summaryrefslogtreecommitdiff
path: root/src/sub1.c
blob: 442afe4ef03994e2b2d777d177795e39bcc27baf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
/* mpfr_sub1 -- internal function to perform a "real" subtraction

Copyright 2001-2021 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.

This file is part of the GNU MPFR Library.

The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */

#include "mpfr-impl.h"

/* compute sign(b) * (|b| - |c|), with |b| > |c|, diff_exp = EXP(b) - EXP(c)
   Returns 0 iff result is exact,
   a negative value when the result is less than the exact value,
   a positive value otherwise.
*/

int
mpfr_sub1 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
  int sign;
  mpfr_exp_t diff_exp, exp_a, exp_b;
  mpfr_prec_t cancel, cancel1;
  mp_size_t cancel2, an, bn, cn, cn0;
  mp_limb_t *ap, *bp, *cp;
  mp_limb_t carry, bb, cc;
  mpfr_prec_t aq, bq;
  int inexact, shift_b, shift_c, add_exp = 0;
  int cmp_low = 0; /* used for rounding to nearest: 0 if low(b) = low(c),
                      negative if low(b) < low(c), positive if low(b) > low(c) */
  int sh, k;
  MPFR_TMP_DECL(marker);

  MPFR_TMP_MARK(marker);
  ap = MPFR_MANT(a);
  an = MPFR_LIMB_SIZE(a);

  (void) MPFR_GET_PREC (a);
  (void) MPFR_GET_PREC (b);
  (void) MPFR_GET_PREC (c);

  sign = mpfr_cmp2 (b, c, &cancel);

  if (MPFR_UNLIKELY(sign == 0))
    {
      MPFR_LOG_MSG (("sign=0\n", 0));
      if (rnd_mode == MPFR_RNDD)
        MPFR_SET_NEG (a);
      else
        MPFR_SET_POS (a);
      MPFR_SET_ZERO (a);
      MPFR_RET (0);
    }

  /* sign != 0, so that cancel has a valid value. */
  MPFR_LOG_MSG (("sign=%d cancel=%Pd\n", sign, cancel));
  MPFR_ASSERTD (cancel >= 0 && cancel <= MPFR_PREC_MAX);

  /*
   * If subtraction: sign(a) = sign * sign(b)
   * If addition: sign(a) = sign of the larger argument in absolute value.
   *
   * Both cases can be simplified in:
   * if (sign>0)
   *    if addition: sign(a) = sign * sign(b) = sign(b)
   *    if subtraction, b is greater, so sign(a) = sign(b)
   * else
   *    if subtraction, sign(a) = - sign(b)
   *    if addition, sign(a) = sign(c) (since c is greater)
   *      But if it is an addition, sign(b) and sign(c) are opposed!
   *      So sign(a) = - sign(b)
   */

  if (sign < 0) /* swap b and c so that |b| > |c| */
    {
      mpfr_srcptr t;
      MPFR_SET_OPPOSITE_SIGN (a,b);
      t = b; b = c; c = t;
    }
  else
    MPFR_SET_SAME_SIGN (a,b);

  if (MPFR_UNLIKELY (MPFR_IS_UBF (b) || MPFR_IS_UBF (c)))
    {
      exp_b = MPFR_UBF_GET_EXP (b);
      /* Early underflow detection. Rare, but a test is needed anyway
         since in the "MAX (aq, bq) + 2 <= diff_exp" branch, the exponent
         may decrease and MPFR_EXP_MIN would yield an integer overflow. */
      if (MPFR_UNLIKELY (exp_b < __gmpfr_emin - 1))
        {
          if (rnd_mode == MPFR_RNDN)
            rnd_mode = MPFR_RNDZ;
          return mpfr_underflow (a, rnd_mode, MPFR_SIGN(a));
        }
      diff_exp = mpfr_ubf_diff_exp (b, c);
      MPFR_LOG_MSG (("UBF: exp_b=%" MPFR_EXP_FSPEC "d%s "
                     "diff_exp=%" MPFR_EXP_FSPEC "d%s\n",
                     (mpfr_eexp_t) exp_b,
                     exp_b == MPFR_EXP_MAX ? "=MPFR_EXP_MAX" : "",
                     (mpfr_eexp_t) diff_exp,
                     diff_exp == MPFR_EXP_MAX ? "=MPFR_EXP_MAX" : ""));
      /* If diff_exp == MPFR_EXP_MAX, the actual value can be larger,
         but anyway, since mpfr_exp_t >= mp_size_t, this will be the
         case c small below, and the exact value does not matter. */
      /* mpfr_set4 below used with MPFR_RNDF does not support UBF. */
      if (rnd_mode == MPFR_RNDF)
        rnd_mode = MPFR_RNDN;
    }
  else
    {
      exp_b = MPFR_GET_EXP (b);
      diff_exp = exp_b - MPFR_GET_EXP (c);
    }
  MPFR_ASSERTD (diff_exp >= 0);

