1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
|
/* mpfr_pow -- power function x^y
Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
Contributed by the Arenaire and Caramel projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* return non zero iff x^y is exact.
Assumes x and y are ordinary numbers,
y is not an integer, x is not a power of 2 and x is positive
If x^y is exact, it computes it and sets *inexact.
*/
static int
mpfr_pow_is_exact (mpfr_ptr z, mpfr_srcptr x, mpfr_srcptr y,
mpfr_rnd_t rnd_mode, int *inexact)
{
mpz_t a, c;
mpfr_exp_t d, b;
unsigned long i;
int res;
MPFR_ASSERTD (!MPFR_IS_SINGULAR (y));
MPFR_ASSERTD (!MPFR_IS_SINGULAR (x));
MPFR_ASSERTD (!mpfr_integer_p (y));
MPFR_ASSERTD (mpfr_cmp_si_2exp (x, MPFR_INT_SIGN (x),
MPFR_GET_EXP (x) - 1) != 0);
MPFR_ASSERTD (MPFR_IS_POS (x));
if (MPFR_IS_NEG (y))
return 0; /* x is not a power of two => x^-y is not exact */
/* compute d such that y = c*2^d with c odd integer */
mpz_init (c);
d = mpfr_get_z_2exp (c, y);
i = mpz_scan1 (c, 0);
mpz_fdiv_q_2exp (c, c, i);
d += i;
/* now y=c*2^d with c odd */
/* Since y is not an integer, d is necessarily < 0 */
MPFR_ASSERTD (d < 0);
/* Compute a,b such that x=a*2^b */
mpz_init (a);
b = mpfr_get_z_2exp (a, x);
i = mpz_scan1 (a, 0);
mpz_fdiv_q_2exp (a, a, i);
b += i;
/* now x=a*2^b with a is odd */
for (res = 1 ; d != 0 ; d++)
{
/* a*2^b is a square iff
(i) a is a square when b is even
(ii) 2*a is a square when b is odd */
if (b % 2 != 0)
{
mpz_mul_2exp (a, a, 1); /* 2*a */
b --;
}
MPFR_ASSERTD ((b % 2) == 0);
if (!mpz_perfect_square_p (a))
{
res = 0;
goto end;
}
mpz_sqrt (a, a);
b = b / 2;
}
/* Now x = (a'*2^b')^(2^-d) with d < 0
so x^y = ((a'*2^b')^(2^-d))^(c*2^d)
= ((a'*2^b')^c with c odd integer */
{
mpfr_t tmp;
mpfr_prec_t p;
MPFR_MPZ_SIZEINBASE2 (p, a);
mpfr_init2 (tmp, p); /* prec = 1 should not be possible */
res = mpfr_set_z (tmp, a, MPFR_RNDN);
MPFR_ASSERTD (res == 0);
res = mpfr_mul_2si (tmp, tmp, b, MPFR_RNDN);
MPFR_ASSERTD (res == 0);
*inexact = mpfr_pow_z (z, tmp, c, rnd_mode);
mpfr_clear (tmp);
res = 1;
}
end:
mpz_clear (a);
mpz_clear (c);
return res;
}
/* Return 1 if y is an odd integer, 0 otherwise. */
static int
is_odd (mpfr_srcptr y)
{
mpfr_exp_t expo;
mpfr_prec_t prec;
mp_size_t yn;
mp_limb_t *yp;
/* NAN, INF or ZERO are not allowed */
MPFR_ASSERTD (!MPFR_IS_SINGULAR (y));
expo = MPFR_GET_EXP (y);
if (expo <= 0)
return 0; /* |y| < 1 and not 0 */
prec = MPFR_PREC(y);
if ((mpfr_prec_t) expo > prec)
return 0; /* y is a multiple of 2^(expo-prec), thus not odd */
/* 0 < expo <= prec:
y = 1xxxxxxxxxt.zzzzzzzzzzzzzzzzzz[000]
expo bits (prec-expo) bits
We have to check that:
(a) the bit 't' is set
(b) all the 'z' bits are zero
*/
prec = ((prec - 1) / GMP_NUMB_BITS + 1) * GMP_NUMB_BITS - expo;
/* number of z+0 bits */
yn = prec / GMP_NUMB_BITS;
MPFR_ASSERTN(yn >= 0);
/* yn is the index of limb containing the 't' bit */
yp = MPFR_MANT(y);
/* if expo is a multiple of GMP_NUMB_BITS, t is bit 0 */
