diff options
Diffstat (limited to 'deps/v8/src/ppc/simulator-ppc.cc')
-rw-r--r-- | deps/v8/src/ppc/simulator-ppc.cc | 3803 |
1 files changed, 3803 insertions, 0 deletions
diff --git a/deps/v8/src/ppc/simulator-ppc.cc b/deps/v8/src/ppc/simulator-ppc.cc new file mode 100644 index 0000000000..0d10153790 --- /dev/null +++ b/deps/v8/src/ppc/simulator-ppc.cc @@ -0,0 +1,3803 @@ +// Copyright 2014 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include <stdarg.h> +#include <stdlib.h> +#include <cmath> + +#include "src/v8.h" + +#if V8_TARGET_ARCH_PPC + +#include "src/assembler.h" +#include "src/codegen.h" +#include "src/disasm.h" +#include "src/ppc/constants-ppc.h" +#include "src/ppc/frames-ppc.h" +#include "src/ppc/simulator-ppc.h" + +#if defined(USE_SIMULATOR) + +// Only build the simulator if not compiling for real PPC hardware. +namespace v8 { +namespace internal { + +// This macro provides a platform independent use of sscanf. The reason for +// SScanF not being implemented in a platform independent way through +// ::v8::internal::OS in the same way as SNPrintF is that the +// Windows C Run-Time Library does not provide vsscanf. +#define SScanF sscanf // NOLINT + +// The PPCDebugger class is used by the simulator while debugging simulated +// PowerPC code. +class PPCDebugger { + public: + explicit PPCDebugger(Simulator* sim) : sim_(sim) {} + ~PPCDebugger(); + + void Stop(Instruction* instr); + void Info(Instruction* instr); + void Debug(); + + private: + static const Instr kBreakpointInstr = (TWI | 0x1f * B21); + static const Instr kNopInstr = (ORI); // ori, 0,0,0 + + Simulator* sim_; + + intptr_t GetRegisterValue(int regnum); + double GetRegisterPairDoubleValue(int regnum); + double GetFPDoubleRegisterValue(int regnum); + bool GetValue(const char* desc, intptr_t* value); + bool GetFPDoubleValue(const char* desc, double* value); + + // Set or delete a breakpoint. Returns true if successful. + bool SetBreakpoint(Instruction* break_pc); + bool DeleteBreakpoint(Instruction* break_pc); + + // Undo and redo all breakpoints. This is needed to bracket disassembly and + // execution to skip past breakpoints when run from the debugger. + void UndoBreakpoints(); + void RedoBreakpoints(); +}; + + +PPCDebugger::~PPCDebugger() {} + + +#ifdef GENERATED_CODE_COVERAGE +static FILE* coverage_log = NULL; + + +static void InitializeCoverage() { + char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG"); + if (file_name != NULL) { + coverage_log = fopen(file_name, "aw+"); + } +} + + +void PPCDebugger::Stop(Instruction* instr) { + // Get the stop code. + uint32_t code = instr->SvcValue() & kStopCodeMask; + // Retrieve the encoded address, which comes just after this stop. + char** msg_address = + reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize); + char* msg = *msg_address; + DCHECK(msg != NULL); + + // Update this stop description. + if (isWatchedStop(code) && !watched_stops_[code].desc) { + watched_stops_[code].desc = msg; + } + + if (strlen(msg) > 0) { + if (coverage_log != NULL) { + fprintf(coverage_log, "%s\n", msg); + fflush(coverage_log); + } + // Overwrite the instruction and address with nops. + instr->SetInstructionBits(kNopInstr); + reinterpret_cast<Instruction*>(msg_address)->SetInstructionBits(kNopInstr); + } + sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize); +} + +#else // ndef GENERATED_CODE_COVERAGE + +static void InitializeCoverage() {} + + +void PPCDebugger::Stop(Instruction* instr) { + // Get the stop code. + // use of kStopCodeMask not right on PowerPC + uint32_t code = instr->SvcValue() & kStopCodeMask; + // Retrieve the encoded address, which comes just after this stop. + char* msg = + *reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize); + // Update this stop description. + if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) { + sim_->watched_stops_[code].desc = msg; + } + // Print the stop message and code if it is not the default code. + if (code != kMaxStopCode) { + PrintF("Simulator hit stop %u: %s\n", code, msg); + } else { + PrintF("Simulator hit %s\n", msg); + } + sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize); + Debug(); +} +#endif + + +void PPCDebugger::Info(Instruction* instr) { + // Retrieve the encoded address immediately following the Info breakpoint. + char* msg = + *reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize); + PrintF("Simulator info %s\n", msg); + sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize); +} + + +intptr_t PPCDebugger::GetRegisterValue(int regnum) { + return sim_->get_register(regnum); +} + + +double PPCDebugger::GetRegisterPairDoubleValue(int regnum) { + return sim_->get_double_from_register_pair(regnum); +} + + +double PPCDebugger::GetFPDoubleRegisterValue(int regnum) { + return sim_->get_double_from_d_register(regnum); +} + + +bool PPCDebugger::GetValue(const char* desc, intptr_t* value) { + int regnum = Registers::Number(desc); + if (regnum != kNoRegister) { + *value = GetRegisterValue(regnum); + return true; + } else { + if (strncmp(desc, "0x", 2) == 0) { + return SScanF(desc + 2, "%" V8PRIxPTR, + reinterpret_cast<uintptr_t*>(value)) == 1; + } else { + return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) == + 1; + } + } + return false; +} + + +bool PPCDebugger::GetFPDoubleValue(const char* desc, double* value) { + int regnum = FPRegisters::Number(desc); + if (regnum != kNoRegister) { + *value = sim_->get_double_from_d_register(regnum); + return true; + } + return false; +} + + +bool PPCDebugger::SetBreakpoint(Instruction* break_pc) { + // Check if a breakpoint can be set. If not return without any side-effects. + if (sim_->break_pc_ != NULL) { + return false; + } + + // Set the breakpoint. + sim_->break_pc_ = break_pc; + sim_->break_instr_ = break_pc->InstructionBits(); + // Not setting the breakpoint instruction in the code itself. It will be set + // when the debugger shell continues. + return true; +} + + +bool PPCDebugger::DeleteBreakpoint(Instruction* break_pc) { + if (sim_->break_pc_ != NULL) { + sim_->break_pc_->SetInstructionBits(sim_->break_instr_); + } + + sim_->break_pc_ = NULL; + sim_->break_instr_ = 0; + return true; +} + + +void PPCDebugger::UndoBreakpoints() { + if (sim_->break_pc_ != NULL) { + sim_->break_pc_->SetInstructionBits(sim_->break_instr_); + } +} + + +void PPCDebugger::RedoBreakpoints() { + if (sim_->break_pc_ != NULL) { + sim_->break_pc_->SetInstructionBits(kBreakpointInstr); + } +} + + +void PPCDebugger::Debug() { + intptr_t last_pc = -1; + bool done = false; + +#define COMMAND_SIZE 63 +#define ARG_SIZE 255 + +#define STR(a) #a +#define XSTR(a) STR(a) + + char cmd[COMMAND_SIZE + 1]; + char arg1[ARG_SIZE + 1]; + char arg2[ARG_SIZE + 1]; + char* argv[3] = {cmd, arg1, arg2}; + + // make sure to have a proper terminating character if reaching the limit + cmd[COMMAND_SIZE] = 0; + arg1[ARG_SIZE] = 0; + arg2[ARG_SIZE] = 0; + + // Undo all set breakpoints while running in the debugger shell. This will + // make them invisible to all commands. + UndoBreakpoints(); + // Disable tracing while simulating + bool trace = ::v8::internal::FLAG_trace_sim; + ::v8::internal::FLAG_trace_sim = false; + + while (!done && !sim_->has_bad_pc()) { + if (last_pc != sim_->get_pc()) { + disasm::NameConverter converter; + disasm::Disassembler dasm(converter); + // use a reasonably large buffer + v8::internal::EmbeddedVector<char, 256> buffer; + dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc())); + PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), buffer.start()); + last_pc = sim_->get_pc(); + } + char* line = ReadLine("sim> "); + if (line == NULL) { + break; + } else { + char* last_input = sim_->last_debugger_input(); + if (strcmp(line, "\n") == 0 && last_input != NULL) { + line = last_input; + } else { + // Ownership is transferred to sim_; + sim_->set_last_debugger_input(line); + } + // Use sscanf to parse the individual parts of the command line. At the + // moment no command expects more than two parameters. + int argc = SScanF(line, + "%" XSTR(COMMAND_SIZE) "s " + "%" XSTR(ARG_SIZE) "s " + "%" XSTR(ARG_SIZE) "s", + cmd, arg1, arg2); + if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { + intptr_t value; + + // If at a breakpoint, proceed past it. + if ((reinterpret_cast<Instruction*>(sim_->get_pc())) + ->InstructionBits() == 0x7d821008) { + sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize); + } else { + sim_->ExecuteInstruction( + reinterpret_cast<Instruction*>(sim_->get_pc())); + } + + if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) { + for (int i = 1; i < value; i++) { + disasm::NameConverter converter; + disasm::Disassembler dasm(converter); + // use a reasonably large buffer + v8::internal::EmbeddedVector<char, 256> buffer; + dasm.InstructionDecode(buffer, + reinterpret_cast<byte*>(sim_->get_pc())); + PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), + buffer.start()); + sim_->ExecuteInstruction( + reinterpret_cast<Instruction*>(sim_->get_pc())); + } + } + } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { + // If at a breakpoint, proceed past it. + if ((reinterpret_cast<Instruction*>(sim_->get_pc())) + ->InstructionBits() == 0x7d821008) { + sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize); + } else { + // Execute the one instruction we broke at with breakpoints disabled. + sim_->ExecuteInstruction( + reinterpret_cast<Instruction*>(sim_->get_pc())); + } + // Leave the debugger shell. + done = true; + } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { + if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) { + intptr_t value; + double dvalue; + if (strcmp(arg1, "all") == 0) { + for (int i = 0; i < kNumRegisters; i++) { + value = GetRegisterValue(i); + PrintF(" %3s: %08" V8PRIxPTR, Registers::Name(i), value); + if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 && + (i % 2) == 0) { + dvalue = GetRegisterPairDoubleValue(i); + PrintF(" (%f)\n", dvalue); + } else if (i != 0 && !((i + 1) & 3)) { + PrintF("\n"); + } + } + PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR + " " + "ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n", + sim_->special_reg_pc_, sim_->special_reg_lr_, + sim_->special_reg_ctr_, sim_->special_reg_xer_, + sim_->condition_reg_); + } else if (strcmp(arg1, "alld") == 0) { + for (int i = 0; i < kNumRegisters; i++) { + value = GetRegisterValue(i); + PrintF(" %3s: %08" V8PRIxPTR " %11" V8PRIdPTR, + Registers::Name(i), value, value); + if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 && + (i % 2) == 0) { + dvalue = GetRegisterPairDoubleValue(i); + PrintF(" (%f)\n", dvalue); + } else if (!((i + 1) % 2)) { + PrintF("\n"); + } + } + PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR + " " + "ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n", + sim_->special_reg_pc_, sim_->special_reg_lr_, + sim_->special_reg_ctr_, sim_->special_reg_xer_, + sim_->condition_reg_); + } else if (strcmp(arg1, "allf") == 0) { + for (int i = 0; i < DoubleRegister::kNumRegisters; i++) { + dvalue = GetFPDoubleRegisterValue(i); + uint64_t as_words = bit_cast<uint64_t>(dvalue); + PrintF("%3s: %f 0x%08x %08x\n", FPRegisters::Name(i), dvalue, + static_cast<uint32_t>(as_words >> 32), + static_cast<uint32_t>(as_words & 0xffffffff)); + } + } else if (arg1[0] == 'r' && + (arg1[1] >= '0' && arg1[1] <= '9' && + (arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '9' && + arg1[3] == '\0')))) { + int regnum = strtoul(&arg1[1], 0, 10); + if (regnum != kNoRegister) { + value = GetRegisterValue(regnum); + PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value, + value); + } else { + PrintF("%s unrecognized\n", arg1); + } + } else { + if (GetValue(arg1, &value)) { + PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value, + value); + } else if (GetFPDoubleValue(arg1, &dvalue)) { + uint64_t as_words = bit_cast<uint64_t>(dvalue); + PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue, + static_cast<uint32_t>(as_words >> 32), + static_cast<uint32_t>(as_words & 0xffffffff)); + } else { + PrintF("%s unrecognized\n", arg1); + } + } + } else { + PrintF("print <register>\n"); + } + } else if ((strcmp(cmd, "po") == 0) || + (strcmp(cmd, "printobject") == 0)) { + if (argc == 2) { + intptr_t value; + OFStream os(stdout); + if (GetValue(arg1, &value)) { + Object* obj = reinterpret_cast<Object*>(value); + os << arg1 << ": \n"; +#ifdef DEBUG + obj->Print(os); + os << "\n"; +#else + os << Brief(obj) << "\n"; +#endif + } else { + os << arg1 << " unrecognized\n"; + } + } else { + PrintF("printobject <value>\n"); + } + } else if (strcmp(cmd, "setpc") == 0) { + intptr_t value; + + if (!GetValue(arg1, &value)) { + PrintF("%s unrecognized\n", arg1); + continue; + } + sim_->set_pc(value); + } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { + intptr_t* cur = NULL; + intptr_t* end = NULL; + int next_arg = 1; + + if (strcmp(cmd, "stack") == 0) { + cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp)); + } else { // "mem" + intptr_t value; + if (!GetValue(arg1, &value)) { + PrintF("%s unrecognized\n", arg1); + continue; + } + cur = reinterpret_cast<intptr_t*>(value); + next_arg++; + } + + intptr_t words; // likely inaccurate variable name for 64bit + if (argc == next_arg) { + words = 10; + } else { + if (!GetValue(argv[next_arg], &words)) { + words = 10; + } + } + end = cur + words; + + while (cur < end) { + PrintF(" 0x%08" V8PRIxPTR ": 0x%08" V8PRIxPTR " %10" V8PRIdPTR, + reinterpret_cast<intptr_t>(cur), *cur, *cur); + HeapObject* obj = reinterpret_cast<HeapObject*>(*cur); + intptr_t value = *cur; + Heap* current_heap = v8::internal::Isolate::Current()->heap(); + if (((value & 1) == 0) || current_heap->Contains(obj)) { + PrintF(" ("); + if ((value & 1) == 0) { + PrintF("smi %d", PlatformSmiTagging::SmiToInt(obj)); + } else { + obj->ShortPrint(); + } + PrintF(")"); + } + PrintF("\n"); + cur++; + } + } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) { + disasm::NameConverter converter; + disasm::Disassembler dasm(converter); + // use a reasonably large buffer + v8::internal::EmbeddedVector<char, 256> buffer; + + byte* prev = NULL; + byte* cur = NULL; + byte* end = NULL; + + if (argc == 1) { + cur = reinterpret_cast<byte*>(sim_->get_pc()); + end = cur + (10 * Instruction::kInstrSize); + } else if (argc == 2) { + int regnum = Registers::Number(arg1); + if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) { + // The argument is an address or a register name. + intptr_t value; + if (GetValue(arg1, &value)) { + cur = reinterpret_cast<byte*>(value); + // Disassemble 10 instructions at <arg1>. + end = cur + (10 * Instruction::kInstrSize); + } + } else { + // The argument is the number of instructions. + intptr_t value; + if (GetValue(arg1, &value)) { + cur = reinterpret_cast<byte*>(sim_->get_pc()); + // Disassemble <arg1> instructions. + end = cur + (value * Instruction::kInstrSize); + } + } + } else { + intptr_t value1; + intptr_t value2; + if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { + cur = reinterpret_cast<byte*>(value1); + end = cur + (value2 * Instruction::kInstrSize); + } + } + + while (cur < end) { + prev = cur; + cur += dasm.InstructionDecode(buffer, cur); + PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev), + buffer.start()); + } + } else if (strcmp(cmd, "gdb") == 0) { + PrintF("relinquishing control to gdb\n"); + v8::base::OS::DebugBreak(); + PrintF("regaining control from gdb\n"); + } else if (strcmp(cmd, "break") == 0) { + if (argc == 2) { + intptr_t value; + if (GetValue(arg1, &value)) { + if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { + PrintF("setting breakpoint failed\n"); + } + } else { + PrintF("%s unrecognized\n", arg1); + } + } else { + PrintF("break <address>\n"); + } + } else if (strcmp(cmd, "del") == 0) { + if (!DeleteBreakpoint(NULL)) { + PrintF("deleting breakpoint failed\n"); + } + } else if (strcmp(cmd, "cr") == 0) { + PrintF("Condition reg: %08x\n", sim_->condition_reg_); + } else if (strcmp(cmd, "lr") == 0) { + PrintF("Link reg: %08" V8PRIxPTR "\n", sim_->special_reg_lr_); + } else if (strcmp(cmd, "ctr") == 0) { + PrintF("Ctr reg: %08" V8PRIxPTR "\n", sim_->special_reg_ctr_); + } else if (strcmp(cmd, "xer") == 0) { + PrintF("XER: %08x\n", sim_->special_reg_xer_); + } else if (strcmp(cmd, "fpscr") == 0) { + PrintF("FPSCR: %08x\n", sim_->fp_condition_reg_); + } else if (strcmp(cmd, "stop") == 0) { + intptr_t value; + intptr_t stop_pc = + sim_->get_pc() - (Instruction::kInstrSize + kPointerSize); + Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc); + Instruction* msg_address = + reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize); + if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { + // Remove the current stop. + if (sim_->isStopInstruction(stop_instr)) { + stop_instr->SetInstructionBits(kNopInstr); + msg_address->SetInstructionBits(kNopInstr); + } else { + PrintF("Not at debugger stop.\n"); + } + } else if (argc == 3) { + // Print information about all/the specified breakpoint(s). + if (strcmp(arg1, "info") == 0) { + if (strcmp(arg2, "all") == 0) { + PrintF("Stop information:\n"); + for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { + sim_->PrintStopInfo(i); + } + } else if (GetValue(arg2, &value)) { + sim_->PrintStopInfo(value); + } else { + PrintF("Unrecognized argument.\n"); + } + } else if (strcmp(arg1, "enable") == 0) { + // Enable all/the specified breakpoint(s). + if (strcmp(arg2, "all") == 0) { + for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { + sim_->EnableStop(i); + } + } else if (GetValue(arg2, &value)) { + sim_->EnableStop(value); + } else { + PrintF("Unrecognized argument.\n"); + } + } else if (strcmp(arg1, "disable") == 0) { + // Disable all/the specified breakpoint(s). + if (strcmp(arg2, "all") == 0) { + for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { + sim_->DisableStop(i); + } + } else if (GetValue(arg2, &value)) { + sim_->DisableStop(value); + } else { + PrintF("Unrecognized argument.\n"); + } + } + } else { + PrintF("Wrong usage. Use help command for more information.\n"); + } + } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) { + ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim; + PrintF("Trace of executed instructions is %s\n", + ::v8::internal::FLAG_trace_sim ? "on" : "off"); + } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { + PrintF("cont\n"); + PrintF(" continue execution (alias 'c')\n"); + PrintF("stepi [num instructions]\n"); + PrintF(" step one/num instruction(s) (alias 'si')\n"); + PrintF("print <register>\n"); + PrintF(" print register content (alias 'p')\n"); + PrintF(" use register name 'all' to display all integer registers\n"); + PrintF( + " use register name 'alld' to display integer registers " + "with decimal values\n"); + PrintF(" use register name 'rN' to display register number 'N'\n"); + PrintF(" add argument 'fp' to print register pair double values\n"); + PrintF( + " use register name 'allf' to display floating-point " + "registers\n"); + PrintF("printobject <register>\n"); + PrintF(" print an object from a register (alias 'po')\n"); + PrintF("cr\n"); + PrintF(" print condition register\n"); + PrintF("lr\n"); + PrintF(" print link register\n"); + PrintF("ctr\n"); + PrintF(" print ctr register\n"); + PrintF("xer\n"); + PrintF(" print XER\n"); + PrintF("fpscr\n"); + PrintF(" print FPSCR\n"); + PrintF("stack [<num words>]\n"); + PrintF(" dump stack content, default dump 10 words)\n"); + PrintF("mem <address> [<num words>]\n"); + PrintF(" dump memory content, default dump 10 words)\n"); + PrintF("disasm [<instructions>]\n"); + PrintF("disasm [<address/register>]\n"); + PrintF("disasm [[<address/register>] <instructions>]\n"); + PrintF(" disassemble code, default is 10 instructions\n"); + PrintF(" from pc (alias 'di')\n"); + PrintF("gdb\n"); + PrintF(" enter gdb\n"); + PrintF("break <address>\n"); + PrintF(" set a break point on the address\n"); + PrintF("del\n"); + PrintF(" delete the breakpoint\n"); + PrintF("trace (alias 't')\n"); + PrintF(" toogle the tracing of all executed statements\n"); + PrintF("stop feature:\n"); + PrintF(" Description:\n"); + PrintF(" Stops are debug instructions inserted by\n"); + PrintF(" the Assembler::stop() function.\n"); + PrintF(" When hitting a stop, the Simulator will\n"); + PrintF(" stop and and give control to the PPCDebugger.\n"); + PrintF(" The first %d stop codes are watched:\n", + Simulator::kNumOfWatchedStops); + PrintF(" - They can be enabled / disabled: the Simulator\n"); + PrintF(" will / won't stop when hitting them.\n"); + PrintF(" - The Simulator keeps track of how many times they \n"); + PrintF(" are met. (See the info command.) Going over a\n"); + PrintF(" disabled stop still increases its counter. \n"); + PrintF(" Commands:\n"); + PrintF(" stop info all/<code> : print infos about number <code>\n"); + PrintF(" or all stop(s).\n"); + PrintF(" stop enable/disable all/<code> : enables / disables\n"); + PrintF(" all or number <code> stop(s)\n"); + PrintF(" stop unstop\n"); + PrintF(" ignore the stop instruction at the current location\n"); + PrintF(" from now on\n"); + } else { + PrintF("Unknown command: %s\n", cmd); + } + } + } + + // Add all the breakpoints back to stop execution and enter the debugger + // shell when hit. + RedoBreakpoints(); + // Restore tracing + ::v8::internal::FLAG_trace_sim = trace; + +#undef COMMAND_SIZE +#undef ARG_SIZE + +#undef STR +#undef XSTR +} + + +static bool ICacheMatch(void* one, void* two) { + DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0); + DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0); + return one == two; +} + + +static uint32_t ICacheHash(void* key) { + return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2; +} + + +static bool AllOnOnePage(uintptr_t start, int size) { + intptr_t start_page = (start & ~CachePage::kPageMask); + intptr_t end_page = ((start + size) & ~CachePage::kPageMask); + return start_page == end_page; +} + + +void Simulator::set_last_debugger_input(char* input) { + DeleteArray(last_debugger_input_); + last_debugger_input_ = input; +} + + +void Simulator::FlushICache(v8::internal::HashMap* i_cache, void* start_addr, + size_t size) { + intptr_t start = reinterpret_cast<intptr_t>(start_addr); + int intra_line = (start & CachePage::kLineMask); + start -= intra_line; + size += intra_line; + size = ((size - 1) | CachePage::kLineMask) + 1; + int offset = (start & CachePage::kPageMask); + while (!AllOnOnePage(start, size - 1)) { + int bytes_to_flush = CachePage::kPageSize - offset; + FlushOnePage(i_cache, start, bytes_to_flush); + start += bytes_to_flush; + size -= bytes_to_flush; + DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask)); + offset = 0; + } + if (size != 0) { + FlushOnePage(i_cache, start, size); + } +} + + +CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) { + v8::internal::HashMap::Entry* entry = + i_cache->Lookup(page, ICacheHash(page), true); + if (entry->value == NULL) { + CachePage* new_page = new CachePage(); + entry->value = new_page; + } + return reinterpret_cast<CachePage*>(entry->value); +} + + +// Flush from start up to and not including start + size. +void Simulator::FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start, + int size) { + DCHECK(size <= CachePage::kPageSize); + DCHECK(AllOnOnePage(start, size - 1)); + DCHECK((start & CachePage::kLineMask) == 0); + DCHECK((size & CachePage::kLineMask) == 0); + void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); + int offset = (start & CachePage::kPageMask); + CachePage* cache_page = GetCachePage(i_cache, page); + char* valid_bytemap = cache_page->ValidityByte(offset); + memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); +} + + +void Simulator::CheckICache(v8::internal::HashMap* i_cache, + Instruction* instr) { + intptr_t address = reinterpret_cast<intptr_t>(instr); + void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); + void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); + int offset = (address & CachePage::kPageMask); + CachePage* cache_page = GetCachePage(i_cache, page); + char* cache_valid_byte = cache_page->ValidityByte(offset); + bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); + char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); + if (cache_hit) { + // Check that the data in memory matches the contents of the I-cache. + CHECK_EQ(0, + memcmp(reinterpret_cast<void*>(instr), + cache_page->CachedData(offset), Instruction::kInstrSize)); + } else { + // Cache miss. Load memory into the cache. + memcpy(cached_line, line, CachePage::kLineLength); + *cache_valid_byte = CachePage::LINE_VALID; + } +} + + +void Simulator::Initialize(Isolate* isolate) { + if (isolate->simulator_initialized()) return; + isolate->set_simulator_initialized(true); + ::v8::internal::ExternalReference::set_redirector(isolate, + &RedirectExternalReference); +} + + +Simulator::Simulator(Isolate* isolate) : isolate_(isolate) { + i_cache_ = isolate_->simulator_i_cache(); + if (i_cache_ == NULL) { + i_cache_ = new v8::internal::HashMap(&ICacheMatch); + isolate_->set_simulator_i_cache(i_cache_); + } + Initialize(isolate); +// Set up simulator support first. Some of this information is needed to +// setup the architecture state. +#if V8_TARGET_ARCH_PPC64 + size_t stack_size = 2 * 1024 * 1024; // allocate 2MB for stack +#else + size_t stack_size = 1 * 1024 * 1024; // allocate 1MB for stack +#endif + stack_ = reinterpret_cast<char*>(malloc(stack_size)); + pc_modified_ = false; + icount_ = 0; + break_pc_ = NULL; + break_instr_ = 0; + + // Set up architecture state. + // All registers are initialized to zero to start with. + for (int i = 0; i < kNumGPRs; i++) { + registers_[i] = 0; + } + condition_reg_ = 0; + fp_condition_reg_ = 0; + special_reg_pc_ = 0; + special_reg_lr_ = 0; + special_reg_ctr_ = 0; + + // Initializing FP registers. + for (int i = 0; i < kNumFPRs; i++) { + fp_registers_[i] = 0.0; + } + + // The sp is initialized to point to the bottom (high address) of the + // allocated stack area. To be safe in potential stack underflows we leave + // some buffer below. + registers_[sp] = reinterpret_cast<intptr_t>(stack_) + stack_size - 64; + InitializeCoverage(); + + last_debugger_input_ = NULL; +} + + +Simulator::~Simulator() {} + + +// When the generated code calls an external reference we need to catch that in +// the simulator. The external reference will be a function compiled for the +// host architecture. We need to call that function instead of trying to +// execute it with the simulator. We do that by redirecting the external +// reference to a