  aq = MPFR_GET_PREC (a);
  bq = MPFR_GET_PREC (b);

  /* Check if c is too small.
     A more precise test is to replace 2 by
      (rnd == MPFR_RNDN) + mpfr_power2_raw (b)
      but it is more expensive and not very useful */
  if (MPFR_UNLIKELY (MAX (aq, bq) + 2 <= diff_exp))
    {
      MPFR_LOG_MSG (("case c small\n", 0));

      /* Remember, we can't have an exact result! */
      /*   A.AAAAAAAAAAAAAAAAA
         = B.BBBBBBBBBBBBBBB
          -                     C.CCCCCCCCCCCCC */
      /* A = S*ABS(B) +/- ulp(a) */

      /* since we can't have an exact result, for RNDF we can truncate b */
      if (rnd_mode == MPFR_RNDF)
        return mpfr_set4 (a, b, MPFR_RNDZ, MPFR_SIGN (a));

      exp_a = exp_b;  /* may be any out-of-range value due to UBF */
      MPFR_RNDRAW_EVEN (inexact, a, MPFR_MANT (b), bq,
                        rnd_mode, MPFR_SIGN (a),
                        if (exp_a != MPFR_EXP_MAX)
                          exp_a ++);
      MPFR_LOG_MSG (("inexact=%d\n", inexact));
      if (inexact == 0 &&
          /* a = b, but the exact value of b - c is a bit below. Then,
             except for directed rounding similar to toward zero and
             before overflow checking: a is the correctly rounded value
             and since |b| - |c| < |a|, the ternary value value is given
             by the sign of a. */
          ! MPFR_IS_LIKE_RNDZ (rnd_mode, MPFR_IS_NEG (a)))
        {
          MPFR_LOG_MSG (("c small, case 1\n", 0));
          inexact = MPFR_INT_SIGN (a);
        }
      else if (inexact != 0 &&
          /*   A.AAAAAAAAAAAAAA
             = B.BBBBBBBBBBBBBBB
              -                   C.CCCCCCCCCCCCC */
          /* It isn't exact, so PREC(b) > PREC(a) and the last
             PREC(b)-PREC(a) bits of b are not all zeros.
             Subtracting c from b will not have an effect on the rounding
             except in case of a midpoint in the round-to-nearest mode,
             when the even rounding was done away from zero instead of
             toward zero.
             In case of even rounding:
               1.BBBBBBBBBBBBBx10
             -                     1.CCCCCCCCCCCC
             = 1.BBBBBBBBBBBBBx01  Rounded to PREC(b)
             = 1.BBBBBBBBBBBBBx    Nearest / Rounded to PREC(a)
             Set gives:
               1.BBBBBBBBBBBBB0   if inexact == EVEN_INEX  (x == 0)
               1.BBBBBBBBBBBBB1+1 if inexact == -EVEN_INEX (x == 1)
             which means we get a wrong rounded result if x == 1,
             i.e. inexact == MPFR_EVEN_INEX (for positive numbers). */
               MPFR_LIKELY (inexact != MPFR_EVEN_INEX * MPFR_INT_SIGN (a)))
        {
          MPFR_LOG_MSG (("c small, case 2\n", 0));
          /* nothing to do */
        }
      else
        {
          /* We need to take the value preceding |a|. We can't use
             mpfr_nexttozero due to a possible out-of-range exponent.
             But this will allow us to have more specific code. */
          MPFR_LOG_MSG (("c small, case 3: correcting the value of a\n", 0));
          sh = (mpfr_prec_t) an * GMP_NUMB_BITS - aq;
          mpn_sub_1 (ap, ap, an, MPFR_LIMB_ONE << sh);
          if (MPFR_UNLIKELY (MPFR_LIMB_MSB (ap[an-1]) == 0))
            {
              exp_a --;
              /* The following is valid whether an = 1 or an > 1. */
              ap[an-1] |= MPFR_LIMB_HIGHBIT;
            }
          inexact = - MPFR_INT_SIGN (a);
        }
      /* The underflow case is possible only with UBF. The overflow case
         is also possible with normal FP due to rounding. */
      if (MPFR_UNLIKELY (exp_a > __gmpfr_emax))
        return mpfr_overflow (a, rnd_mode, MPFR_SIGN (a));
      if (MPFR_UNLIKELY (exp_a < __gmpfr_emin))
        {
          if (rnd_mode == MPFR_RNDN &&
              (exp_a < __gmpfr_emin - 1 ||
               (inexact * MPFR_INT_SIGN (a) >= 0 && mpfr_powerof2_raw (a))))
            rnd_mode = MPFR_RNDZ;
          return mpfr_underflow (a, rnd_mode, MPFR_SIGN(a));
        }
      MPFR_SET_EXP (a, exp_a);
      MPFR_RET (inexact);
    }