if (expo % GMP_NUMB_BITS == 0 ? (yp[yn] & 1) == 0
: yp[yn] << ((expo % GMP_NUMB_BITS) - 1) != MPFR_LIMB_HIGHBIT)
return 0;
while (--yn >= 0)
if (yp[yn] != 0)
return 0;
return 1;
}
/* Assumes that the exponent range has already been extended and if y is
an integer, then the result is not exact in unbounded exponent range. */
int
mpfr_pow_general (mpfr_ptr z, mpfr_srcptr x, mpfr_srcptr y,
mpfr_rnd_t rnd_mode, int y_is_integer, mpfr_save_expo_t *expo)
{
mpfr_t t, u, k, absx;
int k_non_zero = 0;
int check_exact_case = 0;
int inexact;
/* Declaration of the size variable */
mpfr_prec_t Nz = MPFR_PREC(z); /* target precision */
mpfr_prec_t Nt; /* working precision */
mpfr_exp_t err; /* error */
MPFR_ZIV_DECL (ziv_loop);
MPFR_LOG_FUNC (("x[%#R]=%R y[%#R]=%R rnd=%d", x, x, y, y, rnd_mode),
("z[%#R]=%R inexact=%d", z, z, inexact));
/* We put the absolute value of x in absx, pointing to the significand
of x to avoid allocating memory for the significand of absx. */
MPFR_ALIAS(absx, x, /*sign=*/ 1, /*EXP=*/ MPFR_EXP(x));
/* We will compute the absolute value of the result. So, let's
invert the rounding mode if the result is negative. */
if (MPFR_IS_NEG (x) && is_odd (y))
rnd_mode = MPFR_INVERT_RND (rnd_mode);
/* compute the precision of intermediary variable */
/* the optimal number of bits : see algorithms.tex */
Nt = Nz + 5 + MPFR_INT_CEIL_LOG2 (Nz);
/* initialise of intermediary variable */
mpfr_init2 (t, Nt);
MPFR_ZIV_INIT (ziv_loop, Nt);
for (;;)
{
MPFR_BLOCK_DECL (flags1);
/* compute exp(y*ln|x|), using MPFR_RNDU to get an upper bound, so
that we can detect underflows. */
mpfr_log (t, absx, MPFR_IS_NEG (y) ? MPFR_RNDD : MPFR_RNDU); /* ln|x| */
mpfr_mul (t, y, t, MPFR_RNDU); /* y*ln|x| */
if (k_non_zero)
{
MPFR_LOG_MSG (("subtract k * ln(2)\n", 0));
mpfr_const_log2 (u, MPFR_RNDD);
mpfr_mul (u, u, k, MPFR_RNDD);
/* Error on u = k * log(2): < k * 2^(-Nt) < 1. */
mpfr_sub (t, t, u, MPFR_RNDU);
MPFR_LOG_MSG (("t = y * ln|x| - k * ln(2)\n", 0));
MPFR_LOG_VAR (t);
}
/* estimate of the error -- see pow function in algorithms.tex.
The error on t is at most 1/2 + 3*2^(EXP(t)+1) ulps, which is
<= 2^(EXP(t)+3) for EXP(t) >= -1, and <= 2 ulps for EXP(t) <= -2.
Additional error if k_no_zero: treal = t * errk, with
1 - |k| * 2^(-Nt) <= exp(-|k| * 2^(-Nt)) <= errk <= 1,
i.e., additional absolute error <= 2^(EXP(k)+EXP(t)-Nt).
Total error <= 2^err1 + 2^err2 <= 2^(max(err1,err2)+1). */
err = MPFR_NOTZERO (t) && MPFR_GET_EXP (t) >= -1 ?
MPFR_GET_EXP (t) + 3 : 1;
if (k_non_zero)
{
if (MPFR_GET_EXP (k) > err)
err = MPFR_GET_EXP (k);
err++;
}
MPFR_BLOCK (flags1, mpfr_exp (t, t, MPFR_RNDN)); /* exp(y*ln|x|)*/
/* We need to test */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (t) || MPFR_UNDERFLOW (flags1)))
{
mpfr_prec_t Ntmin;
MPFR_BLOCK_DECL (flags2);
MPFR_ASSERTN (!k_non_zero);
MPFR_ASSERTN (!MPFR_IS_NAN (t));
/* Real underflow? */
if (MPFR_IS_ZERO (t))
{
/* Underflow. We computed rndn(exp(t)), where t >= y*ln|x|.
