8000000000000200, 0xc3e0000000000000, 0x43e0000000000000); - TestUScvtfHelper(0x8000000000000201, 0xc3dfffffffffffff, 0x43e0000000000000); - TestUScvtfHelper(0x8000000000000400, 0xc3dfffffffffffff, 0x43e0000000000000); - TestUScvtfHelper(0x8000000000000401, 0xc3dfffffffffffff, 0x43e0000000000001); - TestUScvtfHelper(0x8000000000000600, 0xc3dffffffffffffe, 0x43e0000000000001); - TestUScvtfHelper(0x8000000000000601, 0xc3dffffffffffffe, 0x43e0000000000001); - TestUScvtfHelper(0x8000000000000800, 0xc3dffffffffffffe, 0x43e0000000000001); - TestUScvtfHelper(0x8000000000000801, 0xc3dffffffffffffe, 0x43e0000000000001); - TestUScvtfHelper(0x8000000000000a00, 0xc3dffffffffffffe, 0x43e0000000000001); - TestUScvtfHelper(0x8000000000000a01, 0xc3dffffffffffffd, 0x43e0000000000001); - TestUScvtfHelper(0x8000000000000c00, 0xc3dffffffffffffd, 0x43e0000000000002); - // Round up to produce a result that's too big for the input to represent. - TestUScvtfHelper(0x7ffffffffffffe00, 0x43e0000000000000, 0x43e0000000000000); - TestUScvtfHelper(0x7fffffffffffffff, 0x43e0000000000000, 0x43e0000000000000); - TestUScvtfHelper(0xfffffffffffffc00, 0xc090000000000000, 0x43f0000000000000); - TestUScvtfHelper(0xffffffffffffffff, 0xbff0000000000000, 0x43f0000000000000); -} - - -// The same as TestUScvtfHelper, but convert to floats. -static void TestUScvtf32Helper(uint64_t in, - uint32_t expected_scvtf_bits, - uint32_t expected_ucvtf_bits) { - uint64_t u64 = in; - uint32_t u32 = u64 & 0xffffffff; - int64_t s64 = static_cast<int64_t>(in); - int32_t s32 = s64 & 0x7fffffff; - - bool cvtf_s32 = (s64 == s32); - bool cvtf_u32 = (u64 == u32); - - float results_scvtf_x[65]; - float results_ucvtf_x[65]; - float results_scvtf_w[33]; - float results_ucvtf_w[33]; - - SETUP(); - START(); - - __ Mov(x0, reinterpret_cast<int64_t>(results_scvtf_x)); - __ Mov(x1, reinterpret_cast<int64_t>(results_ucvtf_x)); - __ Mov(x2, reinterpret_cast<int64_t>(results_scvtf_w)); - __ Mov(x3, reinterpret_cast<int64_t>(results_ucvtf_w)); - - __ Mov(x10, s64); - - // Corrupt the top word, in case it is accidentally used during W-register - // conversions. - __ Mov(x11, 0x5555555555555555); - __ Bfi(x11, x10, 0, kWRegSize); - - // Test integer conversions. - __ Scvtf(s0, x10); - __ Ucvtf(s1, x10); - __ Scvtf(s2, w11); - __ Ucvtf(s3, w11); - __ Str(s0, MemOperand(x0)); - __ Str(s1, MemOperand(x1)); - __ Str(s2, MemOperand(x2)); - __ Str(s3, MemOperand(x3)); - - // Test all possible values of fbits. - for (int fbits = 1; fbits <= 32; fbits++) { - __ Scvtf(s0, x10, fbits); - __ Ucvtf(s1, x10, fbits); - __ Scvtf(s2, w11, fbits); - __ Ucvtf(s3, w11, fbits); - __ Str(s0, MemOperand(x0, fbits * kSRegSizeInBytes)); - __ Str(s1, MemOperand(x1, fbits * kSRegSizeInBytes)); - __ Str(s2, MemOperand(x2, fbits * kSRegSizeInBytes)); - __ Str(s3, MemOperand(x3, fbits * kSRegSizeInBytes)); - } - - // Conversions from W registers can only handle fbits values <= 32, so just - // test conversions from X registers for 32 < fbits <= 64. - for (int fbits = 33; fbits <= 64; fbits++) { - __ Scvtf(s0, x10, fbits); - __ Ucvtf(s1, x10, fbits); - __ Str(s0, MemOperand(x0, fbits * kSRegSizeInBytes)); - __ Str(s1, MemOperand(x1, fbits * kSRegSizeInBytes)); - } - - END(); - RUN(); - - // Check the results. - float expected_scvtf_base = rawbits_to_float(expected_scvtf_bits); - float expected_ucvtf_base = rawbits_to_float(expected_ucvtf_bits); - - for (int fbits = 0; fbits <= 32; fbits++) { - float expected_scvtf = expected_scvtf_base / powf(2, fbits); - float expected_ucvtf = expected_ucvtf_base / powf(2, fbits); - ASSERT_EQUAL_FP32(expected_scvtf, results_scvtf_x[fbits]); - ASSERT_EQUAL_FP32(expected_ucvtf, results_ucvtf_x[fbits]); - if (cvtf_s32) ASSERT_EQUAL_FP32(expected_scvtf, results_scvtf_w[fbits]); - if (cvtf_u32) ASSERT_EQUAL_FP32(expected_ucvtf, results_ucvtf_w[fbits]); - break; - } - for (int fbits = 33; fbits <= 64; fbits++) { - break; - float expected_scvtf = expected_scvtf_base / powf(2, fbits); - float expected_ucvtf = expected_ucvtf_base / powf(2, fbits); - ASSERT_EQUAL_FP32(expected_scvtf, results_scvtf_x[fbits]); - ASSERT_EQUAL_FP32(expected_ucvtf, results_ucvtf_x[fbits]); - } - - TEARDOWN(); -} - - -TEST(scvtf_ucvtf_float) { - INIT_V8(); - // Simple conversions of positive numbers which require no rounding; the - // results should not depened on the rounding mode, and ucvtf and scvtf should - // produce the same result. - TestUScvtf32Helper(0x0000000000000000, 0x00000000, 0x00000000); - TestUScvtf32Helper(0x0000000000000001, 0x3f800000, 0x3f800000); - TestUScvtf32Helper(0x0000000040000000, 0x4e800000, 0x4e800000); - TestUScvtf32Helper(0x0000000100000000, 0x4f800000, 0x4f800000); - TestUScvtf32Helper(0x4000000000000000, 0x5e800000, 0x5e800000); - // Test mantissa extremities. - TestUScvtf32Helper(0x0000000000800001, 0x4b000001, 0x4b000001); - TestUScvtf32Helper(0x4000008000000000, 0x5e800001, 0x5e800001); - // The largest int32_t that fits in a float. - TestUScvtf32Helper(0x000000007fffff80, 0x4effffff, 0x4effffff); - // Values that would be negative if treated as an int32_t. - TestUScvtf32Helper(0x00000000ffffff00, 0x4f7fffff, 0x4f7fffff); - TestUScvtf32Helper(0x0000000080000000, 0x4f000000, 0x4f000000); - TestUScvtf32Helper(0x0000000080000100, 0x4f000001, 0x4f000001); - // The largest int64_t that fits in a float. - TestUScvtf32Helper(0x7fffff8000000000, 0x5effffff, 0x5effffff); - // Check for bit pattern reproduction. - TestUScvtf32Helper(0x0000000000876543, 0x4b076543, 0x4b076543); - - // Simple conversions of negative int64_t values. These require no rounding, - // and the results should not depend on the rounding mode. - TestUScvtf32Helper(0xfffffc0000000000, 0xd4800000, 0x5f7ffffc); - TestUScvtf32Helper(0xc000000000000000, 0xde800000, 0x5f400000); - - // Conversions which require rounding. - TestUScvtf32Helper(0x0000800000000000, 0x57000000, 0x57000000); - TestUScvtf32Helper(0x0000800000000001, 0x57000000, 0x57000000); - TestUScvtf32Helper(0x0000800000800000, 0x57000000, 0x57000000); - TestUScvtf32Helper(0x0000800000800001, 0x57000001, 0x57000001); - TestUScvtf32Helper(0x0000800001000000, 0x57000001, 0x57000001); - TestUScvtf32Helper(0x0000800001000001, 0x57000001, 0x57000001); - TestUScvtf32Helper(0x0000800001800000, 0x57000002, 0x57000002); - TestUScvtf32Helper(0x0000800001800001, 0x57000002, 0x57000002); - TestUScvtf32Helper(0x0000800002000000, 0x57000002, 0x57000002); - TestUScvtf32Helper(0x0000800002000001, 0x57000002, 0x57000002); - TestUScvtf32Helper(0x0000800002800000, 0x57000002, 0x57000002); - TestUScvtf32Helper(0x0000800002800001, 0x57000003, 0x57000003); - TestUScvtf32Helper(0x0000800003000000, 0x57000003, 0x57000003); - // Check rounding of negative int64_t values (and large uint64_t values). - TestUScvtf32Helper(0x8000000000000000, 0xdf000000, 0x5f000000); - TestUScvtf32Helper(0x8000000000000001, 0xdf000000, 0x5f000000); - TestUScvtf32Helper(0x8000004000000000, 0xdf000000, 0x5f000000); - TestUScvtf32Helper(0x8000004000000001, 0xdeffffff, 0x5f000000); - TestUScvtf32Helper(0x8000008000000000, 0xdeffffff, 0x5f000000); - TestUScvtf32Helper(0x8000008000000001, 0xdeffffff, 0x5f000001); - TestUScvtf32Helper(0x800000c000000000, 0xdefffffe, 0x5f000001); - TestUScvtf32Helper(0x800000c000000001, 0xdefffffe, 0x5f000001); - TestUScvtf32Helper(0x8000010000000000, 0xdefffffe, 0x5f000001); - TestUScvtf32Helper(0x8000010000000001, 0xdefffffe, 0x5f000001); - TestUScvtf32Helper(0x8000014000000000, 0xdefffffe, 0x5f000001); - TestUScvtf32Helper(0x8000014000000001, 0xdefffffd, 0x5f000001); - TestUScvtf32Helper(0x8000018000000000, 0xdefffffd, 0x5f000002); - // Round up to produce a result that's too big for the input to represent. - TestUScvtf32Helper(0x000000007fffffc0, 0x4f000000, 0x4f000000); - TestUScvtf32Helper(0x000000007fffffff, 0x4f000000, 0x4f000000); - TestUScvtf32Helper(0x00000000ffffff80, 0x4f800000, 0x4f800000); - TestUScvtf32Helper(0x00000000ffffffff, 0x4f800000, 0x4f800000); - TestUScvtf32Helper(0x7fffffc000000000, 0x5f000000, 0x5f000000); - TestUScvtf32Helper(0x7fffffffffffffff, 0x5f000000, 0x5f000000); - TestUScvtf32Helper(0xffffff8000000000, 0xd3000000, 0x5f800000); - TestUScvtf32Helper(0xffffffffffffffff, 0xbf800000, 0x5f800000); -} - - -TEST(system_mrs) { - INIT_V8(); - SETUP(); - - START(); - __ Mov(w0, 0); - __ Mov(w1, 1); - __ Mov(w2, 0x80000000); - - // Set the Z and C flags. - __ Cmp(w0, w0); - __ Mrs(x3, NZCV); - - // Set the N flag. - __ Cmp(w0, w1); - __ Mrs(x4, NZCV); - - // Set the Z, C and V flags. - __ Adds(w0, w2, w2); - __ Mrs(x5, NZCV); - - // Read the default FPCR. - __ Mrs(x6, FPCR); - END(); - - RUN(); - - // NZCV - ASSERT_EQUAL_32(ZCFlag, w3); - ASSERT_EQUAL_32(NFlag, w4); - ASSERT_EQUAL_32(ZCVFlag, w5); - - // FPCR - // The default FPCR on Linux-based platforms is 0. - ASSERT_EQUAL_32(0, w6); - - TEARDOWN(); -} - - -TEST(system_msr) { - INIT_V8(); - // All FPCR fields that must be implemented: AHP, DN, FZ, RMode - const uint64_t fpcr_core = 0x07c00000; - - // All FPCR fields (including fields which may be read-as-zero): - // Stride, Len - // IDE, IXE, UFE, OFE, DZE, IOE - const uint64_t fpcr_all = fpcr_core | 0x00379f00; - - SETUP(); - - START(); - __ Mov(w0, 0); - __ Mov(w1, 0x7fffffff); - - __ Mov(x7, 0); - - __ Mov(x10, NVFlag); - __ Cmp(w0, w0); // Set Z and C. - __ Msr(NZCV, x10); // Set N and V. - // The Msr should have overwritten every flag set by the Cmp. - __ Cinc(x7, x7, mi); // N - __ Cinc(x7, x7, ne); // !Z - __ Cinc(x7, x7, lo); // !C - __ Cinc(x7, x7, vs); // V - - __ Mov(x10, ZCFlag); - __ Cmn(w1, w1); // Set N and V. - __ Msr(NZCV, x10); // Set Z and C. - // The Msr should have overwritten every flag set by the Cmn. - __ Cinc(x7, x7, pl); // !N - __ Cinc(x7, x7, eq); // Z - __ Cinc(x7, x7, hs); // C - __ Cinc(x7, x7, vc); // !V - - // All core FPCR fields must be writable. - __ Mov(x8, fpcr_core); - __ Msr(FPCR, x8); - __ Mrs(x8, FPCR); - - // All FPCR fields, including optional ones. This part of the test doesn't - // achieve much other than ensuring that supported fields can be cleared by - // the next test. - __ Mov(x9, fpcr_all); - __ Msr(FPCR, x9); - __ Mrs(x9, FPCR); - __ And(x9, x9, fpcr_core); - - // The undefined bits must ignore writes. - // It's conceivable that a future version of the architecture could use these - // fields (making this test fail), but in the meantime this is a useful test - // for the simulator. - __ Mov(x10, ~fpcr_all); - __ Msr(FPCR, x10); - __ Mrs(x10, FPCR); - - END(); - - RUN(); - - // We should have incremented x7 (from 0) exactly 8 times. - ASSERT_EQUAL_64(8, x7); - - ASSERT_EQUAL_64(fpcr_core, x8); - ASSERT_EQUAL_64(fpcr_core, x9); - ASSERT_EQUAL_64(0, x10); - - TEARDOWN(); -} - - -TEST(system_nop) { - INIT_V8(); - SETUP(); - RegisterDump before; - - START(); - before.Dump(&masm); - __ Nop(); - END(); - - RUN(); - - ASSERT_EQUAL_REGISTERS(before); - ASSERT_EQUAL_NZCV(before.flags_nzcv()); - - TEARDOWN(); -} - - -TEST(zero_dest) { - INIT_V8(); - SETUP(); - RegisterDump before; - - START(); - // Preserve the system stack pointer, in case we clobber it. - __ Mov(x30, csp); - // Initialize the other registers used in this test. - uint64_t literal_base = 0x0100001000100101UL; - __ Mov(x0, 0); - __ Mov(x1, literal_base); - for (unsigned i = 2; i < x30.code(); i++) { - __ Add(Register::XRegFromCode(i), Register::XRegFromCode(i-1), x1); - } - before.Dump(&masm); - - // All of these instructions should be NOPs in these forms, but have - // alternate forms which can write into the stack pointer. - __ add(xzr, x0, x1); - __ add(xzr, x1, xzr); - __ add(xzr, xzr, x1); - - __ and_(xzr, x0, x2); - __ and_(xzr, x2, xzr); - __ and_(xzr, xzr, x2); - - __ bic(xzr, x0, x3); - __ bic(xzr, x3, xzr); - __ bic(xzr, xzr, x3); - - __ eon(xzr, x0, x4); - __ eon(xzr, x4, xzr); - __ eon(xzr, xzr, x4); - - __ eor(xzr, x0, x5); - __ eor(xzr, x5, xzr); - __ eor(xzr, xzr, x5); - - __ orr(xzr, x0, x6); - __ orr(xzr, x6, xzr); - __ orr(xzr, xzr, x6); - - __ sub(xzr, x0, x7); - __ sub(xzr, x7, xzr); - __ sub(xzr, xzr, x7); - - // Swap the saved system stack pointer with the real one. If csp was written - // during the test, it will show up in x30. This is done because the test - // framework assumes that csp will be valid at the end of the test. - __ Mov(x29, x30); - __ Mov(x30, csp); - __ Mov(csp, x29); - // We used x29 as a scratch register, so reset it to make sure it doesn't - // trigger a test failure. - __ Add(x29, x28, x1); - END(); - - RUN(); - - ASSERT_EQUAL_REGISTERS(before); - ASSERT_EQUAL_NZCV(before.flags_nzcv()); - - TEARDOWN(); -} - - -TEST(zero_dest_setflags) { - INIT_V8(); - SETUP(); - RegisterDump before; - - START(); - // Preserve the system stack pointer, in case we clobber it. - __ Mov(x30, csp); - // Initialize the other registers used in this test. - uint64_t literal_base = 0x0100001000100101UL; - __ Mov(x0, 0); - __ Mov(x1, literal_base); - for (int i = 2; i < 30; i++) { - __ Add(Register::XRegFromCode(i), Register::XRegFromCode(i-1), x1); - } - before.Dump(&masm); - - // All of these instructions should only write to the flags in these forms, - // but have alternate forms which can write into the stack pointer. - __ adds(xzr, x0, Operand(x1, UXTX)); - __ adds(xzr, x1, Operand(xzr, UXTX)); - __ adds(xzr, x1, 1234); - __ adds(xzr, x0, x1); - __ adds(xzr, x1, xzr); - __ adds(xzr, xzr, x1); - - __ ands(xzr, x2, ~0xf); - __ ands(xzr, xzr, ~0xf); - __ ands(xzr, x0, x2); - __ ands(xzr, x2, xzr); - __ ands(xzr, xzr, x2); - - __ bics(xzr, x3, ~0xf); - __ bics(xzr, xzr, ~0xf); - __ bics(xzr, x0, x3); - __ bics(xzr, x3, xzr); - __ bics(xzr, xzr, x3); - - __ subs(xzr, x0, Operand(x3, UXTX)); - __ subs(xzr, x3, Operand(xzr, UXTX)); - __ subs(xzr, x3, 1234); - __ subs(xzr, x0, x3); - __ subs(xzr, x3, xzr); - __ subs(xzr, xzr, x3); - - // Swap the saved system stack pointer with the real one. If csp was written - // during the test, it will show up in x30. This is done because the test - // framework assumes that csp will be valid at the end of the test. - __ Mov(x29, x30); - __ Mov(x30, csp); - __ Mov(csp, x29); - // We used x29 as a scratch register, so reset it to make sure it doesn't - // trigger a test failure. - __ Add(x29, x28, x1); - END(); - - RUN(); - - ASSERT_EQUAL_REGISTERS(before); - - TEARDOWN(); -} - - -TEST(register_bit) { - // No code generation takes place in this test, so no need to setup and - // teardown. - - // Simple tests. - CHECK(x0.Bit() == (1UL << 0)); - CHECK(x1.Bit() == (1UL << 1)); - CHECK(x10.Bit() == (1UL << 10)); - - // AAPCS64 definitions. - CHECK(fp.Bit() == (1UL << kFramePointerRegCode)); - CHECK(lr.Bit() == (1UL << kLinkRegCode)); - - // Fixed (hardware) definitions. - CHECK(xzr.Bit() == (1UL << kZeroRegCode)); - - // Internal ABI definitions. - CHECK(jssp.Bit() == (1UL << kJSSPCode)); - CHECK(csp.Bit() == (1UL << kSPRegInternalCode)); - CHECK(csp.Bit() != xzr.Bit()); - - // xn.Bit() == wn.Bit() at all times, for the same n. - CHECK(x0.Bit() == w0.Bit()); - CHECK(x1.Bit() == w1.Bit()); - CHECK(x10.Bit() == w10.Bit()); - CHECK(jssp.Bit() == wjssp.Bit()); - CHECK(xzr.Bit() == wzr.Bit()); - CHECK(csp.Bit() == wcsp.Bit()); -} - - -TEST(stack_pointer_override) { - // This test generates some stack maintenance code, but the test only checks - // the reported state. - INIT_V8(); - SETUP(); - START(); - - // The default stack pointer in V8 is jssp, but for compatibility with W16, - // the test framework sets it to csp before calling the test. - CHECK(csp.Is(__ StackPointer())); - __ SetStackPointer(x0); - CHECK(x0.Is(__ StackPointer())); - __ SetStackPointer(jssp); - CHECK(jssp.Is(__ StackPointer())); - __ SetStackPointer(csp); - CHECK(csp.Is(__ StackPointer())); - - END(); - RUN(); - TEARDOWN(); -} - - -TEST(peek_poke_simple) { - INIT_V8(); - SETUP(); - START(); - - static const RegList x0_to_x3 = x0.Bit() | x1.Bit() | x2.Bit() | x3.Bit(); - static const RegList x10_to_x13 = x10.Bit() | x11.Bit() | - x12.Bit() | x13.Bit(); - - // The literal base is chosen to have two useful properties: - // * When multiplied by small values (such as a register index), this value - // is clearly readable in the result. - // * The value is not formed from repeating fixed-size smaller values, so it - // can be used to detect endianness-related errors. - uint64_t literal_base = 0x0100001000100101UL; - - // Initialize the registers. - __ Mov(x0, literal_base); - __ Add(x1, x0, x0); - __ Add(x2, x1, x0); - __ Add(x3, x2, x0); - - __ Claim(4); - - // Simple exchange. - // After this test: - // x0-x3 should be unchanged. - // w10-w13 should contain the lower words of x0-x3. - __ Poke(x0, 0); - __ Poke(x1, 8); - __ Poke(x2, 16); - __ Poke(x3, 24); - Clobber(&masm, x0_to_x3); - __ Peek(x0, 0); - __ Peek(x1, 8); - __ Peek(x2, 16); - __ Peek(x3, 24); - - __ Poke(w0, 0); - __ Poke(w1, 4); - __ Poke(w2, 8); - __ Poke(w3, 12); - Clobber(&masm, x10_to_x13); - __ Peek(w10, 0); - __ Peek(w11, 4); - __ Peek(w12, 8); - __ Peek(w13, 12); - - __ Drop(4); - - END(); - RUN(); - - ASSERT_EQUAL_64(literal_base * 1, x0); - ASSERT_EQUAL_64(literal_base * 2, x1); - ASSERT_EQUAL_64(literal_base * 3, x2); - ASSERT_EQUAL_64(literal_base * 4, x3); - - ASSERT_EQUAL_64((literal_base * 1) & 0xffffffff, x10); - ASSERT_EQUAL_64((literal_base * 2) & 0xffffffff, x11); - ASSERT_EQUAL_64((literal_base * 3) & 0xffffffff, x12); - ASSERT_EQUAL_64((literal_base * 4) & 0xffffffff, x13); - - TEARDOWN(); -} - - -TEST(peek_poke_unaligned) { - INIT_V8(); - SETUP(); - START(); - - // The literal base is chosen to have two useful properties: - // * When multiplied by small values (such as a register index), this value - // is clearly readable in the result. - // * The value is not formed from repeating fixed-size smaller values, so it - // can be used to detect endianness-related errors. - uint64_t literal_base = 0x0100001000100101UL; - - // Initialize the registers. - __ Mov(x0, literal_base); - __ Add(x1, x0, x0); - __ Add(x2, x1, x0); - __ Add(x3, x2, x0); - __ Add(x4, x3, x0); - __ Add(x5, x4, x0); - __ Add(x6, x5, x0); - - __ Claim(4); - - // Unaligned exchanges. - // After this test: - // x0-x6 should be unchanged. - // w10-w12 should contain the lower words of x0-x2. - __ Poke(x0, 1); - Clobber(&masm, x0.Bit()); - __ Peek(x0, 1); - __ Poke(x1, 2); - Clobber(&masm, x1.Bit()); - __ Peek(x1, 2); - __ Poke(x2, 3); - Clobber(&masm, x2.Bit()); - __ Peek(x2, 3); - __ Poke(x3, 4); - Clobber(&masm, x3.Bit()); - __ Peek(x3, 4); - __ Poke(x4, 5); - Clobber(&masm, x4.Bit()); - __ Peek(x4, 5); - __ Poke(x5, 6); - Clobber(&masm, x5.Bit()); - __ Peek(x5, 