  /* reserve a space to store b aligned with the result, i.e. shifted by
     (-cancel) % GMP_NUMB_BITS to the right */
  bn = MPFR_LIMB_SIZE (b);
  MPFR_UNSIGNED_MINUS_MODULO (shift_b, cancel);
  cancel1 = (cancel + shift_b) / GMP_NUMB_BITS;

  /* the high cancel1 limbs from b should not be taken into account */
  if (MPFR_UNLIKELY (shift_b == 0))
    {
      bp = MPFR_MANT(b); /* no need of an extra space */
      /* Ensure ap != bp */
      if (MPFR_UNLIKELY (ap == bp))
        {
          bp = MPFR_TMP_LIMBS_ALLOC (bn);
          MPN_COPY (bp, ap, bn);
        }
    }
  else
    {
      bp = MPFR_TMP_LIMBS_ALLOC (bn + 1);
      bp[0] = mpn_rshift (bp + 1, MPFR_MANT(b), bn++, shift_b);
    }

  /* reserve a space to store c aligned with the result, i.e. shifted by
     (diff_exp-cancel) % GMP_NUMB_BITS to the right */
  cn = MPFR_LIMB_SIZE (c);
  if (IS_POW2 (GMP_NUMB_BITS))
    shift_c = ((mpfr_uexp_t) diff_exp - cancel) % GMP_NUMB_BITS;
  else
    {
      /* The above operation does not work if diff_exp - cancel < 0. */
      shift_c = diff_exp - (cancel % GMP_NUMB_BITS);
      shift_c = (shift_c + GMP_NUMB_BITS) % GMP_NUMB_BITS;
    }
  MPFR_ASSERTD (shift_c >= 0 && shift_c < GMP_NUMB_BITS);

  if (MPFR_UNLIKELY(shift_c == 0))
    {
      cp = MPFR_MANT(c);
      /* Ensure ap != cp */
      if (ap == cp)
        {
          cp = MPFR_TMP_LIMBS_ALLOC (cn);
          MPN_COPY(cp, ap, cn);
        }
    }
 else
    {
      cp = MPFR_TMP_LIMBS_ALLOC (cn + 1);
      cp[0] = mpn_rshift (cp + 1, MPFR_MANT(c), cn++, shift_c);
    }