svc (Supervisor Call) instruction that is handled by +// the simulator. We write the original destination of the jump just at a known +// offset from the svc instruction so the simulator knows what to call. +class Redirection { + public: + Redirection(void* external_function, ExternalReference::Type type) + : external_function_(external_function), + swi_instruction_(rtCallRedirInstr | kCallRtRedirected), + type_(type), + next_(NULL) { + Isolate* isolate = Isolate::Current(); + next_ = isolate->simulator_redirection(); + Simulator::current(isolate)->FlushICache( + isolate->simulator_i_cache(), + reinterpret_cast<void*>(&swi_instruction_), Instruction::kInstrSize); + isolate->set_simulator_redirection(this); + } + + void* address_of_swi_instruction() { + return reinterpret_cast<void*>(&swi_instruction_); + } + + void* external_function() { return external_function_; } + ExternalReference::Type type() { return type_; } + + static Redirection* Get(void* external_function, + ExternalReference::Type type) { + Isolate* isolate = Isolate::Current(); + Redirection* current = isolate->simulator_redirection(); + for (; current != NULL; current = current->next_) { + if (current->external_function_ == external_function) { + DCHECK_EQ(current->type(), type); + return current; + } + } + return new Redirection(external_function, type); + } + + static Redirection* FromSwiInstruction(Instruction* swi_instruction) { + char* addr_of_swi = reinterpret_cast<char*>(swi_instruction); + char* addr_of_redirection = + addr_of_swi - OFFSET_OF(Redirection, swi_instruction_); + return reinterpret_cast<Redirection*>(addr_of_redirection); + } + + static void* ReverseRedirection(intptr_t reg) { + Redirection* redirection = FromSwiInstruction( + reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg))); + return redirection->external_function(); + } + + private: + void* external_function_; + uint32_t swi_instruction_; + ExternalReference::Type type_; + Redirection* next_; +}; + + +void* Simulator::RedirectExternalReference(void* external_function, + ExternalReference::Type type) { + Redirection* redirection = Redirection::Get(external_function, type); + return redirection->address_of_swi_instruction(); +} + + +// Get the active Simulator for the current thread. +Simulator* Simulator::current(Isolate* isolate) { + v8::internal::Isolate::PerIsolateThreadData* isolate_data = + isolate->FindOrAllocatePerThreadDataForThisThread(); + DCHECK(isolate_data != NULL); + + Simulator* sim = isolate_data->simulator(); + if (sim == NULL) { + // TODO(146): delete the simulator object when a thread/isolate goes away. + sim = new Simulator(isolate); + isolate_data->set_simulator(sim); + } + return sim; +} + + +// Sets the register in the architecture state. +void Simulator::set_register(int reg, intptr_t value) { + DCHECK((reg >= 0) && (reg < kNumGPRs)); + registers_[reg] = value; +} + + +// Get the register from the architecture state. +intptr_t Simulator::get_register(int reg) const { + DCHECK((reg >= 0) && (reg < kNumGPRs)); + // Stupid code added to avoid bug in GCC. + // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949 + if (reg >= kNumGPRs) return 0; + // End stupid code. + return registers_[reg]; +} + + +double Simulator::get_double_from_register_pair(int reg) { + DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0)); + + double dm_val = 0.0; +#if !V8_TARGET_ARCH_PPC64 // doesn't make sense in 64bit mode + // Read the bits from the unsigned integer register_[] array + // into the double precision floating point value and return it. + char buffer[sizeof(fp_registers_[0])]; + memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0])); + memcpy(&dm_val, buffer, 2 * sizeof(registers_[0])); +#endif + return (dm_val); +} + + +// Raw access to the PC register. +void Simulator::set_pc(intptr_t value) { + pc_modified_ = true; + special_reg_pc_ = value; +} + + +bool Simulator::has_bad_pc() const { + return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc)); +} + + +// Raw access to the PC register without the special adjustment when reading. +intptr_t Simulator::get_pc() const { return special_reg_pc_; } + + +// Runtime FP routines take: +// - two double arguments +// - one double argument and zero or one integer arguments. +// All are consructed here from d1, d2 and r3. +void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) { + *x = get_double_from_d_register(1); + *y = get_double_from_d_register(2); + *z = get_register(3); +} + + +// The return value is in d1. +void Simulator::SetFpResult(const double& result) { fp_registers_[1] = result; } + + +void Simulator::TrashCallerSaveRegisters() { +// We don't trash the registers with the return value. +#if 0 // A good idea to trash volatile registers, needs to be done + registers_[2] = 0x50Bad4U; + registers_[3] = 0x50Bad4U; + registers_[12] = 0x50Bad4U; +#endif +} + + +uint32_t Simulator::ReadWU(intptr_t addr, Instruction* instr) { + uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); + return *ptr; +} + + +int32_t Simulator::ReadW(intptr_t addr, Instruction* instr) { + int32_t* ptr = reinterpret_cast<int32_t*>(addr); + return *ptr; +} + + +void Simulator::WriteW(intptr_t addr, uint32_t value, Instruction* instr) { + uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); + *ptr = value; + return; +} + + +void Simulator::WriteW(intptr_t addr, int32_t value, Instruction* instr) { + int32_t* ptr = reinterpret_cast<int32_t*>(addr); + *ptr = value; + return; +} + + +uint16_t Simulator::ReadHU(intptr_t addr, Instruction* instr) { + uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); + return *ptr; +} + + +int16_t Simulator::ReadH(intptr_t addr, Instruction* instr) { + int16_t* ptr = reinterpret_cast<int16_t*>(addr); + return *ptr; +} + + +void Simulator::WriteH(intptr_t addr, uint16_t value, Instruction* instr) { + uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); + *ptr = value; + return; +} + + +void Simulator::WriteH(intptr_t addr, int16_t value, Instruction* instr) { + int16_t* ptr = reinterpret_cast<int16_t*>(addr); + *ptr = value; + return; +} + + +uint8_t Simulator::ReadBU(intptr_t addr) { + uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); + return *ptr; +} + + +int8_t Simulator::ReadB(intptr_t addr) { + int8_t* ptr = reinterpret_cast<int8_t*>(addr); + return *ptr; +} + + +void Simulator::WriteB(intptr_t addr, uint8_t value) { + uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); + *ptr = value; +} + + +void Simulator::WriteB(intptr_t addr, int8_t value) { + int8_t* ptr = reinterpret_cast<int8_t*>(addr); + *ptr = value; +} + + +intptr_t* Simulator::ReadDW(intptr_t addr) { + intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); + return ptr; +} + + +void Simulator::WriteDW(intptr_t addr, int64_t value) { + int64_t* ptr = reinterpret_cast<int64_t*>(addr); + *ptr = value; + return; +} + + +// Returns the limit of the stack area to enable checking for stack overflows. +uintptr_t Simulator::StackLimit() const { + // Leave a safety margin of 1024 bytes to prevent overrunning the stack when + // pushing values. + return reinterpret_cast<uintptr_t>(stack_) + 1024; +} + + +// Unsupported instructions use Format to print an error and stop execution. +void Simulator::Format(Instruction* instr, const char* format) { + PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n", + reinterpret_cast<intptr_t>(instr), format); + UNIMPLEMENTED(); +} + + +// Calculate C flag value for additions. +bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) { + uint32_t uleft = static_cast<uint32_t>(left); + uint32_t uright = static_cast<uint32_t>(right); + uint32_t urest = 0xffffffffU - uleft; + + return (uright > urest) || + (carry && (((uright + 1) > urest) || (uright > (urest - 1)))); +} + + +// Calculate C flag value for subtractions. +bool Simulator::BorrowFrom(int32_t left, int32_t right) { + uint32_t uleft = static_cast<uint32_t>(left); + uint32_t uright = static_cast<uint32_t>(right); + + return (uright > uleft); +} + + +// Calculate V flag value for additions and subtractions. +bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right, + bool addition) { + bool overflow; + if (addition) { + // operands have the same sign + overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0)) + // and operands and result have different sign + && + ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); + } else { + // operands have different signs + overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0)) + // and first operand and result have different signs + && + ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); + } + return overflow; +} + + +#if !V8_TARGET_ARCH_PPC64 +// Calls into the V8 runtime are based on this very simple interface. +// Note: To be able to return two values from some calls the code in runtime.cc +// uses the ObjectPair which is essentially two 32-bit values stuffed into a +// 64-bit value. With the code below we assume that all runtime calls return +// 64 bits of result. If they don't, the r4 result register contains a bogus +// value, which is fine because it is caller-saved. +typedef int64_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1, + intptr_t arg2, intptr_t arg3, + intptr_t arg4, intptr_t arg5); +#else +// For 64-bit, we need to be more explicit. +typedef intptr_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1, + intptr_t arg2, intptr_t arg3, + intptr_t arg4, intptr_t arg5); +struct ObjectPair { + intptr_t x; + intptr_t y; +}; + +typedef struct ObjectPair (*SimulatorRuntimeObjectPairCall)( + intptr_t arg0, intptr_t arg1, intptr_t arg2, intptr_t arg3, intptr_t arg4, + intptr_t arg5); +#endif + +// These prototypes handle the four types of FP calls. +typedef int (*SimulatorRuntimeCompareCall)(double darg0, double darg1); +typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1); +typedef double (*SimulatorRuntimeFPCall)(double darg0); +typedef double (*SimulatorRuntimeFPIntCall)(double darg0, intptr_t arg0); + +// This signature supports direct call in to API function native callback +// (refer to InvocationCallback in v8.h). +typedef void (*SimulatorRuntimeDirectApiCall)(intptr_t arg0); +typedef void (*SimulatorRuntimeProfilingApiCall)(intptr_t arg0, void* arg1); + +// This signature supports direct call to accessor getter callback. +typedef void (*SimulatorRuntimeDirectGetterCall)(intptr_t arg0, intptr_t arg1); +typedef void (*SimulatorRuntimeProfilingGetterCall)(intptr_t arg0, + intptr_t arg1, void* arg2); + +// Software interrupt instructions are used by the simulator to call into the +// C-based V8 runtime. +void Simulator::SoftwareInterrupt(Instruction* instr) { + int svc = instr->SvcValue(); + switch (svc) { + case kCallRtRedirected: { + // Check if stack is aligned. Error if not aligned is reported below to + // include information on the function called. + bool stack_aligned = + (get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) == + 0; + Redirection* redirection = Redirection::FromSwiInstruction(instr); + const int kArgCount = 6; + int arg0_regnum = 3; +#if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS + intptr_t result_buffer = 0; + if (redirection->type() == ExternalReference::BUILTIN_OBJECTPAIR_CALL) { + result_buffer = get_register(r3); + arg0_regnum++; + } +#endif + intptr_t arg[kArgCount]; + for (int i = 0; i < kArgCount; i++) { + arg[i] = get_register(arg0_regnum + i); + } + bool fp_call = + (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) || + (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) || + (redirection->type() == ExternalReference::BUILTIN_FP_CALL) || + (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL); + // This is dodgy but it works because the C entry stubs are never moved. + // See comment in codegen-arm.cc and bug 1242173. + intptr_t saved_lr = special_reg_lr_; + intptr_t external = + reinterpret_cast<intptr_t>(redirection->external_function()); + if (fp_call) { + double dval0, dval1; // one or two double parameters + intptr_t ival; // zero or one integer parameters + int iresult = 0; // integer return value + double dresult = 0; // double return value + GetFpArgs(&dval0, &dval1, &ival); + if (::v8::internal::FLAG_trace_sim || !stack_aligned) { + SimulatorRuntimeCall generic_target = + reinterpret_cast<SimulatorRuntimeCall>(external); + switch (redirection->type()) { + case ExternalReference::BUILTIN_FP_FP_CALL: + case ExternalReference::BUILTIN_COMPARE_CALL: + PrintF("Call to host function at %p with args %f, %f", + FUNCTION_ADDR(generic_target), dval0, dval1); + break; + case ExternalReference::BUILTIN_FP_CALL: + PrintF("Call to host function at %p with arg %f", + FUNCTION_ADDR(generic_target), dval0); + break; + case ExternalReference::BUILTIN_FP_INT_CALL: + PrintF("Call to host function at %p with args %f, %" V8PRIdPTR, + FUNCTION_ADDR(generic_target), dval0, ival); + break; + default: + UNREACHABLE(); + break; + } + if (!stack_aligned) { + PrintF(" with unaligned stack %08" V8PRIxPTR "\n", + get_register(sp)); + } + PrintF("\n"); + } + CHECK(stack_aligned); + switch (redirection->type()) { + case ExternalReference::BUILTIN_COMPARE_CALL: { + SimulatorRuntimeCompareCall target = + reinterpret_cast<SimulatorRuntimeCompareCall>(external); + iresult = target(dval0, dval1); + set_register(r3, iresult); + break; + } + case ExternalReference::BUILTIN_FP_FP_CALL: { + SimulatorRuntimeFPFPCall target = + reinterpret_cast<SimulatorRuntimeFPFPCall>(external); + dresult = target(dval0, dval1); + SetFpResult(dresult); + break; + } + case ExternalReference::BUILTIN_FP_CALL: { + SimulatorRuntimeFPCall target = + reinterpret_cast<SimulatorRuntimeFPCall>(external); + dresult = target(dval0); + SetFpResult(dresult); + break; + } + case ExternalReference::BUILTIN_FP_INT_CALL: { + SimulatorRuntimeFPIntCall target = + reinterpret_cast<SimulatorRuntimeFPIntCall>(external); + dresult = target(dval0, ival); + SetFpResult(dresult); + break; + } + default: + UNREACHABLE(); + break; + } + if (::v8::internal::FLAG_trace_sim || !stack_aligned) { + switch (redirection->type()) { + case ExternalReference::BUILTIN_COMPARE_CALL: + PrintF("Returned %08x\n", iresult); + break; + case ExternalReference::BUILTIN_FP_FP_CALL: + case ExternalReference::BUILTIN_FP_CALL: + case ExternalReference::BUILTIN_FP_INT_CALL: + PrintF("Returned %f\n", dresult); + break; + default: + UNREACHABLE(); + break; + } + } + } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { + // See callers of MacroAssembler::CallApiFunctionAndReturn for + // explanation of register usage. + if (::v8::internal::FLAG_trace_sim || !stack_aligned) { + PrintF("Call to host function at %p args %08" V8PRIxPTR, + reinterpret_cast<void*>(external), arg[0]); + if (!stack_aligned) { + PrintF(" with unaligned stack %08" V8PRIxPTR "\n", + get_register(sp)); + } + PrintF("\n"); + } + CHECK(stack_aligned); + SimulatorRuntimeDirectApiCall target = + reinterpret_cast<SimulatorRuntimeDirectApiCall>(external); + target(arg[0]); + } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) { + // See callers of MacroAssembler::CallApiFunctionAndReturn for + // explanation of register usage. + if (::v8::internal::FLAG_trace_sim || !stack_aligned) { + PrintF("Call to host function at %p args %08" V8PRIxPTR + " %08" V8PRIxPTR, + reinterpret_cast<void*>(external), arg[0], arg[1]); + if (!stack_aligned) { + PrintF(" with unaligned stack %08" V8PRIxPTR "\n", + get_register(sp)); + } + PrintF("\n"); + } + CHECK(stack_aligned); + SimulatorRuntimeProfilingApiCall target = + reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external); + target(arg[0], Redirection::ReverseRedirection(arg[1])); + } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { + // See callers of MacroAssembler::CallApiFunctionAndReturn for + // explanation of register usage. + if (::v8::internal::FLAG_trace_sim || !stack_aligned) { + PrintF("Call to host function at %p args %08" V8PRIxPTR + " %08" V8PRIxPTR, + reinterpret_cast<void*>(external), arg[0], arg[1]); + if (!stack_aligned) { + PrintF(" with unaligned stack %08" V8PRIxPTR "\n", + get_register(sp)); + } + PrintF("\n"); + } + CHECK(stack_aligned); + SimulatorRuntimeDirectGetterCall target = + reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external); +#if !ABI_PASSES_HANDLES_IN_REGS + arg[0] = *(reinterpret_cast<intptr_t*>(arg[0])); +#endif + target(arg[0], arg[1]); + } else if (redirection->type() == + ExternalReference::PROFILING_GETTER_CALL) { + if (::v8::internal::FLAG_trace_sim || !stack_aligned) { + PrintF("Call to host function at %p args %08" V8PRIxPTR + " %08" V8PRIxPTR " %08" V8PRIxPTR, + reinterpret_cast<void*>(external), arg[0], arg[1], arg[2]); + if (!stack_aligned) { + PrintF(" with unaligned stack %08" V8PRIxPTR "\n", + get_register(sp)); + } + PrintF("\n"); + } + CHECK(stack_aligned); + SimulatorRuntimeProfilingGetterCall target = + reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external); +#if !ABI_PASSES_HANDLES_IN_REGS + arg[0] = *(reinterpret_cast<intptr_t*>(arg[0])); +#endif + target(arg[0], arg[1], Redirection::ReverseRedirection(arg[2])); + } else { + // builtin call. + if (::v8::internal::FLAG_trace_sim || !stack_aligned) { + SimulatorRuntimeCall target = + reinterpret_cast<SimulatorRuntimeCall>(external); + PrintF( + "Call to host function at %p,\n" + "\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR + ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR, + FUNCTION_ADDR(target), arg[0], arg[1], arg[2], arg[3], arg[4], + arg[5]); + if (!stack_aligned) { + PrintF(" with unaligned stack %08" V8PRIxPTR "\n", + get_register(sp)); + } + PrintF("\n"); + } + CHECK(stack_aligned); +#if !V8_TARGET_ARCH_PPC64 + DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL); + SimulatorRuntimeCall target = + reinterpret_cast<SimulatorRuntimeCall>(external); + int64_t result = target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]); + int32_t lo_res = static_cast<int32_t>(result); + int32_t hi_res = static_cast<int32_t>(result >> 32); +#if V8_TARGET_BIG_ENDIAN + if (::v8::internal::FLAG_trace_sim) { + PrintF("Returned %08x\n", hi_res); + } + set_register(r3, hi_res); + set_register(r4, lo_res); +#else + if (::v8::internal::FLAG_trace_sim) { + PrintF("Returned %08x\n", lo_res); + } + set_register(r3, lo_res); + set_register(r4, hi_res); +#endif +#else + if (redirection->type() == ExternalReference::BUILTIN_CALL) { + SimulatorRuntimeCall target = + reinterpret_cast<SimulatorRuntimeCall>(external); + intptr_t result = + target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]); + if (::v8::internal::FLAG_trace_sim) { + PrintF("Returned %08" V8PRIxPTR "\n", result); + } + set_register(r3, result); + } else { + DCHECK(redirection->type() == + ExternalReference::BUILTIN_OBJECTPAIR_CALL); + SimulatorRuntimeObjectPairCall target = + reinterpret_cast<SimulatorRuntimeObjectPairCall>(external); + struct ObjectPair result = + target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]); + if (::v8::internal::FLAG_trace_sim) { + PrintF("Returned %08" V8PRIxPTR ", %08" V8PRIxPTR "\n", result.x, + result.y); + } +#if ABI_RETURNS_OBJECT_PAIRS_IN_REGS + set_register(r3, result.x); + set_register(r4, result.y); +#else + memcpy(reinterpret_cast<void*>(result_buffer), &result, + sizeof(struct ObjectPair)); +#endif + } +#endif + } + set_pc(saved_lr); + break; + } + case kBreakpoint: { + PPCDebugger dbg(this); + dbg.Debug(); + break; + } + case kInfo: { + PPCDebugger dbg(this); + dbg.Info(instr); + break; + } + // stop uses all codes greater than 1 << 23. + default: { + if (svc >= (1 << 23)) { + uint32_t code = svc & kStopCodeMask; + if (isWatchedStop(code)) { + IncreaseStopCounter(code); + } + // Stop if it is enabled, otherwise go on jumping over the stop + // and the message address. + if (isEnabledStop(code)) { + PPCDebugger dbg(this); + dbg.Stop(instr); + } else { + set_pc(get_pc() + Instruction::kInstrSize + kPointerSize); + } + } else { + // This is not a valid svc code. + UNREACHABLE(); + break; + } + } + } +} + + +// Stop helper functions. +bool Simulator::isStopInstruction(Instruction* instr) { + return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode); +} + + +bool Simulator::isWatchedStop(uint32_t code) { + DCHECK(code <= kMaxStopCode); + return code < kNumOfWatchedStops; +} + + +bool Simulator::isEnabledStop(uint32_t code) { + DCHECK(code <= kMaxStopCode); + // Unwatched stops are always enabled. + return !isWatchedStop(code) || + !(watched_stops_[code].count & kStopDisabledBit); +} + + +void Simulator::EnableStop(uint32_t code) { + DCHECK(isWatchedStop(code)); + if (!isEnabledStop(code)) { + watched_stops_[code].count &= ~kStopDisabledBit; + } +} + + +void Simulator::DisableStop(uint32_t code) { + DCHECK(isWatchedStop(code)); + if (isEnabledStop(code)) { + watched_stops_[code].count |= kStopDisabledBit; + } +} + + +void Simulator::IncreaseStopCounter(uint32_t code) { + DCHECK(code <= kMaxStopCode); + DCHECK(isWatchedStop(code)); + if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) { + PrintF( + "Stop counter for code %i has overflowed.\n" + "Enabling this code and reseting the counter to 0.\n", + code); + watched_stops_[code].count = 0; + EnableStop(code); + } else { + watched_stops_[code].count++; + } +} + + +// Print a stop status. +void Simulator::PrintStopInfo(uint32_t code) { + DCHECK(code <= kMaxStopCode); + if (!isWatchedStop(code)) { + PrintF("Stop not watched."); + } else { + const char* state = isEnabledStop(code) ? "Enabled" : "Disabled"; + int32_t count = watched_stops_[code].count & ~kStopDisabledBit; + // Don't print the state of unused breakpoints. + if (count != 0) { + if (watched_stops_[code].desc) { + PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code, + state, count, watched_stops_[code].desc); + } else { + PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state, + count); + } + } + } +} + + +void Simulator::SetCR0(intptr_t result, bool setSO) { + int bf = 0; + if (result < 0) { + bf |= 0x80000000; + } + if (result > 0) { + bf |= 0x40000000; + } + if (result == 0) { + bf |= 0x20000000; + } + if (setSO) { + bf |= 0x10000000; + } + condition_reg_ = (condition_reg_ & ~0xF0000000) | bf; +} + + +void Simulator::ExecuteBranchConditional(Instruction* instr) { + int bo = instr->Bits(25, 21) << 21; + int offset = (instr->Bits(15, 2) << 18) >> 16; + int condition_bit = instr->Bits(20, 16); + int condition_mask = 0x80000000 >> condition_bit; + switch (bo) { + case DCBNZF: // Decrement CTR; branch if CTR != 0 and condition false + case DCBEZF: // Decrement CTR; branch if CTR == 0 and condition false + UNIMPLEMENTED(); + case BF: { // Branch if condition false + if (!(condition_reg_ & condition_mask)) { + if (instr->Bit(0) == 1) { // LK flag set + special_reg_lr_ = get_pc() + 4; + } + set_pc(get_pc() + offset); + } + break; + } + case DCBNZT: // Decrement CTR; branch if CTR != 0 and condition true + case DCBEZT: // Decrement CTR; branch if CTR == 0 and condition true + UNIMPLEMENTED(); + case BT: { // Branch if condition true + if (condition_reg_ & condition_mask) { + if (instr->Bit(0) == 1) { // LK flag set + special_reg_lr_ = get_pc() + 4; + } + set_pc(get_pc() + offset); + } + break; + } + case DCBNZ: // Decrement CTR; branch if CTR != 0 + case DCBEZ: // Decrement CTR; branch if CTR == 0 + special_reg_ctr_ -= 1; + if ((special_reg_ctr_ == 0) == (bo == DCBEZ)) { + if (instr->Bit(0) == 1) { // LK flag set + special_reg_lr_ = get_pc() + 4; + } + set_pc(get_pc() + offset); + } + break; + case BA: { // Branch always + if (instr->Bit(0) == 1) { // LK flag set + special_reg_lr_ = get_pc() + 4; + } + set_pc(get_pc() + offset); + break; + } + default: + UNIMPLEMENTED(); // Invalid encoding + } +} + + +// Handle execution based on instruction types. +void Simulator::ExecuteExt1(Instruction* instr) { + switch (instr->Bits(10, 1) << 1) { + case MCRF: + UNIMPLEMENTED(); // Not used by V8. + case BCLRX: { + // need to check BO flag + intptr_t old_pc = get_pc(); + set_pc(special_reg_lr_); + if (instr->Bit(0) == 1) { // LK flag set + special_reg_lr_ = old_pc + 4; + } + break; + } + case BCCTRX: { + // need to check BO flag + intptr_t old_pc = get_pc(); + set_pc(special_reg_ctr_); + if (instr->Bit(0) == 1) { // LK flag set + special_reg_lr_ = old_pc + 4; + } + break; + } + case CRNOR: + case RFI: + case CRANDC: + UNIMPLEMENTED(); + case ISYNC: { + // todo - simulate isync + break; + } + case CRXOR: { + int bt = instr->Bits(25, 21); + int ba = instr->Bits(20, 16); + int bb = instr->Bits(15, 11); + int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1; + int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1; + int bt_val = ba_val ^ bb_val; + bt_val = bt_val << (31 - bt); // shift bit to correct destination + condition_reg_ &= ~(0x80000000 >> bt); + condition_reg_ |= bt_val; + break; + } + case CREQV: { + int bt = instr->Bits(25, 21); + int ba = instr->Bits(20, 16); + int bb = instr->Bits(15, 11); + int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1; + int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1; + int bt_val = 1 - (ba_val ^ bb_val); + bt_val = bt_val << (31 - bt); // shift bit to correct destination + condition_reg_ &= ~(0x80000000 >> bt); + condition_reg_ |= bt_val; + break; + } + case CRNAND: + case CRAND: + case CRORC: + case CROR: + default: { + UNIMPLEMENTED(); // Not used by V8. + } + } +} + + +bool Simulator::ExecuteExt2_10bit(Instruction* instr) { + bool found = true; + + int opcode = instr->Bits(10, 1) << 1; + switch (opcode) { + case SRWX: { + int rs = instr->RSValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + uint32_t rs_val = get_register(rs); + uintptr_t rb_val = get_register(rb); + intptr_t result = rs_val >> (rb_val & 0x3f); + set_register(ra, result); + if (instr->Bit(0)) { // RC bit set + SetCR0(result); + } + break; + } +#if V8_TARGET_ARCH_PPC64 + case SRDX: { + int rs = instr->RSValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + uintptr_t rs_val = get_register(rs); + uintptr_t rb_val = get_register(rb); + intptr_t result = rs_val >> (rb_val & 0x7f); + set_register(ra, result); + if (instr->Bit(0)) { // RC bit set + SetCR0(result); + } + break; + } +#endif + case SRAW: { + int rs = instr->RSValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + int32_t rs_val = get_register(rs); + intptr_t rb_val = get_register(rb); + intptr_t result = rs_val >> (rb_val & 0x3f); + set_register(ra, result); + if (instr->Bit(0)) { // RC bit set + SetCR0(result); + } + break; + } +#if V8_TARGET_ARCH_PPC64 + case SRAD: { + int rs = instr->RSValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + intptr_t rs_val = get_register(rs); + intptr_t rb_val = get_register(rb); + intptr_t result = rs_val >> (rb_val & 0x7f); + set_register(ra, result); + if (instr->Bit(0)) { // RC bit set + SetCR0(result); + } + break; + } +#endif + case SRAWIX: { + int ra = instr->RAValue(); + int rs = instr->RSValue(); + int sh = instr->Bits(15, 11); + int32_t rs_val = get_register(rs); + intptr_t result = rs_val >> sh; + set_register(ra, result); + if (instr->Bit(0)) { // RC bit set + SetCR0(result); + } + break; + } +#if V8_TARGET_ARCH_PPC64 + case EXTSW: { + const int shift = kBitsPerPointer - 32; + int ra = instr->RAValue(); + int rs = instr->RSValue(); + intptr_t rs_val = get_register(rs); + intptr_t ra_val = (rs_val << shift) >> shift; + set_register(ra, ra_val); + if (instr->Bit(0)) { // RC bit set + SetCR0(ra_val); + } + break; + } +#endif + case EXTSH: { + const int shift = kBitsPerPointer - 16; + int ra = instr->RAValue(); + int rs = instr->RSValue(); + intptr_t rs_val = get_register(rs); + intptr_t ra_val = (rs_val << shift) >> shift; + set_register(ra, ra_val); + if (instr->Bit(0)) { // RC bit set + SetCR0(ra_val); + } + break; + } + case EXTSB: { + const int shift = kBitsPerPointer - 8; + int ra = instr->RAValue(); + int rs = instr->RSValue(); + intptr_t rs_val = get_register(rs); + intptr_t ra_val = (rs_val << shift) >> shift; + set_register(ra, ra_val); + if (instr->Bit(0)) { // RC bit set + SetCR0(ra_val); + } + break; + } + case LFSUX: + case LFSX: { + int frt = instr->RTValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + intptr_t ra_val = ra == 0 ? 