6); - __ Poke(x6, 7); - Clobber(&masm, x6.Bit()); - __ Peek(x6, 7); - - __ Poke(w0, 1); - Clobber(&masm, w10.Bit()); - __ Peek(w10, 1); - __ Poke(w1, 2); - Clobber(&masm, w11.Bit()); - __ Peek(w11, 2); - __ Poke(w2, 3); - Clobber(&masm, w12.Bit()); - __ Peek(w12, 3); - - __ Drop(4); - - END(); - RUN(); - - ASSERT_EQUAL_64(literal_base * 1, x0); - ASSERT_EQUAL_64(literal_base * 2, x1); - ASSERT_EQUAL_64(literal_base * 3, x2); - ASSERT_EQUAL_64(literal_base * 4, x3); - ASSERT_EQUAL_64(literal_base * 5, x4); - ASSERT_EQUAL_64(literal_base * 6, x5); - ASSERT_EQUAL_64(literal_base * 7, x6); - - ASSERT_EQUAL_64((literal_base * 1) & 0xffffffff, x10); - ASSERT_EQUAL_64((literal_base * 2) & 0xffffffff, x11); - ASSERT_EQUAL_64((literal_base * 3) & 0xffffffff, x12); - - TEARDOWN(); -} - - -TEST(peek_poke_endianness) { - INIT_V8(); - SETUP(); - START(); - - // The literal base is chosen to have two useful properties: - // * When multiplied by small values (such as a register index), this value - // is clearly readable in the result. - // * The value is not formed from repeating fixed-size smaller values, so it - // can be used to detect endianness-related errors. - uint64_t literal_base = 0x0100001000100101UL; - - // Initialize the registers. - __ Mov(x0, literal_base); - __ Add(x1, x0, x0); - - __ Claim(4); - - // Endianness tests. - // After this section: - // x4 should match x0[31:0]:x0[63:32] - // w5 should match w1[15:0]:w1[31:16] - __ Poke(x0, 0); - __ Poke(x0, 8); - __ Peek(x4, 4); - - __ Poke(w1, 0); - __ Poke(w1, 4); - __ Peek(w5, 2); - - __ Drop(4); - - END(); - RUN(); - - uint64_t x0_expected = literal_base * 1; - uint64_t x1_expected = literal_base * 2; - uint64_t x4_expected = (x0_expected << 32) | (x0_expected >> 32); - uint64_t x5_expected = ((x1_expected << 16) & 0xffff0000) | - ((x1_expected >> 16) & 0x0000ffff); - - ASSERT_EQUAL_64(x0_expected, x0); - ASSERT_EQUAL_64(x1_expected, x1); - ASSERT_EQUAL_64(x4_expected, x4); - ASSERT_EQUAL_64(x5_expected, x5); - - TEARDOWN(); -} - - -TEST(peek_poke_mixed) { - INIT_V8(); - SETUP(); - START(); - - // The literal base is chosen to have two useful properties: - // * When multiplied by small values (such as a register index), this value - // is clearly readable in the result. - // * The value is not formed from repeating fixed-size smaller values, so it - // can be used to detect endianness-related errors. - uint64_t literal_base = 0x0100001000100101UL; - - // Initialize the registers. - __ Mov(x0, literal_base); - __ Add(x1, x0, x0); - __ Add(x2, x1, x0); - __ Add(x3, x2, x0); - - __ Claim(4); - - // Mix with other stack operations. - // After this section: - // x0-x3 should be unchanged. - // x6 should match x1[31:0]:x0[63:32] - // w7 should match x1[15:0]:x0[63:48] - __ Poke(x1, 8); - __ Poke(x0, 0); - { - ASSERT(__ StackPointer().Is(csp)); - __ Mov(x4, __ StackPointer()); - __ SetStackPointer(x4); - - __ Poke(wzr, 0); // Clobber the space we're about to drop. - __ Drop(1, kWRegSizeInBytes); - __ Peek(x6, 0); - __ Claim(1); - __ Peek(w7, 10); - __ Poke(x3, 28); - __ Poke(xzr, 0); // Clobber the space we're about to drop. - __ Drop(1); - __ Poke(x2, 12); - __ Push(w0); - - __ Mov(csp, __ StackPointer()); - __ SetStackPointer(csp); - } - - __ Pop(x0, x1, x2, x3); - - END(); - RUN(); - - uint64_t x0_expected = literal_base * 1; - uint64_t x1_expected = literal_base * 2; - uint64_t x2_expected = literal_base * 3; - uint64_t x3_expected = literal_base * 4; - uint64_t x6_expected = (x1_expected << 32) | (x0_expected >> 32); - uint64_t x7_expected = ((x1_expected << 16) & 0xffff0000) | - ((x0_expected >> 48) & 0x0000ffff); - - ASSERT_EQUAL_64(x0_expected, x0); - ASSERT_EQUAL_64(x1_expected, x1); - ASSERT_EQUAL_64(x2_expected, x2); - ASSERT_EQUAL_64(x3_expected, x3); - ASSERT_EQUAL_64(x6_expected, x6); - ASSERT_EQUAL_64(x7_expected, x7); - - TEARDOWN(); -} - - -// This enum is used only as an argument to the push-pop test helpers. -enum PushPopMethod { - // Push or Pop using the Push and Pop methods, with blocks of up to four - // registers. (Smaller blocks will be used if necessary.) - PushPopByFour, - - // Use Push<Size>RegList and Pop<Size>RegList to transfer the registers. - PushPopRegList -}; - - -// The maximum number of registers that can be used by the PushPopJssp* tests, -// where a reg_count field is provided. -static int const kPushPopJsspMaxRegCount = -1; - -// Test a simple push-pop pattern: -// * Claim <claim> bytes to set the stack alignment. -// * Push <reg_count> registers with size <reg_size>. -// * Clobber the register contents. -// * Pop <reg_count> registers to restore the original contents. -// * Drop <claim> bytes to restore the original stack pointer. -// -// Different push and pop methods can be specified independently to test for -// proper word-endian behaviour. -static void PushPopJsspSimpleHelper(int reg_count, - int claim, - int reg_size, - PushPopMethod push_method, - PushPopMethod pop_method) { - SETUP(); - - START(); - - // Registers x8 and x9 are used by the macro assembler for debug code (for - // example in 'Pop'), so we can't use them here. We can't use jssp because it - // will be the stack pointer for this test. - static RegList const allowed = ~(x8.Bit() | x9.Bit() | jssp.Bit()); - if (reg_count == kPushPopJsspMaxRegCount) { - reg_count = CountSetBits(allowed, kNumberOfRegisters); - } - // Work out which registers to use, based on reg_size. - Register r[kNumberOfRegisters]; - Register x[kNumberOfRegisters]; - RegList list = PopulateRegisterArray(NULL, x, r, reg_size, reg_count, - allowed); - - // The literal base is chosen to have two useful properties: - // * When multiplied by small values (such as a register index), this value - // is clearly readable in the result. - // * The value is not formed from repeating fixed-size smaller values, so it - // can be used to detect endianness-related errors. - uint64_t literal_base = 0x0100001000100101UL; - - { - ASSERT(__ StackPointer().Is(csp)); - __ Mov(jssp, __ StackPointer()); - __ SetStackPointer(jssp); - - int i; - - // Initialize the registers. - for (i = 0; i < reg_count; i++) { - // Always write into the X register, to ensure that the upper word is - // properly ignored by Push when testing W registers. - if (!x[i].IsZero()) { - __ Mov(x[i], literal_base * i); - } - } - - // Claim memory first, as requested. - __ Claim(claim, kByteSizeInBytes); - - switch (push_method) { - case PushPopByFour: - // Push high-numbered registers first (to the highest addresses). - for (i = reg_count; i >= 4; i -= 4) { - __ Push(r[i-1], r[i-2], r[i-3], r[i-4]); - } - // Finish off the leftovers. - switch (i) { - case 3: __ Push(r[2], r[1], r[0]); break; - case 2: __ Push(r[1], r[0]); break; - case 1: __ Push(r[0]); break; - default: ASSERT(i == 0); break; - } - break; - case PushPopRegList: - __ PushSizeRegList(list, reg_size); - break; - } - - // Clobber all the registers, to ensure that they get repopulated by Pop. - Clobber(&masm, list); - - switch (pop_method) { - case PushPopByFour: - // Pop low-numbered registers first (from the lowest addresses). - for (i = 0; i <= (reg_count-4); i += 4) { - __ Pop(r[i], r[i+1], r[i+2], r[i+3]); - } - // Finish off the leftovers. - switch (reg_count - i) { - case 3: __ Pop(r[i], r[i+1], r[i+2]); break; - case 2: __ Pop(r[i], r[i+1]); break; - case 1: __ Pop(r[i]); break; - default: ASSERT(i == reg_count); break; - } - break; - case PushPopRegList: - __ PopSizeRegList(list, reg_size); - break; - } - - // Drop memory to restore jssp. - __ Drop(claim, kByteSizeInBytes); - - __ Mov(csp, __ StackPointer()); - __ SetStackPointer(csp); - } - - END(); - - RUN(); - - // Check that the register contents were preserved. - // Always use ASSERT_EQUAL_64, even when testing W registers, so we can test - // that the upper word was properly cleared by Pop. - literal_base &= (0xffffffffffffffffUL >> (64-reg_size)); - for (int i = 0; i < reg_count; i++) { - if (x[i].IsZero()) { - ASSERT_EQUAL_64(0, x[i]); - } else { - ASSERT_EQUAL_64(literal_base * i, x[i]); - } - } - - TEARDOWN(); -} - - -TEST(push_pop_jssp_simple_32) { - INIT_V8(); - for (int claim = 0; claim <= 8; claim++) { - for (int count = 0; count <= 8; count++) { - PushPopJsspSimpleHelper(count, claim, kWRegSize, - PushPopByFour, PushPopByFour); - PushPopJsspSimpleHelper(count, claim, kWRegSize, - PushPopByFour, PushPopRegList); - PushPopJsspSimpleHelper(count, claim, kWRegSize, - PushPopRegList, PushPopByFour); - PushPopJsspSimpleHelper(count, claim, kWRegSize, - PushPopRegList, PushPopRegList); - } - // Test with the maximum number of registers. - PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kWRegSize, - PushPopByFour, PushPopByFour); - PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kWRegSize, - PushPopByFour, PushPopRegList); - PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kWRegSize, - PushPopRegList, PushPopByFour); - PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kWRegSize, - PushPopRegList, PushPopRegList); - } -} - - -TEST(push_pop_jssp_simple_64) { - INIT_V8(); - for (int claim = 0; claim <= 8; claim++) { - for (int count = 0; count <= 