#if 0
  MPFR_LOG_MSG (("rnd=%s shift_b=%d shift_c=%d diffexp=%" MPFR_EXP_FSPEC
                 "d\n", mpfr_print_rnd_mode (rnd_mode), shift_b, shift_c,
                 (mpfr_eexp_t) diff_exp));
#endif

  MPFR_ASSERTD (ap != cp);
  MPFR_ASSERTD (bp != cp);

  /* here we have shift_c = (diff_exp - cancel) % GMP_NUMB_BITS,
        0 <= shift_c < GMP_NUMB_BITS
     thus we want cancel2 = ceil((cancel - diff_exp) / GMP_NUMB_BITS) */

  /* Possible optimization with a C99 compiler (i.e. well-defined
     integer division): if MPFR_PREC_MAX is reduced to
     ((mpfr_prec_t)((mpfr_uprec_t)(~(mpfr_uprec_t)0)>>1) - GMP_NUMB_BITS + 1)
     and diff_exp is of type mpfr_exp_t (no need for mpfr_uexp_t, since
     the sum or difference of 2 exponents must be representable, as used
     by the multiplication code), then the computation of cancel2 could
     be simplified to
       cancel2 = (cancel - (diff_exp - shift_c)) / GMP_NUMB_BITS;
     because cancel, diff_exp and shift_c are all nonnegative and
     these variables are signed. */

  MPFR_ASSERTD (cancel >= 0);
  if (cancel >= diff_exp)
    /* Note that cancel is signed and will be converted to mpfr_uexp_t
       (type of diff_exp) in the expression below, so that this will
       work even if cancel is very large and diff_exp = 0. */
    cancel2 = (cancel - diff_exp + (GMP_NUMB_BITS - 1)) / GMP_NUMB_BITS;
  else
    cancel2 = - (mp_size_t) ((diff_exp - cancel) / GMP_NUMB_BITS);
  /* the high cancel2 limbs from b should not be taken into account */
#if 0
  MPFR_LOG_MSG (("cancel=%Pd cancel1=%Pd cancel2=%Pd\n",
                 cancel, cancel1, cancel2));
#endif

  /*               ap[an-1]        ap[0]
             <----------------+-----------|---->
             <----------PREC(a)----------><-sh->
 cancel1
 limbs        bp[bn-cancel1-1]
 <--...-----><----------------+-----------+----------->
  cancel2
  limbs       cp[cn-cancel2-1]                                    cancel2 >= 0
    <--...--><----------------+----------------+---------------->
                (-cancel2)                                        cancel2 < 0
                   limbs      <----------------+---------------->
  */

  /* first part: put in ap[0..an-1] the value of high(b) - high(c),
     where high(b) consists of the high an+cancel1 limbs of b,
     and high(c) consists of the high an+cancel2 limbs of c.
   */

  /* copy high(b) into a */
  if (MPFR_LIKELY(an + (mp_size_t) cancel1 <= bn))
    /* a: <----------------+-----------|---->
       b: <-----------------------------------------> */
      MPN_COPY (ap, bp + bn - (an + cancel1), an);
  else
    /* a: <----------------+-----------|---->
       b: <-------------------------> */
    if ((mp_size_t) cancel1 < bn) /* otherwise b does not overlap with a */
      {
        MPN_ZERO (ap, an + cancel1 - bn);
        MPN_COPY (ap + (an + cancel1 - bn), bp, bn - cancel1);
      }
    else
      MPN_ZERO (ap, an);

  /* subtract high(c) */
  if (MPFR_LIKELY(an + cancel2 > 0)) /* otherwise c does not overlap with a */
    {
      mp_limb_t *ap2;

      if (cancel2 >= 0)
        {
          if (an + cancel2 <= cn)
            /* a: <----------------------------->
               c: <-----------------------------------------> */
            mpn_sub_n (ap, ap, cp + cn - (an + cancel2), an);
          else
            /* a: <---------------------------->
               c: <-------------------------> */
            {
              ap2 = ap + an + (cancel2 - cn);
              if (cn > cancel2)
                mpn_sub_n (ap2, ap2, cp, cn - cancel2);
            }
        }
      else /* cancel2 < 0 */
        {
          mp_limb_t borrow;

          if (an + cancel2 <= cn)
            /* a: <----------------------------->
               c: <-----------------------------> */
            borrow = mpn_sub_n (ap, ap, cp + cn - (an + cancel2),
                                an + cancel2);
          else
            /* a: <---------------------------->
               c: <----------------> */
            {
              ap2 = ap + an + cancel2 - cn;
              borrow = mpn_sub_n (ap2, ap2, cp, cn);
            }
          ap2 = ap + an + cancel2;
          mpn_sub_1 (ap2, ap2, -cancel2, borrow);
        }
    }