0 : get_register(ra); + intptr_t rb_val = get_register(rb); + int32_t val = ReadW(ra_val + rb_val, instr); + float* fptr = reinterpret_cast<float*>(&val); + set_d_register_from_double(frt, static_cast<double>(*fptr)); + if (opcode == LFSUX) { + DCHECK(ra != 0); + set_register(ra, ra_val + rb_val); + } + break; + } + case LFDUX: + case LFDX: { + int frt = instr->RTValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + intptr_t ra_val = ra == 0 ? 0 : get_register(ra); + intptr_t rb_val = get_register(rb); + double* dptr = reinterpret_cast<double*>(ReadDW(ra_val + rb_val)); + set_d_register_from_double(frt, *dptr); + if (opcode == LFDUX) { + DCHECK(ra != 0); + set_register(ra, ra_val + rb_val); + } + break; + } + case STFSUX: { + case STFSX: + int frs = instr->RSValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + intptr_t ra_val = ra == 0 ? 0 : get_register(ra); + intptr_t rb_val = get_register(rb); + float frs_val = static_cast<float>(get_double_from_d_register(frs)); + int32_t* p = reinterpret_cast<int32_t*>(&frs_val); + WriteW(ra_val + rb_val, *p, instr); + if (opcode == STFSUX) { + DCHECK(ra != 0); + set_register(ra, ra_val + rb_val); + } + break; + } + case STFDUX: { + case STFDX: + int frs = instr->RSValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + intptr_t ra_val = ra == 0 ? 0 : get_register(ra); + intptr_t rb_val = get_register(rb); + double frs_val = get_double_from_d_register(frs); + int64_t* p = reinterpret_cast<int64_t*>(&frs_val); + WriteDW(ra_val + rb_val, *p); + if (opcode == STFDUX) { + DCHECK(ra != 0); + set_register(ra, ra_val + rb_val); + } + break; + } + case SYNC: { + // todo - simulate sync + break; + } + case ICBI: { + // todo - simulate icbi + break; + } + default: { + found = false; + break; + } + } + + if (found) return found; + + found = true; + opcode = instr->Bits(10, 2) << 2; + switch (opcode) { + case SRADIX: { + int ra = instr->RAValue(); + int rs = instr->RSValue(); + int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); + intptr_t rs_val = get_register(rs); + intptr_t result = rs_val >> sh; + set_register(ra, result); + if (instr->Bit(0)) { // RC bit set + SetCR0(result); + } + break; + } + default: { + found = false; + break; + } + } + + return found; +} + + +bool Simulator::ExecuteExt2_9bit_part1(Instruction* instr) { + bool found = true; + + int opcode = instr->Bits(9, 1) << 1; + switch (opcode) { + case TW: { + // used for call redirection in simulation mode + SoftwareInterrupt(instr); + break; + } + case CMP: { + int ra = instr->RAValue(); + int rb = instr->RBValue(); + int cr = instr->Bits(25, 23); + uint32_t bf = 0; +#if V8_TARGET_ARCH_PPC64 + int L = instr->Bit(21); + if (L) { +#endif + intptr_t ra_val = get_register(ra); + intptr_t rb_val = get_register(rb); + if (ra_val < rb_val) { + bf |= 0x80000000; + } + if (ra_val > rb_val) { + bf |= 0x40000000; + } + if (ra_val == rb_val) { + bf |= 0x20000000; + } +#if V8_TARGET_ARCH_PPC64 + } else { + int32_t ra_val = get_register(ra); + int32_t rb_val = get_register(rb); + if (ra_val < rb_val) { + bf |= 0x80000000; + } + if (ra_val > rb_val) { + bf |= 0x40000000; + } + if (ra_val == rb_val) { + bf |= 0x20000000; + } + } +#endif + uint32_t condition_mask = 0xF0000000U >> (cr * 4); + uint32_t condition = bf >> (cr * 4); + condition_reg_ = (condition_reg_ & ~condition_mask) | condition; + break; + } + case SUBFCX: { + int rt = instr->RTValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + // int oe = instr->Bit(10); + uintptr_t ra_val = get_register(ra); + uintptr_t rb_val = get_register(rb); + uintptr_t alu_out = ~ra_val + rb_val + 1; + set_register(rt, alu_out); + // If the sign of rb and alu_out don't match, carry = 0 + if ((alu_out ^ rb_val) & 0x80000000) { + special_reg_xer_ &= ~0xF0000000; + } else { + special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000; + } + if (instr->Bit(0)) { // RC bit set + SetCR0(alu_out); + } + // todo - handle OE bit + break; + } + case ADDCX: { + int rt = instr->RTValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + // int oe = instr->Bit(10); + uintptr_t ra_val = get_register(ra); + uintptr_t rb_val = get_register(rb); + uintptr_t alu_out = ra_val + rb_val; + // Check overflow + if (~ra_val < rb_val) { + special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000; + } else { + special_reg_xer_ &= ~0xF0000000; + } + set_register(rt, alu_out); + if (instr->Bit(0)) { // RC bit set + SetCR0(static_cast<intptr_t>(alu_out)); + } + // todo - handle OE bit + break; + } + case MULHWX: { + int rt = instr->RTValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + int32_t ra_val = (get_register(ra) & 0xFFFFFFFF); + int32_t rb_val = (get_register(rb) & 0xFFFFFFFF); + int64_t alu_out = (int64_t)ra_val * (int64_t)rb_val; + alu_out >>= 32; + set_register(rt, alu_out); + if (instr->Bit(0)) { // RC bit set + SetCR0(static_cast<intptr_t>(alu_out)); + } + // todo - handle OE bit + break; + } + case NEGX: { + int rt = instr->RTValue(); + int ra = instr->RAValue(); + intptr_t ra_val = get_register(ra); + intptr_t alu_out = 1 + ~ra_val; +#if V8_TARGET_ARCH_PPC64 + intptr_t one = 1; // work-around gcc + intptr_t kOverflowVal = (one << 63); +#else + intptr_t kOverflowVal = kMinInt; +#endif + set_register(rt, alu_out); + if (instr->Bit(10)) { // OE bit set + if (ra_val == kOverflowVal) { + special_reg_xer_ |= 0xC0000000; // set SO,OV + } else { + special_reg_xer_ &= ~0x40000000; // clear OV + } + } + if (instr->Bit(0)) { // RC bit set + bool setSO = (special_reg_xer_ & 0x80000000); + SetCR0(alu_out, setSO); + } + break; + } + case SLWX: { + int rs = instr->RSValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + uint32_t rs_val = get_register(rs); + uintptr_t rb_val = get_register(rb); + uint32_t result = rs_val << (rb_val & 0x3f); + set_register(ra, result); + if (instr->Bit(0)) { // RC bit set + SetCR0(result); + } + break; + } +#if V8_TARGET_ARCH_PPC64 + case SLDX: { + int rs = instr->RSValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + uintptr_t rs_val = get_register(rs); + uintptr_t rb_val = get_register(rb); + uintptr_t result = rs_val << (rb_val & 0x7f); + set_register(ra, result); + if (instr->Bit(0)) { // RC bit set + SetCR0(result); + } + break; + } + case MFVSRD: { + DCHECK(!instr->Bit(0)); + int frt = instr->RTValue(); + int ra = instr->RAValue(); + double frt_val = get_double_from_d_register(frt); + int64_t* p = reinterpret_cast<int64_t*>(&frt_val); + set_register(ra, *p); + break; + } + case MFVSRWZ: { + DCHECK(!instr->Bit(0)); + int frt = instr->RTValue(); + int ra = instr->RAValue(); + double frt_val = get_double_from_d_register(frt); + int64_t* p = reinterpret_cast<int64_t*>(&frt_val); + set_register(ra, static_cast<uint32_t>(*p)); + break; + } + case MTVSRD: { + DCHECK(!instr->Bit(0)); + int frt = instr->RTValue(); + int ra = instr->RAValue(); + int64_t ra_val = get_register(ra); + double* p = reinterpret_cast<double*>(&ra_val); + set_d_register_from_double(frt, *p); + break; + } + case MTVSRWA: { + DCHECK(!instr->Bit(0)); + int frt = instr->RTValue(); + int ra = instr->RAValue(); + int64_t ra_val = static_cast<int32_t>(get_register(ra)); + double* p = reinterpret_cast<double*>(&ra_val); + set_d_register_from_double(frt, *p); + break; + } + case MTVSRWZ: { + DCHECK(!instr->Bit(0)); + int frt = instr->RTValue(); + int ra = instr->RAValue(); + uint64_t ra_val = static_cast<uint32_t>(get_register(ra)); + double* p = reinterpret_cast<double*>(&ra_val); + set_d_register_from_double(frt, *p); + break; + } +#endif + default: { + found = false; + break; + } + } + + return found; +} + + +void Simulator::ExecuteExt2_9bit_part2(Instruction* instr) { + int opcode = instr->Bits(9, 1) << 1; + switch (opcode) { + case CNTLZWX: { + int rs = instr->RSValue(); + int ra = instr->RAValue(); + uintptr_t rs_val = get_register(rs); + uintptr_t count = 0; + int n = 0; + uintptr_t bit = 0x80000000; + for (; n < 32; n++) { + if (bit & rs_val) break; + count++; + bit >>= 1; + } + set_register(ra, count); + if (instr->Bit(0)) { // RC Bit set + int bf = 0; + if (count > 0) { + bf |= 0x40000000; + } + if (count == 0) { + bf |= 0x20000000; + } + condition_reg_ = (condition_reg_ & ~0xF0000000) | bf; + } + break; + } +#if V8_TARGET_ARCH_PPC64 + case CNTLZDX: { + int rs = instr->RSValue(); + int ra = instr->RAValue(); + uintptr_t rs_val = get_register(rs); + uintptr_t count = 0; + int n = 0; + uintptr_t bit = 0x8000000000000000UL; + for (; n < 64; n++) { + if (bit & rs_val) break; + count++; + bit >>= 1; + } + set_register(ra, count); + if (instr->Bit(0)) { // RC Bit set + int bf = 0; + if (count > 0) { + bf |= 0x40000000; + } + if (count == 0) { + bf |= 0x20000000; + } + condition_reg_ = (condition_reg_ & ~0xF0000000) | bf; + } + break; + } +#endif + case ANDX: { + int rs = instr->RSValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + intptr_t rs_val = get_register(rs); + intptr_t rb_val = get_register(rb); + intptr_t alu_out = rs_val & rb_val; + set_register(ra, alu_out); + if (instr->Bit(0)) { // RC Bit set + SetCR0(alu_out); + } + break; + } + case ANDCX: { + int rs = instr->RSValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + intptr_t rs_val = get_register(rs); + intptr_t rb_val = get_register(rb); + intptr_t alu_out = rs_val & ~rb_val; + set_register(ra, alu_out); + if (instr->Bit(0)) { // RC Bit set + SetCR0(alu_out); + } + break; + } + case CMPL: { + int ra = instr->RAValue(); + int rb = instr->RBValue(); + int cr = instr->Bits(25, 23); + uint32_t bf = 0; +#if V8_TARGET_ARCH_PPC64 + int L = instr->Bit(21); + if (L) { +#endif + uintptr_t ra_val = get_register(ra); + uintptr_t rb_val = get_register(rb); + if (ra_val < rb_val) { + bf |= 0x80000000; + } + if (ra_val > rb_val) { + bf |= 0x40000000; + } + if (ra_val == rb_val) { + bf |= 0x20000000; + } +#if V8_TARGET_ARCH_PPC64 + } else { + uint32_t ra_val = get_register(ra); + uint32_t rb_val = get_register(rb); + if (ra_val < rb_val) { + bf |= 0x80000000; + } + if (ra_val > rb_val) { + bf |= 0x40000000; + } + if (ra_val == rb_val) { + bf |= 0x20000000; + } + } +#endif + uint32_t condition_mask = 0xF0000000U >> (cr * 4); + uint32_t condition = bf >> (cr * 4); + condition_reg_ = (condition_reg_ & ~condition_mask) | condition; + break; + } + case SUBFX: { + int rt = instr->RTValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + // int oe = instr->Bit(10); + intptr_t ra_val = get_register(ra); + intptr_t rb_val = get_register(rb); + intptr_t alu_out = rb_val - ra_val; + // todo - figure out underflow + set_register(rt, alu_out); + if (instr->Bit(0)) { // RC Bit set + SetCR0(alu_out); + } + // todo - handle OE bit + break; + } + case ADDZEX: { + int rt = instr->RTValue(); + int ra = instr->RAValue(); + intptr_t ra_val = get_register(ra); + if (special_reg_xer_ & 0x20000000) { + ra_val += 1; + } + set_register(rt, ra_val); + if (instr->Bit(0)) { // RC bit set + SetCR0(ra_val); + } + // todo - handle OE bit + break; + } + case NORX: { + int rs = instr->RSValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + intptr_t rs_val = get_register(rs); + intptr_t rb_val = get_register(rb); + intptr_t alu_out = ~(rs_val | rb_val); + set_register(ra, alu_out); + if (instr->Bit(0)) { // RC bit set + SetCR0(alu_out); + } + break; + } + case MULLW: { + int rt = instr->RTValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + int32_t ra_val = (get_register(ra) & 0xFFFFFFFF); + int32_t rb_val = (get_register(rb) & 0xFFFFFFFF); + int32_t alu_out = ra_val * rb_val; + set_register(rt, alu_out); + if (instr->Bit(0)) { // RC bit set + SetCR0(alu_out); + } + // todo - handle OE bit + break; + } +#if V8_TARGET_ARCH_PPC64 + case MULLD: { + int rt = instr->RTValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + int64_t ra_val = get_register(ra); + int64_t rb_val = get_register(rb); + int64_t alu_out = ra_val * rb_val; + set_register(rt, alu_out); + if (instr->Bit(0)) { // RC bit set + SetCR0(alu_out); + } + // todo - handle OE bit + break; + } +#endif + case DIVW: { + int rt = instr->RTValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + int32_t ra_val = get_register(ra); + int32_t rb_val = get_register(rb); + bool overflow = (ra_val == kMinInt && rb_val == -1); + // result is undefined if divisor is zero or if operation + // is 0x80000000 / -1. + int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val / rb_val; + set_register(rt, alu_out); + if (instr->Bit(10)) { // OE bit set + if (overflow) { + special_reg_xer_ |= 0xC0000000; // set SO,OV + } else { + special_reg_xer_ &= ~0x40000000; // clear OV + } + } + if (instr->Bit(0)) { // RC bit set + bool setSO = (special_reg_xer_ & 0x80000000); + SetCR0(alu_out, setSO); + } + break; + } +#if V8_TARGET_ARCH_PPC64 + case DIVD: { + int rt = instr->RTValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + int64_t ra_val = get_register(ra); + int64_t rb_val = get_register(rb); + int64_t one = 1; // work-around gcc + int64_t kMinLongLong = (one << 63); + // result is undefined if divisor is zero or if operation + // is 0x80000000_00000000 / -1. + int64_t alu_out = + (rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1)) + ? -1 + : ra_val / rb_val; + set_register(rt, alu_out); + if (instr->Bit(0)) { // RC bit set + SetCR0(alu_out); + } + // todo - handle OE bit + break; + } +#endif + case ADDX: { + int rt = instr->RTValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + // int oe = instr->Bit(10); + intptr_t ra_val = get_register(ra); + intptr_t rb_val = get_register(rb); + intptr_t alu_out = ra_val + rb_val; + set_register(rt, alu_out); + if (instr->Bit(0)) { // RC bit set + SetCR0(alu_out); + } + // todo - handle OE bit + break; + } + case XORX: { + int rs = instr->RSValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + intptr_t rs_val = get_register(rs); + intptr_t rb_val = get_register(rb); + intptr_t alu_out = rs_val ^ rb_val; + set_register(ra, alu_out); + if (instr->Bit(0)) { // RC bit set + SetCR0(alu_out); + } + break; + } + case ORX: { + int rs = instr->RSValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + intptr_t rs_val = get_register(rs); + intptr_t rb_val = get_register(rb); + intptr_t alu_out = rs_val | rb_val; + set_register(ra, alu_out); + if (instr->Bit(0)) { // RC bit set + SetCR0(alu_out); + } + break; + } + case MFSPR: { + int rt = instr->RTValue(); + int spr = instr->Bits(20, 11); + if (spr != 256) { + UNIMPLEMENTED(); // Only LRLR supported + } + set_register(rt, special_reg_lr_); + break; + } + case MTSPR: { + int rt = instr->RTValue(); + intptr_t rt_val = get_register(rt); + int spr = instr->Bits(20, 11); + if (spr == 256) { + special_reg_lr_ = rt_val; + } else if (spr == 288) { + special_reg_ctr_ = rt_val; + } else if (spr == 32) { + special_reg_xer_ = rt_val; + } else { + UNIMPLEMENTED(); // Only LR supported + } + break; + } + case MFCR: { + int rt = instr->RTValue(); + set_register(rt, condition_reg_); + break; + } + case STWUX: + case STWX: { + int rs = instr->RSValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + intptr_t ra_val = ra == 0 ? 0 : get_register(ra); + int32_t rs_val = get_register(rs); + intptr_t rb_val = get_register(rb); + WriteW(ra_val + rb_val, rs_val, instr); + if (opcode == STWUX) { + DCHECK(ra != 0); + set_register(ra, ra_val + rb_val); + } + break; + } + case STBUX: + case STBX: { + int rs = instr->RSValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + intptr_t ra_val = ra == 0 ? 0 : get_register(ra); + int8_t rs_val = get_register(rs); + intptr_t rb_val = get_register(rb); + WriteB(ra_val + rb_val, rs_val); + if (opcode == STBUX) { + DCHECK(ra != 0); + set_register(ra, ra_val + rb_val); + } + break; + } + case STHUX: + case STHX: { + int rs = instr->RSValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + intptr_t ra_val = ra == 0 ? 0 : get_register(ra); + int16_t rs_val = get_register(rs); + intptr_t rb_val = get_register(rb); + WriteH(ra_val + rb_val, rs_val, instr); + if (opcode == STHUX) { + DCHECK(ra != 0); + set_register(ra, ra_val + rb_val); + } + break; + } + case LWZX: + case LWZUX: { + int rt = instr->RTValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + intptr_t ra_val = ra == 0 ? 0 : get_register(ra); + intptr_t rb_val = get_register(rb); + set_register(rt, ReadWU(ra_val + rb_val, instr)); + if (opcode == LWZUX) { + DCHECK(ra != 0 && ra != rt); + set_register(ra, ra_val + rb_val); + } + break; + } +#if V8_TARGET_ARCH_PPC64 + case LDX: + case LDUX: { + int rt = instr->RTValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + intptr_t ra_val = ra == 0 ? 0 : get_register(ra); + intptr_t rb_val = get_register(rb); + intptr_t* result = ReadDW(ra_val + rb_val); + set_register(rt, *result); + if (opcode == LDUX) { + DCHECK(ra != 0 && ra != rt); + set_register(ra, ra_val + rb_val); + } + break; + } + case STDX: + case STDUX: { + int rs = instr->RSValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + intptr_t ra_val = ra == 0 ? 0 : get_register(ra); + intptr_t rs_val = get_register(rs); + intptr_t rb_val = get_register(rb); + WriteDW(ra_val + rb_val, rs_val); + if (opcode == STDUX) { + DCHECK(ra != 0); + set_register(ra, ra_val + rb_val); + } + break; + } +#endif + case LBZX: + case LBZUX: { + int rt = instr->RTValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + intptr_t ra_val = ra == 0 ? 0 : get_register(ra); + intptr_t rb_val = get_register(rb); + set_register(rt, ReadBU(ra_val + rb_val) & 0xFF); + if (opcode == LBZUX) { + DCHECK(ra != 0 && ra != rt); + set_register(ra, ra_val + rb_val); + } + break; + } + case LHZX: + case LHZUX: { + int rt = instr->RTValue(); + int ra = instr->RAValue(); + int rb = instr->RBValue(); + intptr_t ra_val = ra == 0 ? 0 : get_register(ra); + intptr_t rb_val = get_register(rb); + set_register(rt, ReadHU(ra_val + rb_val, instr) & 0xFFFF); + if (opcode == LHZUX) { + DCHECK(ra != 0 && ra != rt); + set_register(ra, ra_val + rb_val); + } + break; + } + case DCBF: { + // todo - simulate dcbf + break; + } + default: { + PrintF("Unimplemented: %08x\n", instr->InstructionBits()); + UNIMPLEMENTED(); // Not used by V8. + } + } +} + + +void Simulator::ExecuteExt2(Instruction* instr) { + // Check first the 10-1 bit versions + if (ExecuteExt2_10bit(instr)) return; + // Now look at the lesser encodings + if (ExecuteExt2_9bit_part1(instr)) return; + ExecuteExt2_9bit_part2(instr); +} + + +void Simulator::ExecuteExt4(Instruction* instr) { + switch (instr->Bits(5, 1) << 1) { + case FDIV: { + int frt = instr->RTValue(); + int fra = instr->RAValue(); + int frb = instr->RBValue(); + double fra_val = get_double_from_d_register(fra); + double frb_val = get_double_from_d_register(frb); + double frt_val = fra_val / frb_val; + set_d_register_from_double(frt, frt_val); + return; + } + case FSUB: { + int frt = instr->RTValue(); + int fra = instr->RAValue(); + int frb = instr->RBValue(); + double fra_val = get_double_from_d_register(fra); + double frb_val = get_double_from_d_register(frb); + double frt_val = fra_val - frb_val; + set_d_register_from_double(frt, frt_val); + return; + } + case FADD: { + int frt = instr->RTValue(); + int fra = instr->RAValue(); + int frb = instr->RBValue(); + double fra_val = get_double_from_d_register(fra); + double frb_val = get_double_from_d_register(frb); + double frt_val = fra_val + frb_val; + set_d_register_from_double(frt, frt_val); + return; + } + case FSQRT: { + int frt = instr->RTValue(); + int frb = instr->RBValue(); + double frb_val = get_double_from_d_register(frb); + double frt_val = std::sqrt(frb_val); + set_d_register_from_double(frt, frt_val); + return; + } + case FSEL: { + int frt = instr->RTValue(); + int fra = instr->RAValue(); + int frb = instr->RBValue(); + int frc = instr->RCValue(); + double fra_val = get_double_from_d_register(fra); + double frb_val = get_double_from_d_register(frb); + double frc_val = get_double_from_d_register(frc); + double frt_val = ((fra_val >= 0.0) ? frc_val : frb_val); + set_d_register_from_double(frt, frt_val); + return; + } + case FMUL: { + int frt = instr->RTValue(); + int fra = instr->RAValue(); + int frc = instr->RCValue(); + double fra_val = get_double_from_d_register(fra); + double frc_val = get_double_from_d_register(frc); + double frt_val = fra_val * frc_val; + set_d_register_from_double(frt, frt_val); + return; + } + case FMSUB: { + int frt = instr->RTValue(); + int fra = instr->RAValue(); + int frb = instr->RBValue(); + int frc = instr->RCValue(); + double fra_val = get_double_from_d_register(fra); + double frb_val = get_double_from_d_register(frb); + double frc_val = get_double_from_d_register(frc); + double frt_val = (fra_val * frc_val) - frb_val; + set_d_register_from_double(frt, frt_val); + return; + } + case FMADD: { + int frt = instr->RTValue(); + int fra = instr->RAValue(); + int frb = instr->RBValue(); + int frc = instr->RCValue(); + double fra_val = get_double_from_d_register(fra); + double frb_val = get_double_from_d_register(frb); + double frc_val = get_double_from_d_register(frc); + double frt_val = (fra_val * frc_val) + frb_val; + set_d_register_from_double(frt, frt_val); + return; + } + } + int opcode = instr->Bits(10, 1) << 1; + switch (opcode) { + case FCMPU: { + int fra = instr->RAValue(); + int frb = instr->RBValue(); + double fra_val = get_double_from_d_register(fra); + double frb_val = get_double_from_d_register(frb); + int cr = instr->Bits(25, 23); + int bf = 0; + if (fra_val < frb_val) { + bf |= 0x80000000; + } + if (fra_val > frb_val) { + bf |= 0x40000000; + } + if (fra_val == frb_val) { + bf |= 0x20000000; + } + if (std::isunordered(fra_val, frb_val)) { + bf |= 0x10000000; + } + int condition_mask = 0xF0000000 >> (cr * 4); + int condition = bf >> (cr * 4); + condition_reg_ = (condition_reg_ & ~condition_mask) | condition; + return; + } + case FRSP: { + int frt = instr->RTValue(); + int frb = instr->RBValue(); + double frb_val = get_double_from_d_register(frb); + // frsp round 8-byte double-precision value to 8-byte + // single-precision value, ignore the round here + set_d_register_from_double(frt, frb_val); + if (instr->Bit(0)) { // RC bit set + // UNIMPLEMENTED(); + } + return; + } + case FCFID: { + int frt = instr->RTValue(); + int frb = instr->RBValue(); + double t_val = get_double_from_d_register(frb); + int64_t* frb_val_p = reinterpret_cast<int64_t*>(&t_val); + double frt_val = static_cast<double>(*frb_val_p); + set_d_register_from_double(frt, frt_val); + return; + } + case FCTID: { + int frt = instr->RTValue(); + int frb = instr->RBValue(); + double frb_val = get_double_from_d_register(frb); + int64_t frt_val; + int64_t one = 1; // work-around gcc + int64_t kMinLongLong = (one << 63); + int64_t kMaxLongLong = kMinLongLong - 1; + + if (frb_val > kMaxLongLong) { + frt_val = kMaxLongLong; + } else if (frb_val < kMinLongLong) { + frt_val = kMinLongLong; + } else { + switch (fp_condition_reg_ & kFPRoundingModeMask) { + case kRoundToZero: + frt_val = (int64_t)frb_val; + break; + case kRoundToPlusInf: + frt_val = (int64_t)std::ceil(frb_val); + break; + case kRoundToMinusInf: + frt_val = (int64_t)std::floor(frb_val); + break; + default: + frt_val = (int64_t)frb_val; + UNIMPLEMENTED(); // Not used by V8. + break; + } + } + double* p = reinterpret_cast<double*>(&frt_val); + set_d_register_from_double(frt, *p); + return; + } + case FCTIDZ: { + int frt = instr->RTValue(); + int frb = instr->RBValue(); + double frb_val = get_double_from_d_register(frb); + int64_t frt_val; + int64_t one = 1; // work-around gcc + int64_t kMinLongLong = (one << 63); + int64_t kMaxLongLong = kMinLongLong - 1; + + if (frb_val > kMaxLongLong) { + frt_val = kMaxLongLong; + } else if (frb_val < kMinLongLong) { + frt_val = kMinLongLong; + } else { + frt_val = (int64_t)frb_val; + } + double* p = reinterpret_cast<double*>(&frt_val); + set_d_register_from_double(frt, *p); + return; + } + case FCTIW: + case FCTIWZ: { + int frt = instr->RTValue(); + int frb = instr->RBValue(); + double frb_val = get_double_from_d_register(frb); + int64_t frt_val; + if (frb_val > kMaxInt) { + frt_val = kMaxInt; + } else if (frb_val < kMinInt) { + frt_val = kMinInt; + } else { + if (opcode == FCTIWZ) { + frt_val = (int64_t)frb_val; + } else { + switch (fp_condition_reg_ & kFPRoundingModeMask) { + case kRoundToZero: + frt_val = (int64_t)frb_val; + break; + case kRoundToPlusInf: + frt_val = (int64_t)std::ceil(frb_val); + break; + case kRoundToMinusInf: + frt_val = (int64_t)std::floor(frb_val); + break; + case kRoundToNearest: + frt_val = (int64_t)lround(frb_val); + + // Round to even if exactly halfway. (lround rounds up) + if (std::fabs(static_cast<double>(frt_val) - frb_val) == 0.5 && + (frt_val % 2)) { + frt_val += ((frt_val > 0) ? -1 : 1); + } + + break; + default: + DCHECK(false); + frt_val = (int64_t)frb_val; + break; + } + } + } + double* p = reinterpret_cast<double*>(&frt_val); + set_d_register_from_double(frt, *p); + return; + } + case FNEG: { + int frt = instr->RTValue(); + int frb = instr->RBValue(); + double frb_val = get_double_from_d_register(frb); + double