Therefore rndn(|x|^y) = 0, and we have a real underflow on
|x|^y. */
inexact = mpfr_underflow (z, rnd_mode == MPFR_RNDN ? MPFR_RNDZ
: rnd_mode, MPFR_SIGN_POS);
if (expo != NULL)
MPFR_SAVE_EXPO_UPDATE_FLAGS (*expo, MPFR_FLAGS_INEXACT
| MPFR_FLAGS_UNDERFLOW);
break;
}
/* Real overflow? */
if (MPFR_IS_INF (t))
{
/* Note: we can probably use a low precision for this test. */
mpfr_log (t, absx, MPFR_IS_NEG (y) ? MPFR_RNDU : MPFR_RNDD);
mpfr_mul (t, y, t, MPFR_RNDD); /* y * ln|x| */
MPFR_BLOCK (flags2, mpfr_exp (t, t, MPFR_RNDD));
/* t = lower bound on exp(y * ln|x|) */
if (MPFR_OVERFLOW (flags2))
{
/* We have computed a lower bound on |x|^y, and it
overflowed. Therefore we have a real overflow
on |x|^y. */
inexact = mpfr_overflow (z, rnd_mode, MPFR_SIGN_POS);
if (expo != NULL)
MPFR_SAVE_EXPO_UPDATE_FLAGS (*expo, MPFR_FLAGS_INEXACT
| MPFR_FLAGS_OVERFLOW);
break;
}
}
k_non_zero = 1;
Ntmin = sizeof(mpfr_exp_t) * CHAR_BIT;
if (Ntmin > Nt)
{
Nt = Ntmin;
mpfr_set_prec (t, Nt);
}
mpfr_init2 (u, Nt);
mpfr_init2 (k, Ntmin);
mpfr_log2 (k, absx, MPFR_RNDN);
mpfr_mul (k, y, k, MPFR_RNDN);
mpfr_round (k, k);
MPFR_LOG_VAR (k);
/* |y| < 2^Ntmin, therefore |k| < 2^Nt. */
continue;
}
if (MPFR_LIKELY (MPFR_CAN_ROUND (t, Nt - err, Nz, rnd_mode)))
{
inexact = mpfr_set (z, t, rnd_mode);
break;
}
/* check exact power, except when y is an integer (since the
exact cases for y integer have already been filtered out) */
if (check_exact_case == 0 && ! y_is_integer)
{
if (mpfr_pow_is_exact (z, absx, y, rnd_mode, &inexact))
break;
check_exact_case = 1;
}
/* reactualisation of the precision */
MPFR_ZIV_NEXT (ziv_loop, Nt);
mpfr_set_prec (t, Nt);
if (k_non_zero)
mpfr_set_prec (u, Nt);
}
MPFR_ZIV_FREE (ziv_loop);
if (k_non_zero)
{
int inex2;
long lk;
/* The rounded result in an unbounded exponent range is z * 2^k. As
* MPFR chooses underflow after rounding, the mpfr_mul_2si below will
* correctly detect underflows and overflows. However, in rounding to
* nearest, if z * 2^k = 2^(emin - 2), then the double rounding may
* affect the result. We need to cope with that before overwriting z.
* If inexact >= 0, then the real result is <= 2^(emin - 2), so that
* o(2^(emin - 2)) = +0 is correct. If inexact < 0, then the real
* result is > 2^(emin - 2) and we need to round to 2^(emin - 1).
*/
MPFR_ASSERTN (MPFR_EMAX_MAX <= LONG_MAX);
lk = mpfr_get_si (k, MPFR_RNDN);
if (rnd_mode == MPFR_RNDN && inexact < 0 &&
MPFR_GET_EXP (z) + lk == __gmpfr_emin - 1 && mpfr_powerof2_raw (z))
{
/* Rounding to nearest, real result > z * 2^k = 2^(emin - 2),
* underflow case: as the minimum precision is > 1, we will
* obtain the correct result and exceptions by replacing z by
* nextabove(z).