  /* now perform rounding */
  sh = (mpfr_prec_t) an * GMP_NUMB_BITS - aq;
  /* last unused bits from a */
  carry = ap[0] & MPFR_LIMB_MASK (sh);
  ap[0] -= carry;

  if (rnd_mode == MPFR_RNDF)
    {
      inexact = 0;
      /* truncating is always correct since -1 ulp < low(b) - low(c) < 1 ulp */
      goto truncate;
    }
  else if (rnd_mode == MPFR_RNDN)
    {
      if (MPFR_LIKELY(sh))
        {
          /* can decide except when carry = 2^(sh-1) [middle]
             or carry = 0 [truncate, but cannot decide inexact flag] */
          if (carry > (MPFR_LIMB_ONE << (sh - 1)))
            goto add_one_ulp;
          else if ((0 < carry) && (carry < (MPFR_LIMB_ONE << (sh - 1))))
            {
              inexact = -1; /* result if smaller than exact value */
              goto truncate;
            }
          /* now carry = 2^(sh-1), in which case cmp_low=2,
             or carry = 0, in which case cmp_low=0 */
          cmp_low = (carry == 0) ? 0 : 2;
        }
    }
  else /* directed rounding: set rnd_mode to RNDZ iff toward zero */
    {
      if (MPFR_IS_RNDUTEST_OR_RNDDNOTTEST(rnd_mode, MPFR_IS_NEG(a)))
        rnd_mode = MPFR_RNDZ;

      if (carry)
        {
          if (rnd_mode == MPFR_RNDZ)
            {
              inexact = -1;
              goto truncate;
            }
          else /* round away */
            goto add_one_ulp;
        }
    }

  /* we have to consider the low (bn - (an+cancel1)) limbs from b,
     and the (cn - (an+cancel2)) limbs from c. */
  bn -= an + cancel1;
  cn0 = cn;
  cn -= an + cancel2;

#if 0
  MPFR_LOG_MSG (("last sh=%d bits from a are %Mu, bn=%Pd, cn=%Pd\n",
                 sh, carry, (mpfr_prec_t) bn, (mpfr_prec_t) cn));
#endif

  /* for rounding to nearest, we couldn't conclude up to here in the following
     cases:
     1. sh = 0, then cmp_low=0: we can either truncate, subtract one ulp
        or add one ulp: -1 ulp < low(b)-low(c) < 1 ulp
     2. sh > 0 but the low sh bits from high(b)-high(c) equal 2^(sh-1):
        -0.5 ulp <= -1/2^sh < low(b)-low(c)-0.5 < 1/2^sh <= 0.5 ulp
        we can't decide the rounding, in that case cmp_low=2:
        either we truncate and flag=-1, or we add one ulp and flag=1
     3. the low sh>0 bits from high(b)-high(c) equal 0: we know we have to
        truncate but we can't decide the ternary value, here cmp_low=0:
        -0.5 ulp <= -1/2^sh < low(b)-low(c) < 1/2^sh <= 0.5 ulp
        we always truncate and inexact can be any of -1,0,1
  */

  /* note: here cn might exceed cn0, in which case we consider a zero limb */
  for (k = 0; (bn > 0) || (cn > 0); k = 1)
    {
      /* if cmp_low < 0, we know low(b) - low(c) < 0
         if cmp_low > 0, we know low(b) - low(c) > 0
            (more precisely if cmp_low = 2, low(b) - low(c) = 0.5 ulp so far)
         if cmp_low = 0, so far low(b) - low(c) = 0 */

