summaryrefslogtreecommitdiff
path: root/src/set_z_2exp.c
blob: 6e0178af9da40b3769164b5fa525d7bd45431ff0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/* mpfr_set_z_2exp -- set a floating-point number from a multiple-precision
                      integer and an exponent

Copyright 1999-2021 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.

This file is part of the GNU MPFR Library.

The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */

#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"

/* set f to the integer z multiplied by 2^e */
int
mpfr_set_z_2exp (mpfr_ptr f, mpz_srcptr z, mpfr_exp_t e, mpfr_rnd_t rnd_mode)
{
  mp_size_t fn, zn, dif;
  int k, sign_z, inex;
  mp_limb_t *fp, *zp;
  mpfr_exp_t exp, nmax;
  mpfr_uexp_t uexp;

  sign_z = mpz_sgn (z);
  if (MPFR_UNLIKELY (sign_z == 0)) /* ignore the exponent for 0 */
    {
      MPFR_SET_ZERO(f);
      MPFR_SET_POS(f);
      MPFR_RET(0);
    }
  MPFR_ASSERTD (sign_z == MPFR_SIGN_POS || sign_z == MPFR_SIGN_NEG);

  zn = ABSIZ(z); /* limb size of z */
  MPFR_ASSERTD (zn >= 1);
  nmax = MPFR_EMAX_MAX / GMP_NUMB_BITS + 1;
  /* Detect early overflow with zn + en > nmax,
     where en = floor(e / GMP_NUMB_BITS).
     This is checked without an integer overflow (even assuming some
     future version of GMP, where limitations may be removed). */
  if (MPFR_UNLIKELY (e >= 0 ?
                     zn > nmax - e / GMP_NUMB_BITS :
                     zn + (e + 1) / GMP_NUMB_BITS - 1 > nmax))
    return mpfr_overflow (f, rnd_mode, sign_z);
  /* because zn + en >= MPFR_EMAX_MAX / GMP_NUMB_BITS + 2
     implies (zn + en) * GMP_NUMB_BITS >= MPFR_EMAX_MAX + GMP_NUMB_BITS + 1
     and exp = zn * GMP_NUMB_BITS + e - k
             >= (zn + en) * GMP_NUMB_BITS - k > MPFR_EMAX_MAX */

  fp = MPFR_MANT (f);
  fn = MPFR_LIMB_SIZE (f);
  dif = zn - fn;
  zp = PTR(z);
  count_leading_zeros (k, zp[zn-1]);

  /* now zn + en <= MPFR_EMAX_MAX / GMP_NUMB_BITS + 1
     thus (zn + en) * GMP_NUMB_BITS <= MPFR_EMAX_MAX + GMP_NUMB_BITS
     and exp = zn * GMP_NUMB_BITS + e - k
             <= (zn + en) * GMP_NUMB_BITS - k + GMP_NUMB_BITS - 1
             <= MPFR_EMAX_MAX + 2 * GMP_NUMB_BITS - 1 */
  /* We need to compute exp = zn * GMP_NUMB_BITS + e - k with well-defined
     operations (no integer overflows / no implementation-defined results).
     The mathematical result of zn * GMP_NUMB_BITS may be larger than
     the largest value of mpfr_exp_t while exp could still be less than
     __gmpfr_emax. Thanks to early overflow detection, we can compute the
     result in modular arithmetic, using mpfr_uexp_t, and convert it to
     mpfr_exp_t. */
  uexp = (mpfr_uexp_t) zn * GMP_NUMB_BITS + (mpfr_uexp_t) e - k;

  /* Convert to signed in a portable way (see doc/README.dev).
     On most platforms, this can be optimized to identity (no-op). */
  exp = uexp > MPFR_EXP_MAX ? -1 - (mpfr_exp_t) ~uexp : (mpfr_exp_t) uexp;