frt_val = -frb_val; + set_d_register_from_double(frt, frt_val); + return; + } + case FMR: { + int frt = instr->RTValue(); + int frb = instr->RBValue(); + double frb_val = get_double_from_d_register(frb); + double frt_val = frb_val; + set_d_register_from_double(frt, frt_val); + return; + } + case MTFSFI: { + int bf = instr->Bits(25, 23); + int imm = instr->Bits(15, 12); + int fp_condition_mask = 0xF0000000 >> (bf * 4); + fp_condition_reg_ &= ~fp_condition_mask; + fp_condition_reg_ |= (imm << (28 - (bf * 4))); + if (instr->Bit(0)) { // RC bit set + condition_reg_ &= 0xF0FFFFFF; + condition_reg_ |= (imm << 23); + } + return; + } + case MTFSF: { + int frb = instr->RBValue(); + double frb_dval = get_double_from_d_register(frb); + int64_t* p = reinterpret_cast<int64_t*>(&frb_dval); + int32_t frb_ival = static_cast<int32_t>((*p) & 0xffffffff); + int l = instr->Bits(25, 25); + if (l == 1) { + fp_condition_reg_ = frb_ival; + } else { + UNIMPLEMENTED(); + } + if (instr->Bit(0)) { // RC bit set + UNIMPLEMENTED(); + // int w = instr->Bits(16, 16); + // int flm = instr->Bits(24, 17); + } + return; + } + case MFFS: { + int frt = instr->RTValue(); + int64_t lval = static_cast<int64_t>(fp_condition_reg_); + double* p = reinterpret_cast<double*>(&lval); + set_d_register_from_double(frt, *p); + return; + } + case FABS: { + int frt = instr->RTValue(); + int frb = instr->RBValue(); + double frb_val = get_double_from_d_register(frb); + double frt_val = std::fabs(frb_val); + set_d_register_from_double(frt, frt_val); + return; + } + case FRIM: { + int frt = instr->RTValue(); + int frb = instr->RBValue(); + double frb_val = get_double_from_d_register(frb); + int64_t floor_val = (int64_t)frb_val; + if (floor_val > frb_val) floor_val--; + double frt_val = static_cast<double>(floor_val); + set_d_register_from_double(frt, frt_val); + return; + } + } + UNIMPLEMENTED(); // Not used by V8. +} + +#if V8_TARGET_ARCH_PPC64 +void Simulator::ExecuteExt5(Instruction* instr) { + switch (instr->Bits(4, 2) << 2) { + case RLDICL: { + int ra = instr->RAValue(); + int rs = instr->RSValue(); + uintptr_t rs_val = get_register(rs); + int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); + int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); + DCHECK(sh >= 0 && sh <= 63); + DCHECK(mb >= 0 && mb <= 63); + // rotate left + uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh)); + uintptr_t mask = 0xffffffffffffffff >> mb; + result &= mask; + set_register(ra, result); + if (instr->Bit(0)) { // RC bit set + SetCR0(result); + } + return; + } + case RLDICR: { + int ra = instr->RAValue(); + int rs = instr->RSValue(); + uintptr_t rs_val = get_register(rs); + int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); + int me = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); + DCHECK(sh >= 0 && sh <= 63); + DCHECK(me >= 0 && me <= 63); + // rotate left + uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh)); + uintptr_t mask = 0xffffffffffffffff << (63 - me); + result &= mask; + set_register(ra, result); + if (instr->Bit(0)) { // RC bit set + SetCR0(result); + } + return; + } + case RLDIC: { + int ra = instr->RAValue(); + int rs = instr->RSValue(); + uintptr_t rs_val = get_register(rs); + int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); + int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); + DCHECK(sh >= 0 && sh <= 63); + DCHECK(mb >= 0 && mb <= 63); + // rotate left + uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh)); + uintptr_t mask = (0xffffffffffffffff >> mb) & (0xffffffffffffffff << sh); + result &= mask; + set_register(ra, result); + if (instr->Bit(0)) { // RC bit set + SetCR0(result); + } + return; + } + case RLDIMI: { + int ra = instr->RAValue(); + int rs = instr->RSValue(); + uintptr_t rs_val = get_register(rs); + intptr_t ra_val = get_register(ra); + int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); + int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); + int me = 63 - sh; + // rotate left + uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh)); + uintptr_t mask = 0; + if (mb < me + 1) { + uintptr_t bit = 0x8000000000000000 >> mb; + for (; mb <= me; mb++) { + mask |= bit; + bit >>= 1; + } + } else if (mb == me + 1) { + mask = 0xffffffffffffffff; + } else { // mb > me+1 + uintptr_t bit = 0x8000000000000000 >> (me + 1); // needs to be tested + mask = 0xffffffffffffffff; + for (; me < mb; me++) { + mask ^= bit; + bit >>= 1; + } + } + result &= mask; + ra_val &= ~mask; + result |= ra_val; + set_register(ra, result); + if (instr->Bit(0)) { // RC bit set + SetCR0(result); + } + return; + } + } + switch (instr->Bits(4, 1) << 1) { + case RLDCL: { + int ra = instr->RAValue(); + int rs = instr->RSValue(); + int rb = instr->RBValue(); + uintptr_t rs_val = get_register(rs); + uintptr_t rb_val = get_register(rb); + int sh = (rb_val & 0x3f); + int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); + DCHECK(sh >= 0 && sh <= 63); + DCHECK(mb >= 0 && mb <= 63); + // rotate left + uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh)); + uintptr_t mask = 0xffffffffffffffff >> mb; + result &= mask; + set_register(ra, result); + if (instr->Bit(0)) { // RC bit set + SetCR0(result); + } + return; + } + } + UNIMPLEMENTED(); // Not used by V8. +} +#endif + + +void Simulator::ExecuteGeneric(Instruction* instr) { + int opcode = instr->OpcodeValue() << 26; + switch (opcode) { + case SUBFIC: { + int rt = instr->RTValue(); + int ra = instr->RAValue(); + intptr_t ra_val = get_register(ra); + int32_t im_val = instr->Bits(15, 0); + im_val = SIGN_EXT_IMM16(im_val); + intptr_t alu_out = im_val - ra_val; + set_register(rt, alu_out); + // todo - handle RC bit + break; + } + case CMPLI: { + int ra = instr->RAValue(); + uint32_t im_val = instr->Bits(15, 0); + int cr = instr->Bits(25, 23); + uint32_t bf = 0; +#if V8_TARGET_ARCH_PPC64 + int L = instr->Bit(21); + if (L) { +#endif + uintptr_t ra_val = get_register(ra); + if (ra_val < im_val) { + bf |= 0x80000000; + } + if (ra_val > im_val) { + bf |= 0x40000000; + } + if (ra_val == im_val) { + bf |= 0x20000000; + } +#if V8_TARGET_ARCH_PPC64 + } else { + uint32_t ra_val = get_register(ra); + if (ra_val < im_val) { + bf |= 0x80000000; + } + if (ra_val > im_val) { + bf |= 0x40000000; + } + if (ra_val == im_val) { + bf |= 0x20000000; + } + } +#endif + uint32_t condition_mask = 0xF0000000U >> (cr * 4); + uint32_t condition = bf >> (cr * 4); + condition_reg_ = (condition_reg_ & ~condition_mask) | condition; + break; + } + case CMPI: { + int ra = instr->RAValue(); + int32_t im_val = instr->Bits(15, 0); + im_val = SIGN_EXT_IMM16(im_val); + int cr = instr->Bits(25, 23); + uint32_t bf = 0; +#if V8_TARGET_ARCH_PPC64 + int L = instr->Bit(21); + if (L) { +#endif + intptr_t ra_val = get_register(ra); + if (ra_val < im_val) { + bf |= 0x80000000; + } + if (ra_val > im_val) { + bf |= 0x40000000; + } + if (ra_val == im_val) { + bf |= 0x20000000; + } +#if V8_TARGET_ARCH_PPC64 + } else { + int32_t ra_val = get_register(ra); + if (ra_val < im_val) { + bf |= 0x80000000; + } + if (ra_val > im_val) { + bf |= 0x40000000; + } + if (ra_val == im_val) { + bf |= 0x20000000; + } + } +#endif + uint32_t condition_mask = 0xF0000000U >> (cr * 4); + uint32_t condition = bf >> (cr * 4); + condition_reg_ = (condition_reg_ & ~condition_mask) | condition; + break; + } + case ADDIC: { + int rt = instr->RTValue(); + int ra = instr->RAValue(); + uintptr_t ra_val = get_register(ra); + uintptr_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0)); + uintptr_t alu_out = ra_val + im_val; + // Check overflow + if (~ra_val < im_val) { + special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000; + } else { + special_reg_xer_ &= ~0xF0000000; + } + set_register(rt, alu_out); + break; + } + case ADDI: { + int rt = instr->RTValue(); + int ra = instr->RAValue(); + int32_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0)); + intptr_t alu_out; + if (ra == 0) { + alu_out = im_val; + } else { + intptr_t ra_val = get_register(ra); + alu_out = ra_val + im_val; + } + set_register(rt, alu_out); + // todo - handle RC bit + break; + } + case ADDIS: { + int rt = instr->RTValue(); + int ra = instr->RAValue(); + int32_t im_val = (instr->Bits(15, 0) << 16); + intptr_t alu_out; + if (ra == 0) { // treat r0 as zero + alu_out = im_val; + } else { + intptr_t ra_val = get_register(ra); + alu_out = ra_val + im_val; + } + set_register(rt, alu_out); + break; + } + case BCX: { + ExecuteBranchConditional(instr); + break; + } + case BX: { + int offset = (instr->Bits(25, 2) << 8) >> 6; + if (instr->Bit(0) == 1) { // LK flag set + special_reg_lr_ = get_pc() + 4; + } + set_pc(get_pc() + offset); + // todo - AA flag + break; + } + case EXT1: { + ExecuteExt1(instr); + break; + } + case RLWIMIX: { + int ra = instr->RAValue(); + int rs = instr->RSValue(); + uint32_t rs_val = get_register(rs); + int32_t ra_val = get_register(ra); + int sh = instr->Bits(15, 11); + int mb = instr->Bits(10, 6); + int me = instr->Bits(5, 1); + // rotate left + uint32_t result = (rs_val << sh) | (rs_val >> (32 - sh)); + int mask = 0; + if (mb < me + 1) { + int bit = 0x80000000 >> mb; + for (; mb <= me; mb++) { + mask |= bit; + bit >>= 1; + } + } else if (mb == me + 1) { + mask = 0xffffffff; + } else { // mb > me+1 + int bit = 0x80000000 >> (me + 1); // needs to be tested + mask = 0xffffffff; + for (; me < mb; me++) { + mask ^= bit; + bit >>= 1; + } + } + result &= mask; + ra_val &= ~mask; + result |= ra_val; + set_register(ra, result); + if (instr->Bit(0)) { // RC bit set + SetCR0(result); + } + break; + } + case RLWINMX: + case RLWNMX: { + int ra = instr->RAValue(); + int rs = instr->RSValue(); + uint32_t rs_val = get_register(rs); + int sh = 0; + if (opcode == RLWINMX) { + sh = instr->Bits(15, 11); + } else { + int rb = instr->RBValue(); + uint32_t rb_val = get_register(rb); + sh = (rb_val & 0x1f); + } + int mb = instr->Bits(10, 6); + int me = instr->Bits(5, 1); + // rotate left + uint32_t result = (rs_val << sh) | (rs_val >> (32 - sh)); + int mask = 0; + if (mb < me + 1) { + int bit = 0x80000000 >> mb; + for (; mb <= me; mb++) { + mask |= bit; + bit >>= 1; + } + } else if (mb == me + 1) { + mask = 0xffffffff; + } else { // mb > me+1 + int bit = 0x80000000 >> (me + 1); // needs to be tested + mask = 0xffffffff; + for (; me < mb; me++) { + mask ^= bit; + bit >>= 1; + } + } + result &= mask; + set_register(ra, result); + if (instr->Bit(0)) { // RC bit set + SetCR0(result); + } + break; + } + case ORI: { + int rs = instr->RSValue(); + int ra = instr->RAValue(); + intptr_t rs_val = get_register(rs); + uint32_t im_val = instr->Bits(15, 0); + intptr_t alu_out = rs_val | im_val; + set_register(ra, alu_out); + break; + } + case ORIS: { + int rs = instr->RSValue(); + int ra = instr->RAValue(); + intptr_t rs_val = get_register(rs); + uint32_t im_val = instr->Bits(15, 0); + intptr_t alu_out = rs_val | (im_val << 16); + set_register(ra, alu_out); + break; + } + case XORI: { + int rs = instr->RSValue(); + int ra = instr->RAValue(); + intptr_t rs_val = get_register(rs); + uint32_t im_val = instr->Bits(15, 0); + intptr_t alu_out = rs_val ^ im_val; + set_register(ra, alu_out); + // todo - set condition based SO bit + break; + } + case XORIS: { + int rs = instr->RSValue(); + int ra = instr->RAValue(); + intptr_t rs_val = get_register(rs); + uint32_t im_val = instr->Bits(15, 0); + intptr_t alu_out = rs_val ^ (im_val << 16); + set_register(ra, alu_out); + break; + } + case ANDIx: { + int rs = instr->RSValue(); + int ra = instr->RAValue(); + intptr_t rs_val = get_register(rs); + uint32_t im_val = instr->Bits(15, 0); + intptr_t alu_out = rs_val & im_val; + set_register(ra, alu_out); + SetCR0(alu_out); + break; + } + case ANDISx: { + int rs = instr->RSValue(); + int ra = instr->RAValue(); + intptr_t rs_val = get_register(rs); + uint32_t im_val = instr->Bits(15, 0); + intptr_t alu_out = rs_val & (im_val << 16); + set_register(ra, alu_out); + SetCR0(alu_out); + break; + } + case EXT2: { + ExecuteExt2(instr); + break; + } + + case LWZU: + case LWZ: { + int ra = instr->RAValue(); + int rt = instr->RTValue(); + intptr_t ra_val = ra == 0 ? 0 : get_register(ra); + int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); + set_register(rt, ReadWU(ra_val + offset, instr)); + if (opcode == LWZU) { + DCHECK(ra != 0); + set_register(ra, ra_val + offset); + } + break; + } + + case LBZU: + case LBZ: { + int ra = instr->RAValue(); + int rt = instr->RTValue(); + intptr_t ra_val = ra == 0 ? 0 : get_register(ra); + int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); + set_register(rt, ReadB(ra_val + offset) & 0xFF); + if (opcode == LBZU) { + DCHECK(ra != 0); + set_register(ra, ra_val + offset); + } + break; + } + + case STWU: + case STW: { + int ra = instr->RAValue(); + int rs = instr->RSValue(); + intptr_t ra_val = ra == 0 ? 0 : get_register(ra); + int32_t rs_val = get_register(rs); + int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); + WriteW(ra_val + offset, rs_val, instr); + if (opcode == STWU) { + DCHECK(ra != 0); + set_register(ra, ra_val + offset); + } + // printf("r%d %08x -> %08x\n", rs, rs_val, offset); // 0xdead + break; + } + + case STBU: + case STB: { + int ra = instr->RAValue(); + int rs = instr->RSValue(); + intptr_t ra_val = ra == 0 ? 