      /* get next limbs */
      bb = (bn > 0) ? bp[--bn] : 0;
      if ((cn > 0) && (cn-- <= cn0))
        cc = cp[cn];
      else
        cc = 0;

      /* cmp_low compares low(b) and low(c) */
      if (cmp_low == 0) /* case 1 or 3 */
        cmp_low = (bb < cc) ? -2+k : (bb > cc) ? 1 : 0;

      /* Case 1 for k=0 splits into 7 subcases:
         1a: bb > cc + half
         1b: bb = cc + half
         1c: 0 < bb - cc < half
         1d: bb = cc
         1e: -half < bb - cc < 0
         1f: bb - cc = -half
         1g: bb - cc < -half

         Case 2 splits into 3 subcases:
         2a: bb > cc
         2b: bb = cc
         2c: bb < cc

         Case 3 splits into 3 subcases:
         3a: bb > cc
         3b: bb = cc
         3c: bb < cc
      */

      /* the case rounding to nearest with sh=0 is special since one couldn't
         subtract above 1/2 ulp in the trailing limb of the result */
      if (rnd_mode == MPFR_RNDN && sh == 0 && k == 0) /* case 1 for k=0 */
        {
          mp_limb_t half = MPFR_LIMB_HIGHBIT;

          /* add one ulp if bb > cc + half
             truncate if cc - half < bb < cc + half
             sub one ulp if bb < cc - half
          */

          if (cmp_low < 0) /* bb < cc: -1 ulp < low(b) - low(c) < 0,
                              cases 1e, 1f and 1g */
            {
              if (cc >= half)
                cc -= half;
              else /* since bb < cc < half, bb+half < 2*half */
                bb += half;
              /* now we have bb < cc + half:
                 we have to subtract one ulp if bb < cc,
                 and truncate if bb > cc */
            }
          else if (cmp_low >= 0) /* bb >= cc, cases 1a to 1d */
            {
              if (cc < half)
                cc += half;
              else /* since bb >= cc >= half, bb - half >= 0 */
                bb -= half;
              /* now we have bb > cc - half: we have to add one ulp if bb > cc,
                 and truncate if bb < cc */
              if (cmp_low > 0)
                cmp_low = 2;
            }
        }

#if 0
      MPFR_LOG_MSG (("k=%d bb=%Mu cc=%Mu cmp_low=%d\n", k, bb, cc, cmp_low));
#endif