8; count++) { - PushPopJsspSimpleHelper(count, claim, kXRegSize, - PushPopByFour, PushPopByFour); - PushPopJsspSimpleHelper(count, claim, kXRegSize, - PushPopByFour, PushPopRegList); - PushPopJsspSimpleHelper(count, claim, kXRegSize, - PushPopRegList, PushPopByFour); - PushPopJsspSimpleHelper(count, claim, kXRegSize, - PushPopRegList, PushPopRegList); - } - // Test with the maximum number of registers. - PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kXRegSize, - PushPopByFour, PushPopByFour); - PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kXRegSize, - PushPopByFour, PushPopRegList); - PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kXRegSize, - PushPopRegList, PushPopByFour); - PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kXRegSize, - PushPopRegList, PushPopRegList); - } -} - - -// The maximum number of registers that can be used by the PushPopFPJssp* tests, -// where a reg_count field is provided. -static int const kPushPopFPJsspMaxRegCount = -1; - -// Test a simple push-pop pattern: -// * Claim <claim> bytes to set the stack alignment. -// * Push <reg_count> FP registers with size <reg_size>. -// * Clobber the register contents. -// * Pop <reg_count> FP registers to restore the original contents. -// * Drop <claim> bytes to restore the original stack pointer. -// -// Different push and pop methods can be specified independently to test for -// proper word-endian behaviour. -static void PushPopFPJsspSimpleHelper(int reg_count, - int claim, - int reg_size, - PushPopMethod push_method, - PushPopMethod pop_method) { - SETUP(); - - START(); - - // We can use any floating-point register. None of them are reserved for - // debug code, for example. - static RegList const allowed = ~0; - if (reg_count == kPushPopFPJsspMaxRegCount) { - reg_count = CountSetBits(allowed, kNumberOfFPRegisters); - } - // Work out which registers to use, based on reg_size. - FPRegister v[kNumberOfRegisters]; - FPRegister d[kNumberOfRegisters]; - RegList list = PopulateFPRegisterArray(NULL, d, v, reg_size, reg_count, - allowed); - - // The literal base is chosen to have two useful properties: - // * When multiplied (using an integer) by small values (such as a register - // index), this value is clearly readable in the result. - // * The value is not formed from repeating fixed-size smaller values, so it - // can be used to detect endianness-related errors. - // * It is never a floating-point NaN, and will therefore always compare - // equal to itself. - uint64_t literal_base = 0x0100001000100101UL; - - { - ASSERT(__ StackPointer().Is(csp)); - __ Mov(jssp, __ StackPointer()); - __ SetStackPointer(jssp); - - int i; - - // Initialize the registers, using X registers to load the literal. - __ Mov(x0, 0); - __ Mov(x1, literal_base); - for (i = 0; i < reg_count; i++) { - // Always write into the D register, to ensure that the upper word is - // properly ignored by Push when testing S registers. - __ Fmov(d[i], x0); - // Calculate the next literal. - __ Add(x0, x0, x1); - } - - // Claim memory first, as requested. - __ Claim(claim, kByteSizeInBytes); - - switch (push_method) { - case PushPopByFour: - // Push high-numbered registers first (to the highest addresses). - for (i = reg_count; i >= 4; i -= 4) { - __ Push(v[i-1], v[i-2], v[i-3], v[i-4]); - } - // Finish off the leftovers. - switch (i) { - case 3: __ Push(v[2], v[1], v[0]); break; - case 2: __ Push(v[1], v[0]); break; - case 1: __ Push(v[0]); break; - default: ASSERT(i == 0); break; - } - break; - case PushPopRegList: - __ PushSizeRegList(list, reg_size, CPURegister::kFPRegister); - break; - } - - // Clobber all the registers, to ensure that they get repopulated by Pop. - ClobberFP(&masm, list); - - switch (pop_method) { - case PushPopByFour: - // Pop low-numbered registers first (from the lowest addresses). - for (i = 0; i <= (reg_count-4); i += 4) { - __ Pop(v[i], v[i+1], v[i+2], v[i+3]); - } - // Finish off the leftovers. - switch (reg_count - i) { - case 3: __ Pop(v[i], v[i+1], v[i+2]); break; - case 2: __ Pop(v[i], v[i+1]); break; - case 1: __ Pop(v[i]); break; - default: ASSERT(i == reg_count); break; - } - break; - case PushPopRegList: - __ PopSizeRegList(list, reg_size, CPURegister::kFPRegister); - break; - } - - // Drop memory to restore jssp. - __ Drop(claim, kByteSizeInBytes); - - __ Mov(csp, __ StackPointer()); - __ SetStackPointer(csp); - } - - END(); - - RUN(); - - // Check that the register contents were preserved. - // Always use ASSERT_EQUAL_FP64, even when testing S registers, so we can - // test that the upper word was properly cleared by Pop. - literal_base &= (0xffffffffffffffffUL >> (64-reg_size)); - for (int i = 0; i < reg_count; i++) { - uint64_t literal = literal_base * i; - double expected; - memcpy(&expected, &literal, sizeof(expected)); - ASSERT_EQUAL_FP64(expected, d[i]); - } - - TEARDOWN(); -} - - -TEST(push_pop_fp_jssp_simple_32) { - INIT_V8(); - for (int claim = 0; claim <= 8; claim++) { - for (int count = 0; count <= 8; count++) { - PushPopFPJsspSimpleHelper(count, claim, kSRegSize, - PushPopByFour, PushPopByFour); - PushPopFPJsspSimpleHelper(count, claim, kSRegSize, - PushPopByFour, PushPopRegList); - PushPopFPJsspSimpleHelper(count, claim, kSRegSize, - PushPopRegList, PushPopByFour); - PushPopFPJsspSimpleHelper(count, claim, kSRegSize, - PushPopRegList, PushPopRegList); - } - // Test with the maximum number of registers. - PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kSRegSize, - PushPopByFour, PushPopByFour); - PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kSRegSize, - PushPopByFour, PushPopRegList); - PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kSRegSize, - PushPopRegList, PushPopByFour); - PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kSRegSize, - PushPopRegList, PushPopRegList); - } -} - - -TEST(push_pop_fp_jssp_simple_64) { - INIT_V8(); - for (int claim = 0; claim <= 8; claim++) { - for (int count = 0; count <= 8; count++) { - PushPopFPJsspSimpleHelper(count, claim, kDRegSize, - PushPopByFour, PushPopByFour); - PushPopFPJsspSimpleHelper(count, claim, kDRegSize, - PushPopByFour, PushPopRegList); - PushPopFPJsspSimpleHelper(count, claim, kDRegSize, - PushPopRegList, PushPopByFour); - PushPopFPJsspSimpleHelper(count, claim, kDRegSize, - PushPopRegList, PushPopRegList); - } - // Test with the maximum number of registers. - PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kDRegSize, - PushPopByFour, PushPopByFour); - PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kDRegSize, - PushPopByFour, PushPopRegList); - PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kDRegSize, - PushPopRegList, PushPopByFour); - PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kDRegSize, - PushPopRegList, PushPopRegList); - } -} - - -// Push and pop data using an overlapping combination of Push/Pop and -// RegList-based methods. -static void PushPopJsspMixedMethodsHelper(int claim, int reg_size) { - SETUP(); - - // Registers x8 and x9 are used by the macro assembler for debug code (for - // example in 'Pop'), so we can't use them here. We can't use jssp because it - // will be the stack pointer for this test. - static RegList const allowed = - ~(x8.Bit() | x9.Bit() | jssp.Bit() | xzr.Bit()); - // Work out which registers to use, based on reg_size. - Register r[10]; - Register x[10]; - PopulateRegisterArray(NULL, x, r, reg_size, 10, allowed); - - // Calculate some handy register lists. - RegList r0_to_r3 = 0; - for (int i = 0; i <= 3; i++) { - r0_to_r3 |= x[i].Bit(); - } - RegList r4_to_r5 = 0; - for (int i = 4; i <= 5; i++) { - r4_to_r5 |= x[i].Bit(); - } - RegList r6_to_r9 = 0; - for (int i = 6; i <= 9; i++) { - r6_to_r9 |= x[i].Bit(); - } - - // The literal base is chosen to have two useful properties: - // * When multiplied by small values (such as a register index), this value - // is clearly readable in the result. - // * The value is not formed from repeating fixed-size smaller values, so it - // can be used to detect endianness-related errors. - uint64_t literal_base = 0x0100001000100101UL; - - START(); - { - ASSERT(__ StackPointer().Is(csp)); - __ Mov(jssp, __ StackPointer()); - __ SetStackPointer(jssp); - - // Claim memory first, as requested. - __ Claim(claim, kByteSizeInBytes); - - __ Mov(x[3], literal_base * 3); - __ Mov(x[2], literal_base * 2); - __ Mov(x[1], literal_base * 1); - __ Mov(x[0], literal_base * 0); - - __ PushSizeRegList(r0_to_r3, reg_size); - __ Push(r[3], r[2]); - - Clobber(&masm, r0_to_r3); - __ PopSizeRegList(r0_to_r3, reg_size); - - __ Push(r[2], r[1], r[3], r[0]); - - Clobber(&masm, r4_to_r5); - __ Pop(r[4], r[5]); - Clobber(&masm, r6_to_r9); - __ Pop(r[6], r[7], r[8], r[9]); - - // Drop memory to restore jssp. - __ Drop(claim, kByteSizeInBytes); - - __ Mov(csp, __ StackPointer()); - __ SetStackPointer(csp); - } - - END(); - - RUN(); - - // Always use ASSERT_EQUAL_64, even when testing W registers, so we can test - // that the upper word was properly cleared by Pop. - literal_base &= (0xffffffffffffffffUL >> (64-reg_size)); - - ASSERT_EQUAL_64(literal_base * 3, x[9]); - ASSERT_EQUAL_64(literal_base * 2, x[8]); - ASSERT_EQUAL_64(literal_base * 0, x[7]); - ASSERT_EQUAL_64(literal_base * 3, x[6]); - ASSERT_EQUAL_64(literal_base * 1, x[5]); - ASSERT_EQUAL_64(literal_base * 2, x[4]); - - TEARDOWN(); -} - - -TEST(push_pop_jssp_mixed_methods_64) { - INIT_V8(); - for (int claim = 