*/
MPFR_ASSERTN (MPFR_PREC_MIN > 1);
mpfr_nextabove (z);
}
mpfr_clear_flags ();
inex2 = mpfr_mul_2si (z, z, lk, rnd_mode);
if (inex2) /* underflow or overflow */
{
inexact = inex2;
if (expo != NULL)
MPFR_SAVE_EXPO_UPDATE_FLAGS (*expo, __gmpfr_flags);
}
mpfr_clears (u, k, (mpfr_ptr) 0);
}
mpfr_clear (t);
/* update the sign of the result if x was negative */
if (MPFR_IS_NEG (x) && is_odd (y))
{
MPFR_SET_NEG(z);
inexact = -inexact;
}
return inexact;
}
/* The computation of z = pow(x,y) is done by
z = exp(y * log(x)) = x^y
For the special cases, see Section F.9.4.4 of the C standard:
_ pow(±0, y) = ±inf for y an odd integer < 0.
_ pow(±0, y) = +inf for y < 0 and not an odd integer.
_ pow(±0, y) = ±0 for y an odd integer > 0.
_ pow(±0, y) = +0 for y > 0 and not an odd integer.
_ pow(-1, ±inf) = 1.
_ pow(+1, y) = 1 for any y, even a NaN.
_ pow(x, ±0) = 1 for any x, even a NaN.
_ pow(x, y) = NaN for finite x < 0 and finite non-integer y.
_ pow(x, -inf) = +inf for |x| < 1.
_ pow(x, -inf) = +0 for |x| > 1.
_ pow(x, +inf) = +0 for |x| < 1.
_ pow(x, +inf) = +inf for |x| > 1.
_ pow(-inf, y) = -0 for y an odd integer < 0.
_ pow(-inf, y) = +0 for y < 0 and not an odd integer.
_ pow(-inf, y) = -inf for y an odd integer > 0.
_ pow(-inf, y) = +inf for y > 0 and not an odd integer.
_ pow(+inf, y) = +0 for y < 0.
_ pow(+inf, y) = +inf for y > 0. */
int
mpfr_pow (mpfr_ptr z, mpfr_srcptr x, mpfr_srcptr y, mpfr_rnd_t rnd_mode)
{
int inexact;
int cmp_x_1;
int y_is_integer;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_LOG_FUNC (("x[%#R]=%R y[%#R]=%R rnd=%d", x, x, y, y, rnd_mode),
("z[%#R]=%R inexact=%d", z, z, inexact));
if (MPFR_ARE_SINGULAR (x, y))
{
/* pow(x, 0) returns 1 for any x, even a NaN. */
if (MPFR_UNLIKELY (MPFR_IS_ZERO (y)))
return mpfr_set_ui (z, 1, rnd_mode);
else if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (z);
MPFR_RET_NAN;
}
else if (MPFR_IS_NAN (y))
{
/* pow(+1, NaN) returns 1. */
if (mpfr_cmp_ui (x, 1) == 0)
return mpfr_set_ui (z, 1, rnd_mode);
MPFR_SET_NAN (z);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (y))
{
if (MPFR_IS_INF (x))
{
if (MPFR_IS_POS (y))
MPFR_SET_INF (z);
else
MPFR_SET_ZERO (z);
MPFR_SET_POS (z);
MPFR_RET (0);
}
else
{
int cmp;
cmp = mpfr_cmpabs (x, __gmpfr_one) * MPFR_INT_SIGN (y);
MPFR_SET_POS (z);
if (cmp > 0)
{
/* Return +inf. */
MPFR_SET_INF (z);
MPFR_RET (0);
}
else if (cmp < 0)
{
/* Return +0. */
MPFR_SET_ZERO (z);
MPFR_RET (0);
}
else
{
/* Return 1. */
return mpfr_set_ui (z, 1, rnd_mode);
}
}
}
else if (MPFR_IS_INF (x))
{
int negative;
/* Determine the sign now, in case y and z are the same object */
negative = MPFR_IS_NEG (x) && is_odd (y);
if (MPFR_IS_POS (y))
MPFR_SET_INF (z);
else
MPFR_SET_ZERO (z);
if (negative)
MPFR_SET_NEG (z);
else
MPFR_SET_POS (z);
MPFR_RET (0);
}
else
{
int negative;
MPFR_ASSERTD (MPFR_IS_ZERO (x));
/* Determine the sign now, in case y and z are the same object */
negative = MPFR_IS_NEG(x) && is_odd (y);
if (MPFR_IS_NEG (y))
MPFR_SET_INF (z);
else
MPFR_SET_ZERO (z);
if (negative)
MPFR_SET_NEG (z);
else
MPFR_SET_POS (z);
MPFR_RET (0);
}
}
/* x^y for x < 0 and y not an integer is not defined */
y_is_integer = mpfr_integer_p (y);
if (MPFR_IS_NEG (x) && ! y_is_integer)
{
MPFR_SET_NAN (z);
MPFR_RET_NAN;
}
/* now the result cannot be NaN:
(1) either x > 0
(2) or x < 0 and y is an integer */
cmp_x_1 = mpfr_cmpabs (x, __gmpfr_one);
if (cmp_x_1 == 0)
return mpfr_set_si (z, MPFR_IS_NEG (x) && is_odd (y) ? -1 : 1, rnd_mode);
/* now we have:
(1) either x > 0
(2) or x < 0 and y is an integer
and in addition |x| <> 1.