      if (cmp_low < 0) /* low(b) - low(c) < 0: either truncate or subtract
                          one ulp */
        {
          if (rnd_mode == MPFR_RNDZ)
            goto sub_one_ulp; /* set inexact=-1 */
          else if (rnd_mode != MPFR_RNDN) /* round away */
            {
              inexact = 1;
              goto truncate;
            }
          else /* round to nearest */
            {
              /* If cmp_low < 0 and bb > cc, then -0.5 ulp < low(b)-low(c) < 0,
                 whatever the value of sh.
                 If sh>0, then cmp_low < 0 implies that the initial neglected
                 sh bits were 0 (otherwise cmp_low=2 initially), thus the
                 weight of the new bits is less than 0.5 ulp too.
                 If k > 0 (and sh=0) this means that either the first neglected
                 limbs bb and cc were equal (thus cmp_low was 0 for k=0),
                 or we had bb - cc = -0.5 ulp or 0.5 ulp.
                 The last case is not possible here since we would have
                 cmp_low > 0 which is sticky.
                 In the first case (where we have cmp_low = -1), we truncate,
                 whereas in the 2nd case we have cmp_low = -2 and we subtract
                 one ulp.
              */
              if (bb > cc || sh > 0 || cmp_low == -1)
                {  /* -0.5 ulp < low(b)-low(c) < 0,
                      bb > cc corresponds to cases 1e and 1f1
                      sh > 0 corresponds to cases 3c and 3b3
                      cmp_low = -1 corresponds to case 1d3 (also 3b3) */
                  inexact = 1;
                  goto truncate;
                }
              else if (bb < cc) /* here sh = 0 and low(b)-low(c) < -0.5 ulp,
                                   this corresponds to cases 1g and 1f3 */
                goto sub_one_ulp;
              /* the only case where we can't conclude is sh=0 and bb=cc,
                 i.e., we have low(b) - low(c) = -0.5 ulp (up to now), thus
                 we don't know if we must truncate or subtract one ulp.
                 Note: for sh=0 we can't have low(b) - low(c) = -0.5 ulp up to
                 now, since low(b) - low(c) > 1/2^sh */
            }
        }
      else if (cmp_low > 0) /* 0 < low(b) - low(c): either truncate or
                               add one ulp */
        {
          if (rnd_mode == MPFR_RNDZ)
            {
              inexact = -1;
              goto truncate;
            }
          else if (rnd_mode != MPFR_RNDN) /* round away */
            goto add_one_ulp;
          else /* round to nearest */
            {
              if (bb > cc)
                {
                  /* if sh=0, then bb>cc means that low(b)-low(c) > 0.5 ulp,
                     and similarly when cmp_low=2 */
                  if (cmp_low == 2) /* cases 1a, 1b1, 2a and 2b1 */
                    goto add_one_ulp;
                  /* sh > 0 and cmp_low > 0: this implies that the sh initial
                     neglected bits were 0, and the remaining low(b)-low(c)>0,
                     but its weight is less than 0.5 ulp */
                  else /* 0 < low(b) - low(c) < 0.5 ulp, this corresponds to
                          cases 3a, 1d1 and 3b1 */
                    {
                      inexact = -1;
                      goto truncate;
                    }
                }
              else if (bb < cc) /* 0 < low(b) - low(c) < 0.5 ulp, cases 1c,
                                   1b3, 2b3 and 2c */
                {
                  inexact = -1;
                  goto truncate;
                }
              /* the only case where we can't conclude is bb=cc, i.e.,
                 low(b) - low(c) = 0.5 ulp (up to now), thus we don't know
                 if we must truncate or add one ulp. */
            }
        }
      /* after k=0, we cannot conclude in the following cases, we split them
         according to the values of bb and cc for k=1:
         1b. sh=0 and cmp_low = 1 and bb-cc = half [around 0.5 ulp]
             1b1. bb > cc: add one ulp, inex = 1
             1b2: bb = cc: cannot conclude
             1b3: bb < cc: truncate, inex = -1
         1d. sh=0 and cmp_low = 0 and bb-cc = 0 [around 0]
             1d1: bb > cc: truncate, inex = -1
             1d2: bb = cc: cannot conclude
             1d3: bb < cc: truncate, inex = +1
         1f. sh=0 and cmp_low = -1 and bb-cc = -half [around -0.5 ulp]
             1f1: bb > cc: truncate, inex = +1
             1f2: bb = cc: cannot conclude
             1f3: bb < cc: sub one ulp, inex = -1
         2b. sh > 0 and cmp_low = 2 and bb=cc [around 0.5 ulp]
             2b1. bb > cc: add one ulp, inex = 1
             2b2: bb = cc: cannot conclude
             2b3: bb < cc: truncate, inex = -1
         3b. sh > 0 and cmp_low = 0 [around 0]
             3b1. bb > cc: truncate, inex = -1
             3b2: bb = cc: cannot conclude
             3b3: bb < cc: truncate, inex = +1
      */
    }

  if ((rnd_mode == MPFR_RNDN) && cmp_low != 0)
    {
      /* even rounding rule */
      if ((ap[0] >> sh) & 1)
        {
          if (cmp_low < 0)
            goto sub_one_ulp;
          else
            goto add_one_ulp;
        }
      else
        inexact = (cmp_low > 0) ? -1 : 1;
    }
  else
    inexact = 0;
  goto truncate;

 sub_one_ulp: /* sub one unit in last place to a */
  mpn_sub_1 (ap, ap, an, MPFR_LIMB_ONE << sh);
  inexact = -1;
  goto end_of_sub;