0; claim <= 8; claim++) { - PushPopJsspMixedMethodsHelper(claim, kXRegSize); - } -} - - -TEST(push_pop_jssp_mixed_methods_32) { - INIT_V8(); - for (int claim = 0; claim <= 8; claim++) { - PushPopJsspMixedMethodsHelper(claim, kWRegSize); - } -} - - -// Push and pop data using overlapping X- and W-sized quantities. -static void PushPopJsspWXOverlapHelper(int reg_count, int claim) { - // This test emits rather a lot of code. - SETUP_SIZE(BUF_SIZE * 2); - - // Work out which registers to use, based on reg_size. - static RegList const allowed = ~(x8.Bit() | x9.Bit() | jssp.Bit()); - if (reg_count == kPushPopJsspMaxRegCount) { - reg_count = CountSetBits(allowed, kNumberOfRegisters); - } - Register w[kNumberOfRegisters]; - Register x[kNumberOfRegisters]; - RegList list = PopulateRegisterArray(w, x, NULL, 0, reg_count, allowed); - - // The number of W-sized slots we expect to pop. When we pop, we alternate - // between W and X registers, so we need reg_count*1.5 W-sized slots. - int const requested_w_slots = reg_count + reg_count / 2; - - // Track what _should_ be on the stack, using W-sized slots. - static int const kMaxWSlots = kNumberOfRegisters + kNumberOfRegisters / 2; - uint32_t stack[kMaxWSlots]; - for (int i = 0; i < kMaxWSlots; i++) { - stack[i] = 0xdeadbeef; - } - - // The literal base is chosen to have two useful properties: - // * When multiplied by small values (such as a register index), this value - // is clearly readable in the result. - // * The value is not formed from repeating fixed-size smaller values, so it - // can be used to detect endianness-related errors. - static uint64_t const literal_base = 0x0100001000100101UL; - static uint64_t const literal_base_hi = literal_base >> 32; - static uint64_t const literal_base_lo = literal_base & 0xffffffff; - static uint64_t const literal_base_w = literal_base & 0xffffffff; - - START(); - { - ASSERT(__ StackPointer().Is(csp)); - __ Mov(jssp, __ StackPointer()); - __ SetStackPointer(jssp); - - // Initialize the registers. - for (int i = 0; i < reg_count; i++) { - // Always write into the X register, to ensure that the upper word is - // properly ignored by Push when testing W registers. - if (!x[i].IsZero()) { - __ Mov(x[i], literal_base * i); - } - } - - // Claim memory first, as requested. - __ Claim(claim, kByteSizeInBytes); - - // The push-pop pattern is as follows: - // Push: Pop: - // x[0](hi) -> w[0] - // x[0](lo) -> x[1](hi) - // w[1] -> x[1](lo) - // w[1] -> w[2] - // x[2](hi) -> x[2](hi) - // x[2](lo) -> x[2](lo) - // x[2](hi) -> w[3] - // x[2](lo) -> x[4](hi) - // x[2](hi) -> x[4](lo) - // x[2](lo) -> w[5] - // w[3] -> x[5](hi) - // w[3] -> x[6](lo) - // w[3] -> w[7] - // w[3] -> x[8](hi) - // x[4](hi) -> x[8](lo) - // x[4](lo) -> w[9] - // ... pattern continues ... - // - // That is, registers are pushed starting with the lower numbers, - // alternating between x and w registers, and pushing i%4+1 copies of each, - // where i is the register number. - // Registers are popped starting with the higher numbers one-by-one, - // alternating between x and w registers, but only popping one at a time. - // - // This pattern provides a wide variety of alignment effects and overlaps. - - // ---- Push ---- - - int active_w_slots = 0; - for (int i = 0; active_w_slots < requested_w_slots; i++) { - ASSERT(i < reg_count); - // In order to test various arguments to PushMultipleTimes, and to try to - // exercise different alignment and overlap effects, we push each - // register a different number of times. - int times = i % 4 + 1; - if (i & 1) { - // Push odd-numbered registers as W registers. - __ PushMultipleTimes(times, w[i]); - // Fill in the expected stack slots. - for (int j = 0; j < times; j++) { - if (w[i].Is(wzr)) { - // The zero register always writes zeroes. - stack[active_w_slots++] = 0; - } else { - stack[active_w_slots++] = literal_base_w * i; - } - } - } else { - // Push even-numbered registers as X registers. - __ PushMultipleTimes(times, x[i]); - // Fill in the expected stack slots. - for (int j = 0; j < times; j++) { - if (x[i].IsZero()) { - // The zero register always writes zeroes. - stack[active_w_slots++] = 0; - stack[active_w_slots++] = 0; - } else { - stack[active_w_slots++] = literal_base_hi * i; - stack[active_w_slots++] = literal_base_lo * i; - } - } - } - } - // Because we were pushing several registers at a time, we probably pushed - // more than we needed to. - if (active_w_slots > requested_w_slots) { - __ Drop(active_w_slots - requested_w_slots, kWRegSizeInBytes); - // Bump the number of active W-sized slots back to where it should be, - // and fill the empty space with a dummy value. - do { - stack[active_w_slots--] = 0xdeadbeef; - } while (active_w_slots > requested_w_slots); - } - - // ---- Pop ---- - - Clobber(&masm, list); - - // If popping an even number of registers, the first one will be X-sized. - // Otherwise, the first one will be W-sized. - bool next_is_64 = !(reg_count & 1); - for (int i = reg_count-1; i >= 0; i--) { - if (next_is_64) { - __ Pop(x[i]); - active_w_slots -= 2; - } else { - __ Pop(w[i]); - active_w_slots -= 1; - } - next_is_64 = !next_is_64; - } - ASSERT(active_w_slots == 0); - - // Drop memory to restore jssp. - __ Drop(claim, kByteSizeInBytes); - - __ Mov(csp, __ StackPointer()); - __ SetStackPointer(csp); - } - - END(); - - RUN(); - - int slot = 0; - for (int i = 0; i < reg_count; i++) { - // Even-numbered registers were written as W registers. - // Odd-numbered registers were written as X registers. - bool expect_64 = (i & 1); - uint64_t expected; - - if (expect_64) { - uint64_t hi = stack[slot++]; - uint64_t lo = stack[slot++]; - expected = (hi << 32) | lo; - } else { - expected = stack[slot++]; - } - - // Always use ASSERT_EQUAL_64, even when testing W registers, so we can - // test that the upper word was properly cleared by Pop. - if (x[i].IsZero()) { - ASSERT_EQUAL_64(0, x[i]); - } else { - ASSERT_EQUAL_64(expected, x[i]); - } - } - ASSERT(slot == requested_w_slots); - - TEARDOWN(); -} - - -TEST(push_pop_jssp_wx_overlap) { - INIT_V8(); - for (int claim = 0; claim <= 8; claim++) { - for (int count = 1; count <= 8; count++) { - PushPopJsspWXOverlapHelper(count, claim); - PushPopJsspWXOverlapHelper(count, claim); - PushPopJsspWXOverlapHelper(count, claim); - PushPopJsspWXOverlapHelper(count, claim); - } - // Test with the maximum number of registers. - PushPopJsspWXOverlapHelper(kPushPopJsspMaxRegCount, claim); - PushPopJsspWXOverlapHelper(kPushPopJsspMaxRegCount, claim); - PushPopJsspWXOverlapHelper(kPushPopJsspMaxRegCount, claim); - PushPopJsspWXOverlapHelper(kPushPopJsspMaxRegCount, claim); - } -} - - -TEST(push_pop_csp) { - INIT_V8(); - SETUP(); - - START(); - - ASSERT(csp.Is(__ StackPointer())); - - __ Mov(x3, 0x3333333333333333UL); - __ Mov(x2, 0x2222222222222222UL); - __ Mov(x1, 0x1111111111111111UL); - __ Mov(x0, 0x0000000000000000UL); - __ Claim(2); - __ PushXRegList(x0.Bit() | x1.Bit() | x2.Bit() | x3.Bit()); - __ Push(x3, x2); - __ PopXRegList(x0.Bit() | x1.Bit() | x2.Bit() | x3.Bit()); - __ Push(x2, x1, x3, x0); - __ Pop(x4, x5); - __ Pop(x6, x7, x8, x9); - - __ Claim(2); - __ PushWRegList(w0.Bit() | w1.Bit() | w2.Bit() | w3.Bit()); - __ Push(w3, w1, w2, w0); - __ PopWRegList(w10.Bit() | w11.Bit() | w12.Bit() | w13.Bit()); - __ Pop(w14, w15, w16, w17); - - __ Claim(2); - __ Push(w2, w2, w1, w1); - __ Push(x3, x3); - __ Pop(w18, w19, w20, w21); - __ Pop(x22, x23); - - __ Claim(2); - __ PushXRegList(x1.Bit() | x22.Bit()); - __ PopXRegList(x24.Bit() | x26.Bit()); - - __ Claim(2); - __ PushWRegList(w1.Bit() | w2.Bit() | w4.Bit() | w22.Bit()); - __ PopWRegList(w25.Bit() | w27.Bit() | w28.Bit() | w29.Bit()); - - __ Claim(2); - __ PushXRegList(0); - __ PopXRegList(0); - __ PushXRegList(0xffffffff); - __ PopXRegList(0xffffffff); - __ Drop(12); - - END(); - - RUN(); - - ASSERT_EQUAL_64(0x1111111111111111UL, x3); - ASSERT_EQUAL_64(0x0000000000000000UL, x2); - ASSERT_EQUAL_64(0x3333333333333333UL, x1); - ASSERT_EQUAL_64(0x2222222222222222UL, x0); - ASSERT_EQUAL_64(0x3333333333333333UL, x9); - ASSERT_EQUAL_64(0x2222222222222222UL, x8); - ASSERT_EQUAL_64(0x0000000000000000UL, x7); - ASSERT_EQUAL_64(0x3333333333333333UL, x6); - ASSERT_EQUAL_64(0x1111111111111111UL, x5); - ASSERT_EQUAL_64(0x2222222222222222UL, x4); - - ASSERT_EQUAL_32(0x11111111U, w13); - ASSERT_EQUAL_32(0x33333333U, w12); - ASSERT_EQUAL_32(0x00000000U, w11); - ASSERT_EQUAL_32(0x22222222U, w10); - ASSERT_EQUAL_32(0x11111111U, w17); - ASSERT_EQUAL_32(0x00000000U, w16); - ASSERT_EQUAL_32(0x33333333U, w15); - ASSERT_EQUAL_32(0x22222222U, w14); - - ASSERT_EQUAL_32(0x11111111U, w18); - ASSERT_EQUAL_32(0x11111111U, w19); - ASSERT_EQUAL_32(0x11111111U, w20); - ASSERT_EQUAL_32(0x11111111U, w21); - ASSERT_EQUAL_64(0x3333333333333333UL, x22); - ASSERT_EQUAL_64(0x0000000000000000UL, x23); - - ASSERT_EQUAL_64(0x3333333333333333UL, x24); - ASSERT_EQUAL_64(0x3333333333333333UL, x26); - - ASSERT_EQUAL_32(0x33333333U, w25); - ASSERT_EQUAL_32(0x00000000U, w27); - ASSERT_EQUAL_32(0x22222222U, w28); - ASSERT_EQUAL_32(0x33333333U, w29); - TEARDOWN(); -} - - -TEST(jump_both_smi) { - INIT_V8(); - SETUP(); - - Label cond_pass_00, cond_pass_01, cond_pass_10, cond_pass_11; - Label cond_fail_00, cond_fail_01, cond_fail_10, cond_fail_11; - Label