summaryrefslogtreecommitdiff
path: root/src/mulders.c
blob: 5fab1b1e5526577265a489a53b3a82ccd571d6bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
/* Mulders' short product, square and division.

Copyright 2005-2021 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.

This file is part of the GNU MPFR Library.

The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */

/* References:
   [1] Short Division of Long Integers, David Harvey and Paul Zimmermann,
       Proceedings of the 20th Symposium on Computer Arithmetic (ARITH-20),
       July 25-27, 2011, pages 7-14.
*/

#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"

/* Don't use MPFR_MULHIGH_SIZE since it is handled by tuneup */
#ifdef MPFR_MULHIGH_TAB_SIZE
static short mulhigh_ktab[MPFR_MULHIGH_TAB_SIZE];
#else
static short mulhigh_ktab[] = {MPFR_MULHIGH_TAB};
#define MPFR_MULHIGH_TAB_SIZE (numberof_const (mulhigh_ktab))
#endif

/* Put in  rp[n..2n-1] an approximation of the n high limbs
   of {up, n} * {vp, n}. The error is less than n ulps of rp[n] (and the
   approximation is always less or equal to the truncated full product).
   Assume 2n limbs are allocated at rp.

   Implements Algorithm ShortMulNaive from [1].
*/
static void
mpfr_mulhigh_n_basecase (mpfr_limb_ptr rp, mpfr_limb_srcptr up,
                         mpfr_limb_srcptr vp, mp_size_t n)
{
  mp_size_t i;

  rp += n - 1;
  umul_ppmm (rp[1], rp[0], up[n-1], vp[0]); /* we neglect up[0..n-2]*vp[0],
                                               which is less than B^n */
  for (i = 1 ; i < n ; i++)
    /* here, we neglect up[0..n-i-2] * vp[i], which is less than B^n too */
    rp[i + 1] = mpn_addmul_1 (rp, up + (n - i - 1), i + 1, vp[i]);
  /* in total, we neglect less than n*B^n, i.e., n ulps of rp[n]. */
}

/* Put in  rp[n..2n-1] an approximation of the n high limbs
   of {np, n} * {mp, n}. The error is less than n ulps of rp[n] (and the
   approximation is always less or equal to the truncated full product).

   Implements Algorithm ShortMul from [1].
*/
void
mpfr_mulhigh_n (mpfr_limb_ptr rp, mpfr_limb_srcptr np, mpfr_limb_srcptr mp,
                mp_size_t n)
{
  mp_size_t k;

  MPFR_STAT_STATIC_ASSERT (MPFR_MULHIGH_TAB_SIZE >= 8); /* so that 3*(n/4) > n/2 */
  k = MPFR_LIKELY (n < MPFR_MULHIGH_TAB_SIZE) ? mulhigh_ktab[n] : 3*(n/4);
  /* Algorithm ShortMul from [1] requires k >= (n+3)/2, which translates
     into k >= (n+4)/2 in the C language. */
  MPFR_ASSERTD (k == -1 || k == 0 || (k >= (n+4)/2 && k < n));
  if (k < 0)
    mpn_mul_basecase (rp, np, n, mp, n); /* result is exact, no error */
  else if (k == 0)
    mpfr_mulhigh_n_basecase (rp, np, mp, n); /* basecase error < n ulps */
  else if (n > MUL_FFT_THRESHOLD)
    mpn_mul_n (rp, np, mp, n); /* result is exact, no error */
  else
    {
      mp_size_t l = n - k;
      mp_limb_t cy;

      mpn_mul_n (rp + 2 * l, np + l, mp + l, k); /* fills rp[2l..2n-1] */
      mpfr_mulhigh_n (rp, np + k, mp, l);        /* fills rp[l-1..2l-1] */
      cy = mpn_add_n (rp + n - 1, rp + n - 1, rp + l - 1, l + 1);
      mpfr_mulhigh_n (rp, np, mp + k, l);        /* fills rp[l-1..2l-1] */
      cy += mpn_add_n (rp + n - 1, rp + n - 1, rp + l - 1, l + 1);
      mpn_add_1 (rp + n + l, rp + n + l, k, cy); /* propagate carry */
    }
}

#ifdef MPFR_SQRHIGH_TAB_SIZE
static short sqrhigh_ktab[MPFR_SQRHIGH_TAB_SIZE];
#else
static short sqrhigh_ktab[] = {MPFR_SQRHIGH_TAB};
#define MPFR_SQRHIGH_TAB_SIZE (numberof_const (sqrhigh_ktab))
#endif

/* Put in  rp[n..2n-1] an approximation of the n high limbs
   of {np, n}^2. The error is less than n ulps of rp[n]. */
void
mpfr_sqrhigh_n (mpfr_limb_ptr rp, mpfr_limb_srcptr np, mp_size_t n)
{
  mp_size_t k;