  /* The exponent will be exp or exp + 1 (due to rounding) */

  if (MPFR_UNLIKELY (exp > __gmpfr_emax))
    return mpfr_overflow (f, rnd_mode, sign_z);
  if (MPFR_UNLIKELY (exp + 1 < __gmpfr_emin))
    return mpfr_underflow (f, rnd_mode == MPFR_RNDN ? MPFR_RNDZ : rnd_mode,
                           sign_z);

  if (MPFR_LIKELY (dif >= 0))
    {
      mp_limb_t rb, sb, ulp;
      int sh;

      /* number has to be truncated */
      if (MPFR_LIKELY (k != 0))
        {
          mpn_lshift (fp, &zp[dif], fn, k);
          if (MPFR_UNLIKELY (dif > 0))
            fp[0] |= zp[dif - 1] >> (GMP_NUMB_BITS - k);
        }
      else
        MPN_COPY (fp, zp + dif, fn);

      /* Compute Rounding Bit and Sticky Bit */
      MPFR_UNSIGNED_MINUS_MODULO (sh, MPFR_PREC (f) );
      if (MPFR_LIKELY (sh != 0))
        {
          mp_limb_t mask = MPFR_LIMB_ONE << (sh-1);
          mp_limb_t limb = fp[0];
          rb = limb & mask;
          sb = limb & (mask-1);
          ulp = 2*mask;
          fp[0] = limb & ~(ulp-1);
        }
      else /* sh == 0 */
        {
          mp_limb_t mask = MPFR_LIMB_ONE << (GMP_NUMB_BITS - 1 - k);
          if (MPFR_UNLIKELY (dif > 0))
            {
              rb = zp[--dif] & mask;
              sb = zp[dif] & (mask-1);
            }
          else
            rb = sb = 0;
          k = 0;
          ulp = MPFR_LIMB_ONE;
        }
      if (MPFR_UNLIKELY (sb == 0 && dif > 0))
        {
          sb = zp[--dif];
          if (MPFR_LIKELY (k != 0))
            sb &= MPFR_LIMB_MASK (GMP_NUMB_BITS - k);
          if (MPFR_UNLIKELY (sb == 0) && MPFR_LIKELY (dif > 0))
            do {
              sb = zp[--dif];
            } while (dif > 0 && sb == 0);
        }

      /* Rounding */
      if (MPFR_LIKELY (rnd_mode == MPFR_RNDN))
        {
          if (rb == 0 || MPFR_UNLIKELY (sb == 0 && (fp[0] & ulp) == 0))
            goto trunc;
          else
            goto addoneulp;
        }
      else /* Not Nearest */
        {
          if (MPFR_LIKELY (MPFR_IS_LIKE_RNDZ (rnd_mode, sign_z < 0))
              || MPFR_UNLIKELY ( (sb | rb) == 0 ))
            goto trunc;
          else
            goto addoneulp;
        }

    trunc:
      inex = - ((sb | rb) != 0);
      goto end;

    addoneulp:
      inex = 1;
      if (MPFR_UNLIKELY (mpn_add_1 (fp, fp, fn, ulp)))
        {
          /* Pow 2 case */
          if (MPFR_UNLIKELY (exp == __gmpfr_emax))
            return mpfr_overflow (f, rnd_mode, sign_z);
          exp ++;
          fp[fn-1] = MPFR_LIMB_HIGHBIT;
        }
    end:
      (void) 0;
    }
  else   /* dif < 0: Mantissa F is strictly bigger than z's one */
    {
      if (MPFR_LIKELY (k != 0))
        mpn_lshift (fp - dif, zp, zn, k);
      else
        MPN_COPY (fp - dif, zp, zn);
      /* fill with zeroes */
      MPN_ZERO (fp, -dif);
      inex = 0; /* result is exact */
    }

  if (MPFR_UNLIKELY (exp < __gmpfr_emin))
    {
      if (rnd_mode == MPFR_RNDN && inex == 0 && mpfr_powerof2_raw (f))
        rnd_mode = MPFR_RNDZ;
      return mpfr_underflow (f, rnd_mode, sign_z);
    }

  MPFR_SET_EXP (f, exp);
  MPFR_SET_SIGN (f, sign_z);
  MPFR_RET (inex*sign_z);
}