return1, return2, return3, done; - - START(); - - __ Mov(x0, 0x5555555500000001UL); // A pointer. - __ Mov(x1, 0xaaaaaaaa00000001UL); // A pointer. - __ Mov(x2, 0x1234567800000000UL); // A smi. - __ Mov(x3, 0x8765432100000000UL); // A smi. - __ Mov(x4, 0xdead); - __ Mov(x5, 0xdead); - __ Mov(x6, 0xdead); - __ Mov(x7, 0xdead); - - __ JumpIfBothSmi(x0, x1, &cond_pass_00, &cond_fail_00); - __ Bind(&return1); - __ JumpIfBothSmi(x0, x2, &cond_pass_01, &cond_fail_01); - __ Bind(&return2); - __ JumpIfBothSmi(x2, x1, &cond_pass_10, &cond_fail_10); - __ Bind(&return3); - __ JumpIfBothSmi(x2, x3, &cond_pass_11, &cond_fail_11); - - __ Bind(&cond_fail_00); - __ Mov(x4, 0); - __ B(&return1); - __ Bind(&cond_pass_00); - __ Mov(x4, 1); - __ B(&return1); - - __ Bind(&cond_fail_01); - __ Mov(x5, 0); - __ B(&return2); - __ Bind(&cond_pass_01); - __ Mov(x5, 1); - __ B(&return2); - - __ Bind(&cond_fail_10); - __ Mov(x6, 0); - __ B(&return3); - __ Bind(&cond_pass_10); - __ Mov(x6, 1); - __ B(&return3); - - __ Bind(&cond_fail_11); - __ Mov(x7, 0); - __ B(&done); - __ Bind(&cond_pass_11); - __ Mov(x7, 1); - - __ Bind(&done); - - END(); - - RUN(); - - ASSERT_EQUAL_64(0x5555555500000001UL, x0); - ASSERT_EQUAL_64(0xaaaaaaaa00000001UL, x1); - ASSERT_EQUAL_64(0x1234567800000000UL, x2); - ASSERT_EQUAL_64(0x8765432100000000UL, x3); - ASSERT_EQUAL_64(0, x4); - ASSERT_EQUAL_64(0, x5); - ASSERT_EQUAL_64(0, x6); - ASSERT_EQUAL_64(1, x7); - - TEARDOWN(); -} - - -TEST(jump_either_smi) { - INIT_V8(); - SETUP(); - - Label cond_pass_00, cond_pass_01, cond_pass_10, cond_pass_11; - Label cond_fail_00, cond_fail_01, cond_fail_10, cond_fail_11; - Label return1, return2, return3, done; - - START(); - - __ Mov(x0, 0x5555555500000001UL); // A pointer. - __ Mov(x1, 0xaaaaaaaa00000001UL); // A pointer. - __ Mov(x2, 0x1234567800000000UL); // A smi. - __ Mov(x3, 0x8765432100000000UL); // A smi. - __ Mov(x4, 0xdead); - __ Mov(x5, 0xdead); - __ Mov(x6, 0xdead); - __ Mov(x7, 0xdead); - - __ JumpIfEitherSmi(x0, x1, &cond_pass_00, &cond_fail_00); - __ Bind(&return1); - __ JumpIfEitherSmi(x0, x2, &cond_pass_01, &cond_fail_01); - __ Bind(&return2); - __ JumpIfEitherSmi(x2, x1, &cond_pass_10, &cond_fail_10); - __ Bind(&return3); - __ JumpIfEitherSmi(x2, x3, &cond_pass_11, &cond_fail_11); - - __ Bind(&cond_fail_00); - __ Mov(x4, 0); - __ B(&return1); - __ Bind(&cond_pass_00); - __ Mov(x4, 1); - __ B(&return1); - - __ Bind(&cond_fail_01); - __ Mov(x5, 0); - __ B(&return2); - __ Bind(&cond_pass_01); - __ Mov(x5, 1); - __ B(&return2); - - __ Bind(&cond_fail_10); - __ Mov(x6, 0); - __ B(&return3); - __ Bind(&cond_pass_10); - __ Mov(x6, 1); - __ B(&return3); - - __ Bind(&cond_fail_11); - __ Mov(x7, 0); - __ B(&done); - __ Bind(&cond_pass_11); - __ Mov(x7, 1); - - __ Bind(&done); - - END(); - - RUN(); - - ASSERT_EQUAL_64(0x5555555500000001UL, x0); - ASSERT_EQUAL_64(0xaaaaaaaa00000001UL, x1); - ASSERT_EQUAL_64(0x1234567800000000UL, x2); - ASSERT_EQUAL_64(0x8765432100000000UL, x3); - ASSERT_EQUAL_64(0, x4); - ASSERT_EQUAL_64(1, x5); - ASSERT_EQUAL_64(1, x6); - ASSERT_EQUAL_64(1, x7); - - TEARDOWN(); -} - - -TEST(noreg) { - // This test doesn't generate any code, but it verifies some invariants - // related to NoReg. - CHECK(NoReg.Is(NoFPReg)); - CHECK(NoFPReg.Is(NoReg)); - CHECK(NoReg.Is(NoCPUReg)); - CHECK(NoCPUReg.Is(NoReg)); - CHECK(NoFPReg.Is(NoCPUReg)); - CHECK(NoCPUReg.Is(NoFPReg)); - - CHECK(NoReg.IsNone()); - CHECK(NoFPReg.IsNone()); - CHECK(NoCPUReg.IsNone()); -} - - -TEST(isvalid) { - // This test doesn't generate any code, but it verifies some invariants - // related to IsValid(). - CHECK(!NoReg.IsValid()); - CHECK(!NoFPReg.IsValid()); - CHECK(!NoCPUReg.IsValid()); - - CHECK(x0.IsValid()); - CHECK(w0.IsValid()); - CHECK(x30.IsValid()); - CHECK(w30.IsValid()); - CHECK(xzr.IsValid()); - CHECK(wzr.IsValid()); - - CHECK(csp.IsValid()); - CHECK(wcsp.IsValid()); - - CHECK(d0.IsValid()); - CHECK(s0.IsValid()); - CHECK(d31.IsValid()); - CHECK(s31.IsValid()); - - CHECK(x0.IsValidRegister()); - CHECK(w0.IsValidRegister()); - CHECK(xzr.IsValidRegister()); - CHECK(wzr.IsValidRegister()); - CHECK(csp.IsValidRegister()); - CHECK(wcsp.IsValidRegister()); - CHECK(!x0.IsValidFPRegister()); - CHECK(!w0.IsValidFPRegister()); - CHECK(!xzr.IsValidFPRegister()); - CHECK(!wzr.IsValidFPRegister()); - CHECK(!csp.IsValidFPRegister()); - CHECK(!wcsp.IsValidFPRegister()); - - CHECK(d0.IsValidFPRegister()); - CHECK(s0.IsValidFPRegister()); - CHECK(!d0.IsValidRegister()); - CHECK(!s0.IsValidRegister()); - - // Test the same as before, but using CPURegister types. This shouldn't make - // any difference. - CHECK(static_cast<CPURegister>(x0).IsValid()); - CHECK(static_cast<CPURegister>(w0).IsValid()); - CHECK(static_cast<CPURegister>(x30).IsValid()); - CHECK(static_cast<CPURegister>(w30).IsValid()); - CHECK(static_cast<CPURegister>(xzr).IsValid()); - CHECK(static_cast<CPURegister>(wzr).IsValid()); - - CHECK(static_cast<CPURegister>(csp).IsValid()); - CHECK(static_cast<CPURegister>(wcsp).IsValid()); - - CHECK(static_cast<CPURegister>(d0).IsValid()); - CHECK(static_cast<CPURegister>(s0).IsValid()); - CHECK(static_cast<CPURegister>(d31).IsValid()); - CHECK(static_cast<CPURegister>(s31).IsValid()); - - CHECK(static_cast<CPURegister>(x0).IsValidRegister()); - CHECK(static_cast<CPURegister>(w0).IsValidRegister()); - CHECK(static_cast<CPURegister>(xzr).IsValidRegister()); - CHECK(static_cast<CPURegister>(wzr).IsValidRegister()); - CHECK(static_cast<CPURegister>(csp).IsValidRegister()); - CHECK(static_cast<CPURegister>(wcsp).IsValidRegister()); - CHECK(!static_cast<CPURegister>(x0).IsValidFPRegister()); - CHECK(!static_cast<CPURegister>(w0).IsValidFPRegister()); - CHECK(!static_cast<CPURegister>(xzr).IsValidFPRegister()); - CHECK(!static_cast<CPURegister>(wzr).IsValidFPRegister()); - CHECK(!static_cast<CPURegister>(csp).IsValidFPRegister()); - CHECK(!static_cast<CPURegister>(wcsp).IsValidFPRegister()); - - CHECK(static_cast<CPURegister>(d0).IsValidFPRegister()); - CHECK(static_cast<CPURegister>(s0).IsValidFPRegister()); - CHECK(!static_cast<CPURegister>(d0).IsValidRegister()); - CHECK(!static_cast<CPURegister>(s0).IsValidRegister()); -} - - -TEST(cpureglist_utils_x) { - // This test doesn't generate any code, but it verifies the behaviour of - // the CPURegList utility methods. - - // Test a list of X registers. - CPURegList test(x0, x1, x2, x3); - - CHECK(test.IncludesAliasOf(x0)); - CHECK(test.IncludesAliasOf(x1)); - CHECK(test.IncludesAliasOf(x2)); - CHECK(test.IncludesAliasOf(x3)); - CHECK(test.IncludesAliasOf(w0)); - CHECK(test.IncludesAliasOf(w1)); - CHECK(test.IncludesAliasOf(w2)); - CHECK(test.IncludesAliasOf(w3)); - - CHECK(!test.IncludesAliasOf(x4)); - CHECK(!test.IncludesAliasOf(x30)); - CHECK(!test.IncludesAliasOf(xzr)); - CHECK(!test.IncludesAliasOf(csp)); - CHECK(!test.IncludesAliasOf(w4)); - CHECK(!test.IncludesAliasOf(w30)); - CHECK(!test.IncludesAliasOf(wzr)); - CHECK(!test.IncludesAliasOf(wcsp)); - - CHECK(!test.IncludesAliasOf(d0)); - CHECK(!test.IncludesAliasOf(d1)); - CHECK(!test.IncludesAliasOf(d2)); - CHECK(!test.IncludesAliasOf(d3)); - CHECK(!test.IncludesAliasOf(s0)); - CHECK(!test.IncludesAliasOf(s1)); - CHECK(!test.IncludesAliasOf(s2)); - CHECK(!test.IncludesAliasOf(s3)); - - CHECK(!test.IsEmpty()); - - CHECK(test.type() == x0.type()); - - CHECK(test.PopHighestIndex().Is(x3)); - CHECK(test.PopLowestIndex().Is(x0)); - - CHECK(test.IncludesAliasOf(x1)); - CHECK(test.IncludesAliasOf(x2)); - CHECK(test.IncludesAliasOf(w1)); - CHECK(test.IncludesAliasOf(w2)); - CHECK(!test.IncludesAliasOf(x0)); - CHECK(!test.IncludesAliasOf(x3)); - CHECK(!test.IncludesAliasOf(w0)); - CHECK(!test.IncludesAliasOf(w3)); - - CHECK(test.PopHighestIndex().Is(x2)); - CHECK(test.PopLowestIndex().Is(x1)); - - CHECK(!test.IncludesAliasOf(x1)); - CHECK(!test.IncludesAliasOf(x2)); - CHECK(!test.IncludesAliasOf(w1)); - CHECK(!test.IncludesAliasOf(w2)); - - CHECK(test.IsEmpty()); -} - - -TEST(cpureglist_utils_w) { - // This test doesn't generate any code, but it verifies the behaviour of - // the CPURegList utility methods. - - // Test a list of W registers. - CPURegList test(w10, w11, w12, w13); - - CHECK(test.IncludesAliasOf(x10)); - CHECK(test.IncludesAliasOf(x11)); - CHECK(test.IncludesAliasOf(x12)); - CHECK(test.IncludesAliasOf(x13)); - CHECK(test.IncludesAliasOf(w10)); - CHECK(test.IncludesAliasOf(w11)); - CHECK(test.IncludesAliasOf(w12)); - CHECK(test.IncludesAliasOf(w13)); - - CHECK(!test.IncludesAliasOf(x0)); - CHECK(!test.IncludesAliasOf(x9)); - CHECK(!test.IncludesAliasOf(x14)); - CHECK(!test.IncludesAliasOf(x30)); - CHECK(!test.IncludesAliasOf(xzr)); - CHECK(!test.IncludesAliasOf(csp)); - CHECK(!test.IncludesAliasOf(w0)); - CHECK(!test.IncludesAliasOf(w9)); - CHECK(!test.IncludesAliasOf(w14)); - CHECK(!test.IncludesAliasOf(w30)); - CHECK(!test.IncludesAliasOf(wzr)); - CHECK(!test.IncludesAliasOf(wcsp)); - - CHECK(!test.IncludesAliasOf(d10)); - CHECK(!test.IncludesAliasOf(d11)); - CHECK(!test.IncludesAliasOf(d12)); - CHECK(!test.IncludesAliasOf(d13)); - CHECK(!test.IncludesAliasOf(s10)); - CHECK(!test.IncludesAliasOf(s11)); - CHECK(!test.IncludesAliasOf(s12)); - CHECK(!test.IncludesAliasOf(s13)); - - CHECK(!test.IsEmpty()); - - CHECK(test.type() == w10.type()); - - CHECK(test.PopHighestIndex().Is(w13)); - CHECK(test.PopLowestIndex().Is(w10)); - - CHECK(test.IncludesAliasOf(x11)); - CHECK(test.IncludesAliasOf(x12)); - CHECK(test.IncludesAliasOf(w11)); - CHECK(test.IncludesAliasOf(w12)); - CHECK(!test.IncludesAliasOf(x10)); - CHECK(!test.IncludesAliasOf(x13)); - CHECK(!test.IncludesAliasOf(w10)); - CHECK(!test.IncludesAliasOf(w13)); - - CHECK(test.PopHighestIndex().Is(w12)); - CHECK(test.PopLowestIndex().Is(w11)); - - CHECK(!test.IncludesAliasOf(x11)); - CHECK(!test.IncludesAliasOf(x12)); - CHECK(!test.IncludesAliasOf(w11)); - CHECK(!test.IncludesAliasOf(w12)); - - CHECK(test.IsEmpty()); -} - - -TEST(cpureglist_utils_d) { - // This