*/
/* detect overflow: an overflow is possible if
(a) |x| > 1 and y > 0
(b) |x| < 1 and y < 0.
FIXME: this assumes 1 is always representable.
FIXME2: maybe we can test overflow and underflow simultaneously.
The idea is the following: first compute an approximation to
y * log2|x|, using rounding to nearest. If |x| is not too near from 1,
this approximation should be accurate enough, and in most cases enable
one to prove that there is no underflow nor overflow.
Otherwise, it should enable one to check only underflow or overflow,
instead of both cases as in the present case.
*/
if (cmp_x_1 * MPFR_SIGN (y) > 0)
{
mpfr_t t;
int negative, overflow;
MPFR_SAVE_EXPO_MARK (expo);
mpfr_init2 (t, 53);
/* we want a lower bound on y*log2|x|:
(i) if x > 0, it suffices to round log2(x) toward zero, and
to round y*o(log2(x)) toward zero too;
(ii) if x < 0, we first compute t = o(-x), with rounding toward 1,
and then follow as in case (1). */
if (MPFR_SIGN (x) > 0)
mpfr_log2 (t, x, MPFR_RNDZ);
else
{
mpfr_neg (t, x, (cmp_x_1 > 0) ? MPFR_RNDZ : MPFR_RNDU);
mpfr_log2 (t, t, MPFR_RNDZ);
}
mpfr_mul (t, t, y, MPFR_RNDZ);
overflow = mpfr_cmp_si (t, __gmpfr_emax) > 0;
mpfr_clear (t);
MPFR_SAVE_EXPO_FREE (expo);
if (overflow)
{
MPFR_LOG_MSG (("early overflow detection\n", 0));
negative = MPFR_SIGN(x) < 0 && is_odd (y);
return mpfr_overflow (z, rnd_mode, negative ? -1 : 1);
}
}
/* Basic underflow checking. One has:
* - if y > 0, |x^y| < 2^(EXP(x) * y);
* - if y < 0, |x^y| <= 2^((EXP(x) - 1) * y);
* so that one can compute a value ebound such that |x^y| < 2^ebound.
* If we have ebound <= emin - 2 (emin - 1 in directed rounding modes),
* then there is an underflow and we can decide the return value.
*/
if (MPFR_IS_NEG (y) ? (MPFR_GET_EXP (x) > 1) : (MPFR_GET_EXP (x) < 0))
{
mpfr_t tmp;
mpfr_eexp_t ebound;
int inex2;
/* We must restore the flags. */
MPFR_SAVE_EXPO_MARK (expo);
mpfr_init2 (tmp, sizeof (mpfr_exp_t) * CHAR_BIT);
inex2 = mpfr_set_exp_t (tmp, MPFR_GET_EXP (x), MPFR_RNDN);
MPFR_ASSERTN (inex2 == 0);
if (MPFR_IS_NEG (y))
{
inex2 = mpfr_sub_ui (tmp, tmp, 1, MPFR_RNDN);
MPFR_ASSERTN (inex2 == 0);
}
mpfr_mul (tmp, tmp, y, MPFR_RNDU);
if (MPFR_IS_NEG (y))
mpfr_nextabove (tmp);
/* tmp doesn't necessarily fit in ebound, but that doesn't matter
since we get the minimum value in such a case. */
ebound = mpfr_get_exp_t (tmp, MPFR_RNDU);
mpfr_clear (tmp);
MPFR_SAVE_EXPO_FREE (expo);
if (MPFR_UNLIKELY (ebound <=
__gmpfr_emin - (rnd_mode == MPFR_RNDN ? 2 : 1)))
{
/* warning: mpfr_underflow rounds away from 0 for MPFR_RNDN */
MPFR_LOG_MSG (("early underflow detection\n", 0));
return mpfr_underflow (z,
rnd_mode == MPFR_RNDN ? MPFR_RNDZ : rnd_mode,
MPFR_SIGN (x) < 0 && is_odd (y) ? -1 : 1);
}
}
/* If y is an integer, we can use mpfr_pow_z (based on multiplications),
but if y is very large (I'm not sure about the best threshold -- VL),
we shouldn't use it, as it can be very slow and take a lot of memory
(and even crash or make other programs crash, as several hundred of
MBs may be necessary). Note that in such a case, either x = +/-2^b
(this case is handled below) or x^y cannot be represented exactly in
any precision supported by MPFR (the general case uses this property).