 add_one_ulp: /* add one unit in last place to a */
  if (MPFR_UNLIKELY(mpn_add_1 (ap, ap, an, MPFR_LIMB_ONE << sh)))
    /* result is a power of 2: 11111111111111 + 1 = 1000000000000000 */
    {
      ap[an-1] = MPFR_LIMB_HIGHBIT;
      add_exp = 1;
    }
  inexact = 1; /* result larger than exact value */

 truncate:
  if (MPFR_UNLIKELY((ap[an-1] >> (GMP_NUMB_BITS - 1)) == 0))
    /* case 1 - epsilon */
    {
      ap[an-1] = MPFR_LIMB_HIGHBIT;
      add_exp = 1;
    }

 end_of_sub:
  /* we have to set MPFR_EXP(a) to MPFR_EXP(b) - cancel + add_exp, taking
     care of underflows/overflows in that computation, and of the allowed
     exponent range */
  MPFR_TMP_FREE (marker);
  if (MPFR_LIKELY(cancel))
    {
      cancel -= add_exp; /* OK: add_exp is an int equal to 0 or 1 */
      MPFR_ASSERTD (cancel >= 0);
      /* Detect an underflow case to avoid a possible integer overflow
         with UBF in the computation of exp_a. */
      if (MPFR_UNLIKELY (exp_b < __gmpfr_emin - 1))
        {
          if (rnd_mode == MPFR_RNDN)
            rnd_mode = MPFR_RNDZ;
          return mpfr_underflow (a, rnd_mode, MPFR_SIGN(a));
        }
      exp_a = exp_b - cancel;
      /* The following assertion corresponds to a limitation of the MPFR
         implementation. It may fail with a 32-bit ABI and huge precisions,
         but this is practically impossible with a 64-bit ABI. This kind
         of issue is not specific to this function. */
      MPFR_ASSERTN (exp_b != MPFR_EXP_MAX || exp_a > __gmpfr_emax);
      if (MPFR_UNLIKELY (exp_a < __gmpfr_emin))
        {
        underflow:
          if (rnd_mode == MPFR_RNDN &&
              (exp_a < __gmpfr_emin - 1 ||
               (inexact >= 0 && mpfr_powerof2_raw (a))))
            rnd_mode = MPFR_RNDZ;
          return mpfr_underflow (a, rnd_mode, MPFR_SIGN(a));
        }
      /* We cannot have an overflow here, except for UBFs. Indeed:
         exp_a = exp_b - cancel + add_exp <= emax - 1 + 1 <= emax.
         For UBFs, we can have exp_b > emax. */
      if (exp_a > __gmpfr_emax)
        {
          MPFR_ASSERTD (exp_b > __gmpfr_emax);  /* since exp_b >= exp_a */
          return mpfr_overflow (a, rnd_mode, MPFR_SIGN (a));
        }
    }
  else /* cancel = 0: MPFR_EXP(a) <- MPFR_EXP(b) + add_exp */
    {
      /* in case cancel = 0, add_exp can still be 1, in case b is just
         below a power of two, c is very small, prec(a) < prec(b),
         and rnd=away or nearest */
      MPFR_ASSERTD (add_exp == 0 || add_exp == 1);
      /* Overflow iff exp_b + add_exp > __gmpfr_emax in Z, but we do
         a subtraction below to avoid a potential integer overflow in
         the case exp_b == MPFR_EXP_MAX. */
      if (MPFR_UNLIKELY (exp_b > __gmpfr_emax - add_exp))
        return mpfr_overflow (a, rnd_mode, MPFR_SIGN (a));
      exp_a = exp_b + add_exp;
      /* Warning: an underflow can happen for UBFs, for example when
         mpfr_add is called from mpfr_fmma or mpfr_fmms. */
      if (MPFR_UNLIKELY (exp_a < __gmpfr_emin))
        goto underflow;
      MPFR_ASSERTD (exp_a >= __gmpfr_emin);
    }
  MPFR_SET_EXP (a, exp_a);
  /* check that result is msb-normalized */
  MPFR_ASSERTD(ap[an-1] > ~ap[an-1]);
  MPFR_RET (inexact * MPFR_INT_SIGN (a));
}