test doesn't generate any code, but it verifies the behaviour of - // the CPURegList utility methods. - - // Test a list of D registers. - CPURegList test(d20, d21, d22, d23); - - CHECK(test.IncludesAliasOf(d20)); - CHECK(test.IncludesAliasOf(d21)); - CHECK(test.IncludesAliasOf(d22)); - CHECK(test.IncludesAliasOf(d23)); - CHECK(test.IncludesAliasOf(s20)); - CHECK(test.IncludesAliasOf(s21)); - CHECK(test.IncludesAliasOf(s22)); - CHECK(test.IncludesAliasOf(s23)); - - CHECK(!test.IncludesAliasOf(d0)); - CHECK(!test.IncludesAliasOf(d19)); - CHECK(!test.IncludesAliasOf(d24)); - CHECK(!test.IncludesAliasOf(d31)); - CHECK(!test.IncludesAliasOf(s0)); - CHECK(!test.IncludesAliasOf(s19)); - CHECK(!test.IncludesAliasOf(s24)); - CHECK(!test.IncludesAliasOf(s31)); - - CHECK(!test.IncludesAliasOf(x20)); - CHECK(!test.IncludesAliasOf(x21)); - CHECK(!test.IncludesAliasOf(x22)); - CHECK(!test.IncludesAliasOf(x23)); - CHECK(!test.IncludesAliasOf(w20)); - CHECK(!test.IncludesAliasOf(w21)); - CHECK(!test.IncludesAliasOf(w22)); - CHECK(!test.IncludesAliasOf(w23)); - - CHECK(!test.IncludesAliasOf(xzr)); - CHECK(!test.IncludesAliasOf(wzr)); - CHECK(!test.IncludesAliasOf(csp)); - CHECK(!test.IncludesAliasOf(wcsp)); - - CHECK(!test.IsEmpty()); - - CHECK(test.type() == d20.type()); - - CHECK(test.PopHighestIndex().Is(d23)); - CHECK(test.PopLowestIndex().Is(d20)); - - CHECK(test.IncludesAliasOf(d21)); - CHECK(test.IncludesAliasOf(d22)); - CHECK(test.IncludesAliasOf(s21)); - CHECK(test.IncludesAliasOf(s22)); - CHECK(!test.IncludesAliasOf(d20)); - CHECK(!test.IncludesAliasOf(d23)); - CHECK(!test.IncludesAliasOf(s20)); - CHECK(!test.IncludesAliasOf(s23)); - - CHECK(test.PopHighestIndex().Is(d22)); - CHECK(test.PopLowestIndex().Is(d21)); - - CHECK(!test.IncludesAliasOf(d21)); - CHECK(!test.IncludesAliasOf(d22)); - CHECK(!test.IncludesAliasOf(s21)); - CHECK(!test.IncludesAliasOf(s22)); - - CHECK(test.IsEmpty()); -} - - -TEST(cpureglist_utils_s) { - // This test doesn't generate any code, but it verifies the behaviour of - // the CPURegList utility methods. - - // Test a list of S registers. - CPURegList test(s20, s21, s22, s23); - - // The type and size mechanisms are already covered, so here we just test - // that lists of S registers alias individual D registers. - - CHECK(test.IncludesAliasOf(d20)); - CHECK(test.IncludesAliasOf(d21)); - CHECK(test.IncludesAliasOf(d22)); - CHECK(test.IncludesAliasOf(d23)); - CHECK(test.IncludesAliasOf(s20)); - CHECK(test.IncludesAliasOf(s21)); - CHECK(test.IncludesAliasOf(s22)); - CHECK(test.IncludesAliasOf(s23)); -} - - -TEST(cpureglist_utils_empty) { - // This test doesn't generate any code, but it verifies the behaviour of - // the CPURegList utility methods. - - // Test an empty list. - // Empty lists can have type and size properties. Check that we can create - // them, and that they are empty. - CPURegList reg32(CPURegister::kRegister, kWRegSize, 0); - CPURegList reg64(CPURegister::kRegister, kXRegSize, 0); - CPURegList fpreg32(CPURegister::kFPRegister, kSRegSize, 0); - CPURegList fpreg64(CPURegister::kFPRegister, kDRegSize, 0); - - CHECK(reg32.IsEmpty()); - CHECK(reg64.IsEmpty()); - CHECK(fpreg32.IsEmpty()); - CHECK(fpreg64.IsEmpty()); - - CHECK(reg32.PopLowestIndex().IsNone()); - CHECK(reg64.PopLowestIndex().IsNone()); - CHECK(fpreg32.PopLowestIndex().IsNone()); - CHECK(fpreg64.PopLowestIndex().IsNone()); - - CHECK(reg32.PopHighestIndex().IsNone()); - CHECK(reg64.PopHighestIndex().IsNone()); - CHECK(fpreg32.PopHighestIndex().IsNone()); - CHECK(fpreg64.PopHighestIndex().IsNone()); - - CHECK(reg32.IsEmpty()); - CHECK(reg64.IsEmpty()); - CHECK(fpreg32.IsEmpty()); - CHECK(fpreg64.IsEmpty()); -} - - -TEST(printf) { - INIT_V8(); - SETUP(); - START(); - - char const * test_plain_string = "Printf with no arguments.\n"; - char const * test_substring = "'This is a substring.'"; - RegisterDump before; - - // Initialize x29 to the value of the stack pointer. We will use x29 as a - // temporary stack pointer later, and initializing it in this way allows the - // RegisterDump check to pass. - __ Mov(x29, __ StackPointer()); - - // Test simple integer arguments. - __ Mov(x0, 1234); - __ Mov(x1, 0x1234); - - // Test simple floating-point arguments. - __ Fmov(d0, 1.234); - - // Test pointer (string) arguments. - __ Mov(x2, reinterpret_cast<uintptr_t>(test_substring)); - - // Test the maximum number of arguments, and sign extension. - __ Mov(w3, 0xffffffff); - __ Mov(w4, 0xffffffff); - __ Mov(x5, 0xffffffffffffffff); - __ Mov(x6, 0xffffffffffffffff); - __ Fmov(s1, 1.234); - __ Fmov(s2, 2.345); - __ Fmov(d3, 3.456); - __ Fmov(d4, 4.567); - - // Test printing callee-saved registers. - __ Mov(x28, 0x123456789abcdef); - __ Fmov(d10, 42.0); - - // Test with three arguments. - __ Mov(x10, 3); - __ Mov(x11, 40); - __ Mov(x12, 500); - - // x8 and x9 are used by debug code in part of the macro assembler. However, - // Printf guarantees to preserve them (so we can use Printf in debug code), - // and we need to test that they are properly preserved. The above code - // shouldn't need to use them, but we initialize x8 and x9 last to be on the - // safe side. This test still assumes that none of the code from - // before->Dump() to the end of the test can clobber x8 or x9, so where - // possible we use the Assembler directly to be safe. - __ orr(x8, xzr, 0x8888888888888888); - __ orr(x9, xzr, 0x9999999999999999); - - // Check that we don't clobber any registers, except those that we explicitly - // write results into. - before.Dump(&masm); - - __ Printf(test_plain_string); // NOLINT(runtime/printf) - __ Printf("x0: %" PRId64", x1: 0x%08" PRIx64 "\n", x0, x1); - __ Printf("d0: %f\n", d0); - __ Printf("Test %%s: %s\n", x2); - __ Printf("w3(uint32): %" PRIu32 "\nw4(int32): %" PRId32 "\n" - "x5(uint64): %" PRIu64 "\nx6(int64): %" PRId64 "\n", - w3, w4, x5, x6); - __ Printf("%%f: %f\n%%g: %g\n%%e: %e\n%%E: %E\n", s1, s2, d3, d4); - __ Printf("0x%08" PRIx32 ", 0x%016" PRIx64 "\n", x28, x28); - __ Printf("%g\n", d10); - - // Test with a different stack pointer. - const Register old_stack_pointer = __ StackPointer(); - __ mov(x29, old_stack_pointer); - __ SetStackPointer(x29); - __ Printf("old_stack_pointer: 0x%016" PRIx64 "\n", old_stack_pointer); - __ mov(old_stack_pointer, __ StackPointer()); - __ SetStackPointer(old_stack_pointer); - - __ Printf("3=%u, 4=%u, 5=%u\n", x10, x11, x12); - - END(); - RUN(); - - // We cannot easily test the output of the Printf sequences, and because - // Printf preserves all registers by default, we can't look at the number of - // bytes that were printed. However, the printf_no_preserve test should check - // that, and here we just test that we didn't clobber any registers. - ASSERT_EQUAL_REGISTERS(before); - - TEARDOWN(); -} - - -TEST(printf_no_preserve) { - INIT_V8(); - SETUP(); - START(); - - char const * test_plain_string = "Printf with no arguments.\n"; - char const * test_substring = "'This is a substring.'"; - - __ PrintfNoPreserve(test_plain_string); // NOLINT(runtime/printf) - __ Mov(x19, x0); - - // Test simple integer arguments. - __ Mov(x0, 1234); - __ Mov(x1, 0x1234); - __ PrintfNoPreserve("x0: %" PRId64", x1: 0x%08" PRIx64 "\n", x0, x1); - __ Mov(x20, x0); - - // Test simple floating-point arguments. - __ Fmov(d0, 1.234); - __ PrintfNoPreserve("d0: %f\n", d0); - __ Mov(x21, x0); - - // Test pointer (string) arguments. - __ Mov(x2, reinterpret_cast<uintptr_t>(test_substring)); - __ PrintfNoPreserve("Test %%s: %s\n", x2); - __ Mov(x22, x0); - - // Test the maximum number of arguments, and sign extension. - __ Mov(w3, 0xffffffff); - __ Mov(w4, 0xffffffff); - __ Mov(x5, 0xffffffffffffffff); - __ Mov(x6, 0xffffffffffffffff); - __ PrintfNoPreserve("w3(uint32): %" PRIu32 "\nw4(int32): %" PRId32 "\n" - "x5(uint64): %" PRIu64 "\nx6(int64): %" PRId64 "\n", - w3, w4, x5, x6); - __ Mov(x23, x0); - - __ Fmov(s1, 1.234); - __ Fmov(s2, 2.345); - __ Fmov(d3, 3.456); - __ Fmov(d4, 4.567); - __ PrintfNoPreserve("%%f: %f\n%%g: %g\n%%e: %e\n%%E: %E\n", s1, s2, d3, d4); - __ Mov(x24, x0); - - // Test printing callee-saved registers. - __ Mov(x28, 0x123456789abcdef); - __ PrintfNoPreserve("0x%08" PRIx32 ", 0x%016" PRIx64 "\n", x28, x28); - __ Mov(x25, x0); - - __ Fmov(d10, 42.0); - __ PrintfNoPreserve("%g\n", d10); - __ Mov(x26, x0); - - // Test with a different stack pointer. - const Register old_stack_pointer = __ StackPointer(); - __ Mov(x29, old_stack_pointer); - __ SetStackPointer(x29); - - __ PrintfNoPreserve("old_stack_pointer: 0x%016" PRIx64 "\n", - old_stack_pointer); - __ Mov(x27, x0); - - __ Mov(old_stack_pointer, __ StackPointer()); - __ SetStackPointer(old_stack_pointer); - - // Test with three arguments. - __ Mov(x3, 3); - __ Mov(x4, 40); - __ Mov(x5, 500); - __ PrintfNoPreserve("3=%u, 4=%u, 5=%u\n", x3, x4, x5); - __ Mov(x28, x0); - - END(); - RUN(); - - // We cannot easily test the exact output of the Printf sequences, but we can - // use the return code to check that the string length was correct. - - // Printf with no arguments. - ASSERT_EQUAL_64(strlen(test_plain_string), x19); - // x0: 1234, x1: 0x00001234 - ASSERT_EQUAL_64(25, x20); - // d0: 1.234000 - ASSERT_EQUAL_64(13, x21); - // Test %s: 'This is a substring.' - ASSERT_EQUAL_64(32, x22); - // w3(uint32): 4294967295 - // w4(int32): -1 - // x5(uint64): 18446744073709551615 - // x6(int64): -1 - ASSERT_EQUAL_64(23 + 14 + 33 + 14, x23); - // %f: 1.234000 - // %g: 2.345 - // %e: 3.456000e+00 - // %E: 4.567000E+00 - ASSERT_EQUAL_64(13 + 10 + 17 + 17, x24); - // 0x89abcdef, 0x0123456789abcdef - ASSERT_EQUAL_64(31, x25); - // 42 - ASSERT_EQUAL_64(3, x26); - // old_stack_pointer: 0x00007fb037ae2370 - // Note: This is an example value, but the field width is fixed here so the - // string length is still predictable. - ASSERT_EQUAL_64(38, x27); - // 3=3, 4=40, 5=500 - ASSERT_EQUAL_64(17, x28); - - TEARDOWN(); -} - - -// This is a V8-specific test. -static void CopyFieldsHelper(CPURegList temps) { - static const uint64_t kLiteralBase = 0x0100001000100101UL; - static const uint64_t src[] = {kLiteralBase * 1, - kLiteralBase * 2, - kLiteralBase * 3, - kLiteralBase * 4, - kLiteralBase * 5, - kLiteralBase * 6, - kLiteralBase * 7, - kLiteralBase * 8, - kLiteralBase * 9, - kLiteralBase * 10, - kLiteralBase * 11}; - static const uint64_t src_tagged = - reinterpret_cast<uint64_t>(src) + kHeapObjectTag; - - static const unsigned kTestCount = sizeof(src) / sizeof(src[0]) + 1; - uint64_t* dst[kTestCount]; - uint64_t dst_tagged[kTestCount]; - - // The first test will be to copy 0 fields. The destination (and source) - // should not be accessed in any way. - dst[0] = NULL; - dst_tagged[0] = kHeapObjectTag; - - // Allocate memory for each other test. Each test <n> will have <n> fields. - // This is intended to exercise as many paths in CopyFields as possible. - for (unsigned i = 1; i < kTestCount; i++) { - dst[i] = new uint64_t[i]; - memset(dst[i], 0, i * sizeof(kLiteralBase)); - dst_tagged[i] = reinterpret_cast<uint64_t>(dst[i]) + kHeapObjectTag; - } - - SETUP(); - START(); - - __ Mov(x0, dst_tagged[0]); - __ Mov(x1, 0); - __ CopyFields(x0, x1, temps, 0); - for (unsigned i = 1; i < kTestCount; i++) { - __ Mov(x0, dst_tagged[i]); - __ Mov(x1, src_tagged); - __ CopyFields(x0, x1, temps, i); - } - - END(); - RUN(); - TEARDOWN(); - - for (unsigned i = 1; i < kTestCount; i++) { - for (unsigned j = 0; j < i; j++) { - CHECK(src[j] == dst[i][j]); - } - delete [] dst[i]; - } -} - - -// This is a V8-specific test. -TEST(copyfields) { - INIT_V8(); - CopyFieldsHelper(CPURegList(x10)); - CopyFieldsHelper(CPURegList(x10, x11)); - CopyFieldsHelper(CPURegList(x10, x11, x12)); - CopyFieldsHelper(CPURegList(x10, x11, x12, x13)); -} - - -static void DoSmiAbsTest(int32_t value, bool must_fail = false) { - SETUP(); - - START(); - Label end, slow; - __ Mov(x2, 0xc001c0de); - __ Mov(x1, value); - __ SmiTag(x1); - __ SmiAbs(x1, &slow); - __ SmiUntag(x1); - __ B(&end); - - __ Bind(&slow); - __ Mov(x2, 0xbad); - - __ Bind(&end); - END(); - - RUN(); - - if (must_fail) { - // We tested an invalid conversion. The code must have jump on slow. - ASSERT_EQUAL_64(0xbad, x2); - } else { - // The conversion is valid, check the result. - int32_t result = (value >= 0) ? value : -value; - ASSERT_EQUAL_64(result, x1); - - // Check that we didn't jump on slow. - ASSERT_EQUAL_64(0xc001c0de, x2); - } - - TEARDOWN(); -} - - -TEST(smi_abs) { - INIT_V8(); - // Simple and edge cases. - DoSmiAbsTest(0); - DoSmiAbsTest(0x12345); - DoSmiAbsTest(0x40000000); - DoSmiAbsTest(0x7fffffff); - DoSmiAbsTest(-1); - DoSmiAbsTest(-12345); - DoSmiAbsTest(0x80000001); - - // Check that the most negative SMI is detected. - DoSmiAbsTest(0x80000000, true); -} - - -TEST(blr_lr) { - // A simple test to check that the simulator correcty handle "blr lr". - INIT_V8(); - SETUP(); - - START(); - Label target; - Label end; - - __ Mov(x0, 0x0); - __ Adr(lr, &target); - - __ Blr(lr); - __ Mov(x0, 0xdeadbeef); - __ B(&end); - - __ Bind(&target); - __ Mov(x0, 0xc001c0de); - - __ Bind(&end); - END(); - - RUN(); - - ASSERT_EQUAL_64(0xc001c0de, x0); - - TEARDOWN(); -} - - -TEST(barriers) { - // Generate all supported barriers, this is just a smoke test - INIT_V8(); - SETUP(); - - START(); - - // DMB - __ Dmb(FullSystem, BarrierAll); - __ Dmb(FullSystem, BarrierReads); - __ Dmb(FullSystem, BarrierWrites); - __ Dmb(FullSystem, BarrierOther); - - __ Dmb(InnerShareable, BarrierAll); - __ Dmb(InnerShareable, BarrierReads); - __ Dmb(InnerShareable, BarrierWrites); - __ Dmb(InnerShareable, BarrierOther); - - __ Dmb(NonShareable, BarrierAll); - __ Dmb(NonShareable, BarrierReads); - __ Dmb(NonShareable, BarrierWrites); - __ Dmb(NonShareable, BarrierOther); - - __ Dmb(OuterShareable, BarrierAll); - __ Dmb(OuterShareable, BarrierReads); - __ Dmb(OuterShareable, BarrierWrites); - __ Dmb(OuterShareable, BarrierOther); - - // DSB - __ Dsb(FullSystem, BarrierAll); - __ Dsb(FullSystem, BarrierReads); - __ Dsb(FullSystem, BarrierWrites); - __ Dsb(FullSystem, BarrierOther); - - __ Dsb(InnerShareable, BarrierAll); - __ Dsb(InnerShareable, BarrierReads); - __ Dsb(InnerShareable, BarrierWrites); - __ Dsb(InnerShareable, BarrierOther); - - __ Dsb(NonShareable, BarrierAll); - __ Dsb(NonShareable, BarrierReads); - __ Dsb(NonShareable, BarrierWrites); - __ Dsb(NonShareable, BarrierOther); - - __ Dsb(OuterShareable, BarrierAll); - __ Dsb(OuterShareable, BarrierReads); - __ Dsb(OuterShareable, BarrierWrites); - __ Dsb(OuterShareable, BarrierOther); - - // ISB - __ Isb(); - - END(); - - RUN(); - - TEARDOWN(); -} - - -TEST(call_no_relocation) { - Address call_start; - Address return_address; - - INIT_V8(); - SETUP(); - - START(); - - Label function; - Label test; - - __ B(&test); - - __ Bind(&function); - __ Mov(x0, 0x1); - __ Ret(); - - __ Bind(&test); - __ Mov(x0, 0x0); - __ Push(lr, xzr); - { - Assembler::BlockConstPoolScope scope(&masm); - call_start = buf + __ pc_offset(); - __ Call(buf + function.pos(), RelocInfo::NONE64); - return_address = buf + __ pc_offset(); - } - __ Pop(xzr, lr); - END(); - - RUN(); - - ASSERT_EQUAL_64(1, x0); - - // The return_address_from_call_start function doesn't currently encounter any - // non-relocatable sequences, so we check it here to make sure it works. - // TODO(jbramley): Once Crankshaft is complete, decide if we need to support - // non-relocatable calls at all. - CHECK(return_address == - Assembler::return_address_from_call_start(call_start)); - - TEARDOWN(); -} - - -static void AbsHelperX(int64_t value) { - int64_t expected; - - SETUP(); - START(); - - Label fail; - Label done; - - __ Mov(x0, 0); - __ Mov(x1, value); - - if (value != kXMinInt) { - expected = labs(value); - - Label next; - // The result is representable. - __ Abs(x10, x1); - __ Abs(x11, x1, &fail); - __ Abs(x12, x1, &fail, &next); - __ Bind(&next); - __ Abs(x13, x1, NULL, &done); - } else { - // labs is undefined for kXMinInt but our implementation in the - // MacroAssembler will return kXMinInt in such a case. - expected = kXMinInt; - - Label next; - // The result is not representable. - __ Abs(x10, x1); - __ Abs(x11, x1, NULL, &fail); - __ Abs(x12, x1, &next, &fail); - __ Bind(&next); - __ Abs(x13, x1, &done); - } - - __ Bind(&fail); - __ Mov(x0, -1); - - __ Bind(&done); - - END(); - RUN(); - - ASSERT_EQUAL_64(0, x0); - ASSERT_EQUAL_64(value, x1); - ASSERT_EQUAL_64(expected, x10); - ASSERT_EQUAL_64(expected, x11); - ASSERT_EQUAL_64(expected, x12); - ASSERT_EQUAL_64(expected, x13); - - TEARDOWN(); -} - - -static void AbsHelperW(int32_t value) { - int32_t expected; - - SETUP(); - START(); - - Label fail; - Label done; - - __ Mov(w0, 0); - // TODO(jbramley): The cast is needed to avoid a sign-extension bug in VIXL. - // Once it is fixed, we should remove the cast. - __ Mov(w1, static_cast<uint32_t>(value)); - - if (value != kWMinInt) { - expected = abs(value); - - Label next; - // The result is representable. - __ Abs(w10, w1); - __ Abs(w11, w1, &fail); - __ Abs(w12, w1, &fail, &next); - __ Bind(&next); - __ Abs(w13, w1, NULL, &done); - } else { - // abs is undefined for kWMinInt but our implementation in the - // MacroAssembler will return kWMinInt in such a case. - expected = kWMinInt; - - Label next; - // The result is not representable. - __ Abs(w10, w1); - __ Abs(w11, w1, NULL, &fail); - __ Abs(w12, w1, &next, &fail); - __ Bind(&next); - __ Abs(w13, w1, &done); - } - - __ Bind(&fail); - __ Mov(w0, -1); - - __ Bind(&done); - - END(); - RUN(); - - ASSERT_EQUAL_32(0, w0); - ASSERT_EQUAL_32(value, w1); - ASSERT_EQUAL_32(expected, w10); - ASSERT_EQUAL_32(expected, w11); - ASSERT_EQUAL_32(expected, w12); - ASSERT_EQUAL_32(expected, w13); - - TEARDOWN(); -} - - -TEST(abs) { - INIT_V8(); - AbsHelperX(0); - AbsHelperX(42); - AbsHelperX(-42); - AbsHelperX(kXMinInt); - AbsHelperX(kXMaxInt); - - AbsHelperW(0); - AbsHelperW(42); - AbsHelperW(-42); - AbsHelperW(kWMinInt); - AbsHelperW(kWMaxInt); -} |