0 : get_register(ra); + int8_t rs_val = get_register(rs); + int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); + WriteB(ra_val + offset, rs_val); + if (opcode == STBU) { + DCHECK(ra != 0); + set_register(ra, ra_val + offset); + } + break; + } + + case LHZU: + case LHZ: { + int ra = instr->RAValue(); + int rt = instr->RTValue(); + intptr_t ra_val = ra == 0 ? 0 : get_register(ra); + int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); + uintptr_t result = ReadHU(ra_val + offset, instr) & 0xffff; + set_register(rt, result); + if (opcode == LHZU) { + DCHECK(ra != 0); + set_register(ra, ra_val + offset); + } + break; + } + + case LHA: + case LHAU: { + UNIMPLEMENTED(); + break; + } + + case STHU: + case STH: { + int ra = instr->RAValue(); + int rs = instr->RSValue(); + intptr_t ra_val = ra == 0 ? 0 : get_register(ra); + int16_t rs_val = get_register(rs); + int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); + WriteH(ra_val + offset, rs_val, instr); + if (opcode == STHU) { + DCHECK(ra != 0); + set_register(ra, ra_val + offset); + } + break; + } + + case LMW: + case STMW: { + UNIMPLEMENTED(); + break; + } + + case LFSU: + case LFS: { + int frt = instr->RTValue(); + int ra = instr->RAValue(); + int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); + intptr_t ra_val = ra == 0 ? 0 : get_register(ra); + int32_t val = ReadW(ra_val + offset, instr); + float* fptr = reinterpret_cast<float*>(&val); + set_d_register_from_double(frt, static_cast<double>(*fptr)); + if (opcode == LFSU) { + DCHECK(ra != 0); + set_register(ra, ra_val + offset); + } + break; + } + + case LFDU: + case LFD: { + int frt = instr->RTValue(); + int ra = instr->RAValue(); + int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); + intptr_t ra_val = ra == 0 ? 0 : get_register(ra); + double* dptr = reinterpret_cast<double*>(ReadDW(ra_val + offset)); + set_d_register_from_double(frt, *dptr); + if (opcode == LFDU) { + DCHECK(ra != 0); + set_register(ra, ra_val + offset); + } + break; + } + + case STFSU: { + case STFS: + int frs = instr->RSValue(); + int ra = instr->RAValue(); + int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); + intptr_t ra_val = ra == 0 ? 0 : get_register(ra); + float frs_val = static_cast<float>(get_double_from_d_register(frs)); + int32_t* p = reinterpret_cast<int32_t*>(&frs_val); + WriteW(ra_val + offset, *p, instr); + if (opcode == STFSU) { + DCHECK(ra != 0); + set_register(ra, ra_val + offset); + } + break; + } + + case STFDU: + case STFD: { + int frs = instr->RSValue(); + int ra = instr->RAValue(); + int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); + intptr_t ra_val = ra == 0 ? 0 : get_register(ra); + double frs_val = get_double_from_d_register(frs); + int64_t* p = reinterpret_cast<int64_t*>(&frs_val); + WriteDW(ra_val + offset, *p); + if (opcode == STFDU) { + DCHECK(ra != 0); + set_register(ra, ra_val + offset); + } + break; + } + + case EXT3: + UNIMPLEMENTED(); + case EXT4: { + ExecuteExt4(instr); + break; + } + +#if V8_TARGET_ARCH_PPC64 + case EXT5: { + ExecuteExt5(instr); + break; + } + case LD: { + int ra = instr->RAValue(); + int rt = instr->RTValue(); + int64_t ra_val = ra == 0 ? 0 : get_register(ra); + int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3); + switch (instr->Bits(1, 0)) { + case 0: { // ld + intptr_t* result = ReadDW(ra_val + offset); + set_register(rt, *result); + break; + } + case 1: { // ldu + intptr_t* result = ReadDW(ra_val + offset); + set_register(rt, *result); + DCHECK(ra != 0); + set_register(ra, ra_val + offset); + break; + } + case 2: { // lwa + intptr_t result = ReadW(ra_val + offset, instr); + set_register(rt, result); + break; + } + } + break; + } + + case STD: { + int ra = instr->RAValue(); + int rs = instr->RSValue(); + int64_t ra_val = ra == 0 ? 0 : get_register(ra); + int64_t rs_val = get_register(rs); + int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3); + WriteDW(ra_val + offset, rs_val); + if (instr->Bit(0) == 1) { // This is the STDU form + DCHECK(ra != 0); + set_register(ra, ra_val + offset); + } + break; + } +#endif + + case FAKE_OPCODE: { + if (instr->Bits(MARKER_SUBOPCODE_BIT, MARKER_SUBOPCODE_BIT) == 1) { + int marker_code = instr->Bits(STUB_MARKER_HIGH_BIT, 0); + DCHECK(marker_code < F_NEXT_AVAILABLE_STUB_MARKER); + PrintF("Hit stub-marker: %d (EMIT_STUB_MARKER)\n", marker_code); + } else { + int fake_opcode = instr->Bits(FAKE_OPCODE_HIGH_BIT, 0); + if (fake_opcode == fBKPT) { + PPCDebugger dbg(this); + PrintF("Simulator hit BKPT.\n"); + dbg.Debug(); + } else { + DCHECK(fake_opcode < fLastFaker); + PrintF("Hit ARM opcode: %d(FAKE_OPCODE defined in constant-ppc.h)\n", + fake_opcode); + UNIMPLEMENTED(); + } + } + break; + } + + default: { + UNIMPLEMENTED(); + break; + } + } +} // NOLINT + + +void Simulator::Trace(Instruction* instr) { + disasm::NameConverter converter; + disasm::Disassembler dasm(converter); + // use a reasonably large buffer + v8::internal::EmbeddedVector<char, 256> buffer; + dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr)); + PrintF("%05d %08" V8PRIxPTR " %s\n", icount_, + reinterpret_cast<intptr_t>(instr), buffer.start()); +} + + +// Executes the current instruction. +void Simulator::ExecuteInstruction(Instruction* instr) { + if (v8::internal::FLAG_check_icache) { + CheckICache(isolate_->simulator_i_cache(), instr); + } + pc_modified_ = false; + if (::v8::internal::FLAG_trace_sim) { + Trace(instr); + } + int opcode = instr->OpcodeValue() << 26; + if (opcode == TWI) { + SoftwareInterrupt(instr); + } else { + ExecuteGeneric(instr); + } + if (!pc_modified_) { + set_pc(reinterpret_cast<intptr_t>(instr) + Instruction::kInstrSize); + } +} + + +void Simulator::Execute() { + // Get the PC to simulate. Cannot use the accessor here as we need the + // raw PC value and not the one used as input to arithmetic instructions. + intptr_t program_counter = get_pc(); + + if (::v8::internal::FLAG_stop_sim_at == 0) { + // Fast version of the dispatch loop without checking whether the simulator + // should be stopping at a particular executed instruction. + while (program_counter != end_sim_pc) { + Instruction* instr = reinterpret_cast<Instruction*>(program_counter); + icount_++; + ExecuteInstruction(instr); + program_counter = get_pc(); + } + } else { + // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when + // we reach the particular instuction count. + while (program_counter != end_sim_pc) { + Instruction* instr = reinterpret_cast<Instruction*>(program_counter); + icount_++; + if (icount_ == ::v8::internal::FLAG_stop_sim_at) { + PPCDebugger dbg(this); + dbg.Debug(); + } else { + ExecuteInstruction(instr); + } + program_counter = get_pc(); + } + } +} + + +void Simulator::CallInternal(byte* entry) { +// Prepare to execute the code at entry +#if ABI_USES_FUNCTION_DESCRIPTORS + // entry is the function descriptor + set_pc(*(reinterpret_cast<intptr_t*>(entry))); +#else + // entry is the instruction address + set_pc(reinterpret_cast<intptr_t>(entry)); +#endif + + // Put down marker for end of simulation. The simulator will stop simulation + // when the PC reaches this value. By saving the "end simulation" value into + // the LR the simulation stops when returning to this call point. + special_reg_lr_ = end_sim_pc; + + // Remember the values of non-volatile registers. + intptr_t r2_val = get_register(r2); + intptr_t r13_val = get_register(r13); + intptr_t r14_val = get_register(r14); + intptr_t r15_val = get_register(r15); + intptr_t r16_val = get_register(r16); + intptr_t r17_val = get_register(r17); + intptr_t r18_val = get_register(r18); + intptr_t r19_val = get_register(r19); + intptr_t r20_val = get_register(r20); + intptr_t r21_val = get_register(r21); + intptr_t r22_val = get_register(r22); + intptr_t r23_val = get_register(r23); + intptr_t r24_val = get_register(r24); + intptr_t r25_val = get_register(r25); + intptr_t r26_val = get_register(r26); + intptr_t r27_val = get_register(r27); + intptr_t r28_val = get_register(r28); + intptr_t r29_val = get_register(r29); + intptr_t r30_val = get_register(r30); + intptr_t r31_val = get_register(fp); + + // Set up the non-volatile registers with a known value. To be able to check + // that they are preserved properly across JS execution. + intptr_t callee_saved_value = icount_; + set_register(r2, callee_saved_value); + set_register(r13, callee_saved_value); + set_register(r14, callee_saved_value); + set_register(r15, callee_saved_value); + set_register(r16, callee_saved_value); + set_register(r17, callee_saved_value); + set_register(r18, callee_saved_value); + set_register(r19, callee_saved_value); + set_register(r20, callee_saved_value); + set_register(r21, callee_saved_value); + set_register(r22, callee_saved_value); + set_register(r23, callee_saved_value); + set_register(r24, callee_saved_value); + set_register(r25, callee_saved_value); + set_register(r26, callee_saved_value); + set_register(r27, callee_saved_value); + set_register(r28, callee_saved_value); + set_register(r29, callee_saved_value); + set_register(r30, callee_saved_value); + set_register(fp, callee_saved_value); + + // Start the simulation + Execute(); + + // Check that the non-volatile registers have been preserved. + CHECK_EQ(callee_saved_value, get_register(r2)); + CHECK_EQ(callee_saved_value, get_register(r13)); + CHECK_EQ(callee_saved_value, get_register(r14)); + CHECK_EQ(callee_saved_value, get_register(r15)); + CHECK_EQ(callee_saved_value, get_register(r16)); + CHECK_EQ(callee_saved_value, get_register(r17)); + CHECK_EQ(callee_saved_value, get_register(r18)); + CHECK_EQ(callee_saved_value, get_register(r19)); + CHECK_EQ(callee_saved_value, get_register(r20)); + CHECK_EQ(callee_saved_value, get_register(r21)); + CHECK_EQ(callee_saved_value, get_register(r22)); + CHECK_EQ(callee_saved_value, get_register(r23)); + CHECK_EQ(callee_saved_value, get_register(r24)); + CHECK_EQ(callee_saved_value, get_register(r25)); + CHECK_EQ(callee_saved_value, get_register(r26)); + CHECK_EQ(callee_saved_value, get_register(r27)); + CHECK_EQ(callee_saved_value, get_register(r28)); + CHECK_EQ(callee_saved_value, get_register(r29)); + CHECK_EQ(callee_saved_value, get_register(r30)); + CHECK_EQ(callee_saved_value, get_register(fp)); + + // Restore non-volatile registers with the original value. + set_register(r2, r2_val); + set_register(r13, r13_val); + set_register(r14, r14_val); + set_register(r15, r15_val); + set_register(r16, r16_val); + set_register(r17, r17_val); + set_register(r18, r18_val); + set_register(r19, r19_val); + set_register(r20, r20_val); + set_register(r21, r21_val); + set_register(r22, r22_val); + set_register(r23, r23_val); + set_register(r24, r24_val); + set_register(r25, r25_val); + set_register(r26, r26_val); + set_register(r27, r27_val); + set_register(r28, r28_val); + set_register(r29, r29_val); + set_register(r30, r30_val); + set_register(fp, r31_val); +} + + +intptr_t Simulator::Call(byte* entry, int argument_count, ...) { + va_list parameters; + va_start(parameters, argument_count); + // Set up arguments + + // First eight arguments passed in registers r3-r10. + int reg_arg_count = (argument_count > 8) ? 8 : argument_count; + int stack_arg_count = argument_count - reg_arg_count; + for (int i = 0; i < reg_arg_count; i++) { + set_register(i + 3, va_arg(parameters, intptr_t)); + } + + // Remaining arguments passed on stack. + intptr_t original_stack = get_register(sp); + // Compute position of stack on entry to generated code. + intptr_t entry_stack = + (original_stack - + (kNumRequiredStackFrameSlots + stack_arg_count) * sizeof(intptr_t)); + if (base::OS::ActivationFrameAlignment() != 0) { + entry_stack &= -base::OS::ActivationFrameAlignment(); + } + // Store remaining arguments on stack, from low to high memory. + // +2 is a hack for the LR slot + old SP on PPC + intptr_t* stack_argument = + reinterpret_cast<intptr_t*>(entry_stack) + kStackFrameExtraParamSlot; + for (int i = 0; i < stack_arg_count; i++) { + stack_argument[i] = va_arg(parameters, intptr_t); + } + va_end(parameters); + set_register(sp, entry_stack); + + CallInternal(entry); + + // Pop stack passed arguments. + CHECK_EQ(entry_stack, get_register(sp)); + set_register(sp, original_stack); + + intptr_t result = get_register(r3); + return result; +} + + +void Simulator::CallFP(byte* entry, double d0, double d1) { + set_d_register_from_double(1, d0); + set_d_register_from_double(2, d1); + CallInternal(entry); +} + + +int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) { + CallFP(entry, d0, d1); + int32_t result = get_register(r3); + return result; +} + + +double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) { + CallFP(entry, d0, d1); + return get_double_from_d_register(1); +} + + +uintptr_t Simulator::PushAddress(uintptr_t address) { + uintptr_t new_sp = get_register(sp) - sizeof(uintptr_t); + uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); + *stack_slot = address; + set_register(sp, new_sp); + return new_sp; +} + + +uintptr_t Simulator::PopAddress() { + uintptr_t current_sp = get_register(sp); + uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); + uintptr_t address = *stack_slot; + set_register(sp, current_sp + sizeof(uintptr_t)); + return address; +} +} +} // namespace v8::internal + +#endif // USE_SIMULATOR +#endif // V8_TARGET_ARCH_PPC |