*/
if (y_is_integer && (MPFR_GET_EXP (y) <= 256))
{
mpz_t zi;
MPFR_LOG_MSG (("special code for y not too large integer\n", 0));
mpz_init (zi);
mpfr_get_z (zi, y, MPFR_RNDN);
inexact = mpfr_pow_z (z, x, zi, rnd_mode);
mpz_clear (zi);
return inexact;
}
/* Special case (+/-2^b)^Y which could be exact. If x is negative, then
necessarily y is a large integer. */
{
mpfr_exp_t b = MPFR_GET_EXP (x) - 1;
MPFR_ASSERTN (b >= LONG_MIN && b <= LONG_MAX); /* FIXME... */
if (mpfr_cmp_si_2exp (x, MPFR_SIGN(x), b) == 0)
{
mpfr_t tmp;
int sgnx = MPFR_SIGN (x);
MPFR_LOG_MSG (("special case (+/-2^b)^Y\n", 0));
/* now x = +/-2^b, so x^y = (+/-1)^y*2^(b*y) is exact whenever b*y is
an integer */
MPFR_SAVE_EXPO_MARK (expo);
mpfr_init2 (tmp, MPFR_PREC (y) + sizeof (long) * CHAR_BIT);
inexact = mpfr_mul_si (tmp, y, b, MPFR_RNDN); /* exact */
MPFR_ASSERTN (inexact == 0);
/* Note: as the exponent range has been extended, an overflow is not
possible (due to basic overflow and underflow checking above, as
the result is ~ 2^tmp), and an underflow is not possible either
because b is an integer (thus either 0 or >= 1). */
mpfr_clear_flags ();
inexact = mpfr_exp2 (z, tmp, rnd_mode);
mpfr_clear (tmp);
if (sgnx < 0 && is_odd (y))
{
mpfr_neg (z, z, rnd_mode);
inexact = -inexact;
}
/* Without the following, the overflows3 test in tpow.c fails. */
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (z, inexact, rnd_mode);
}
}
MPFR_SAVE_EXPO_MARK (expo);
/* Case where |y * log(x)| is very small. Warning: x can be negative, in
that case y is a large integer. */
{
mpfr_t t;
mpfr_exp_t err;
/* We need an upper bound on the exponent of y * log(x). */
mpfr_init2 (t, 16);
if (MPFR_IS_POS(x))
mpfr_log (t, x, cmp_x_1 < 0 ? MPFR_RNDD : MPFR_RNDU); /* away from 0 */
else
{
/* if x < -1, round to +Inf, else round to zero */
mpfr_neg (t, x, (mpfr_cmp_si (x, -1) < 0) ? MPFR_RNDU : MPFR_RNDD);
mpfr_log (t, t, (mpfr_cmp_ui (t, 1) < 0) ? MPFR_RNDD : MPFR_RNDU);
}
MPFR_ASSERTN (MPFR_IS_PURE_FP (t));
err = MPFR_GET_EXP (y) + MPFR_GET_EXP (t);
mpfr_clear (t);
mpfr_clear_flags ();
MPFR_SMALL_INPUT_AFTER_SAVE_EXPO (z, __gmpfr_one, - err, 0,
(MPFR_SIGN (y) > 0) ^ (cmp_x_1 < 0),
rnd_mode, expo, {});
}
/* General case */
inexact = mpfr_pow_general (z, x, y, rnd_mode, y_is_integer, &expo);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (z, inexact, rnd_mode);
}
|