  MPFR_STAT_STATIC_ASSERT (MPFR_SQRHIGH_TAB_SIZE > 2); /* ensures k < n */
  k = MPFR_LIKELY (n < MPFR_SQRHIGH_TAB_SIZE) ? sqrhigh_ktab[n]
    : (n+4)/2; /* ensures that k >= (n+3)/2 */
  MPFR_ASSERTD (k == -1 || k == 0 || (k >= (n+4)/2 && k < n));
  if (k < 0)
    /* we can't use mpn_sqr_basecase here, since it requires
       n <= SQR_KARATSUBA_THRESHOLD, where SQR_KARATSUBA_THRESHOLD
       is not exported by GMP */
    mpn_sqr (rp, np, n);
  else if (k == 0)
    mpfr_mulhigh_n_basecase (rp, np, np, n);
  else
    {
      mp_size_t l = n - k;
      mp_limb_t cy;

      mpn_sqr (rp + 2 * l, np + l, k);            /* fills rp[2l..2n-1] */
      mpfr_mulhigh_n (rp, np, np + k, l);         /* fills rp[l-1..2l-1] */
      /* {rp+n-1,l+1} += 2 * {rp+l-1,l+1} */
      cy = mpn_lshift (rp + l - 1, rp + l - 1, l + 1, 1);
      cy += mpn_add_n (rp + n - 1, rp + n - 1, rp + l - 1, l + 1);
      mpn_add_1 (rp + n + l, rp + n + l, k, cy); /* propagate carry */
    }
}

#ifdef MPFR_DIVHIGH_TAB_SIZE
static short divhigh_ktab[MPFR_DIVHIGH_TAB_SIZE];
#else
static short divhigh_ktab[] = {MPFR_DIVHIGH_TAB};
#define MPFR_DIVHIGH_TAB_SIZE (numberof_const (divhigh_ktab))
#endif

/* Put in Q={qp, n} an approximation of N={np, 2*n} divided by D={dp, n},
   with the most significant limb of the quotient as return value (0 or 1).
   Assumes the most significant bit of D is set. Clobbers N.

   The approximate quotient Q satisfies - 2(n-1) < N/D - Q <= 4.

   Assumes n >= 2.
*/
static mp_limb_t
mpfr_divhigh_n_basecase (mpfr_limb_ptr qp, mpfr_limb_ptr np,
                         mpfr_limb_srcptr dp, mp_size_t n)
{
  mp_limb_t qh, d1, d0, q2, q1, q0;
  mpfr_pi1_t dinv2;

  MPFR_ASSERTD(n >= 2);

  np += n;

  if ((qh = (mpn_cmp (np, dp, n) >= 0)))
    mpn_sub_n (np, np, dp, n);

  /* now {np, n} is less than D={dp, n}, which implies np[n-1] <= dp[n-1] */

  d1 = dp[n - 1];

  /* we assumed n >= 2 */
  d0 = dp[n - 2];
  invert_pi1 (dinv2, d1, d0);
  /* dinv2.inv32 = floor ((B^3 - 1) / (d0 + d1 B)) - B */
  while (n > 1)
    {
      /* Invariant: it remains to reduce n limbs from N (in addition to the
         initial low n limbs).
         Since n >= 2 here, necessarily we had n >= 2 initially, which means
         that in addition to the limb np[n-1] to reduce, we have at least 2
         extra limbs, thus accessing np[n-3] is valid. */

      /* Warning: we can have np[n-1]>d1 or (np[n-1]=d1 and np[n-2]>=d0) here,
         since we truncate the divisor at each step, but since {np,n} < D
         originally, the largest possible partial quotient is B-1. */
      if (MPFR_UNLIKELY(np[n-1] > d1 || (np[n-1] == d1 && np[n-2] >= d0)))
        q2 = MPFR_LIMB_MAX;
      else
        udiv_qr_3by2 (q2, q1, q0, np[n - 1], np[n - 2], np[n - 3],
                      d1, d0, dinv2.inv32);
      /* since q2 = floor((np[n-1]*B^2+np[n-2]*B+np[n-3])/(d1*B+d0)),
         we have q2 <= (np[n-1]*B^2+np[n-2]*B+np[n-3])/(d1*B+d0),
         thus np[n-1]*B^2+np[n-2]*B+np[n-3] >= q2*(d1*B+d0)
         and {np-1, n} >= q2*D - q2*B^(n-2) >= q2*D - B^(n-1)
         thus {np-1, n} - (q2-1)*D >= D - B^(n-1) >= 0
         which proves that at most one correction is needed */
      q0 = mpn_submul_1 (np - 1, dp, n, q2);
      if (MPFR_UNLIKELY(q0 > np[n - 1]))
        {
          mpn_add_n (np - 1, np - 1, dp, n);
          q2 --;
        }
      qp[--n] = q2;
      dp ++;
    }

  /* we have B+dinv2 = floor((B^3-1)/(d1*B+d0)) < B^2/d1
     q1 = floor(np[0]*(B+dinv2)/B) <= floor(np[0]*B/d1)
        <= floor((np[0]*B+np[1])/d1)
     thus q1 is not larger than the true quotient.
     q1 > np[0]*(B+dinv2)/B - 1 > np[0]*(B^3-1)/(d1*B+d0)/B - 2
     For d1*B+d0 <> B^2/2, we have B+dinv2 = floor(B^3/(d1*B+d0))
     thus q1 > np[0]*B^2/(d1*B+d0) - 2, i.e.,
     (d1*B+d0)*q1 > np[0]*B^2 - 2*(d1*B+d0)
     d1*B*q1 > np[0]*B^2 - 2*d1*B - 2*d0 - d0*q1 >= np[0]*B^2 - 2*d1*B - B^2
     thus q1 > np[0]*B/d1 - 2 - B/d1 > np[0]*B/d1 - 4.

     For d1*B+d0 = B^2/2, dinv2 = B-1 thus q1 > np[0]*(2B-1)/B - 1 >
     np[0]*B/d1 - 2.

     In all cases, if q = floor((np[0]*B+np[1])/d1), we have:
     q - 4 <= q1 <= q
  */
  umul_ppmm (q1, q0, np[0], dinv2.inv32);
  qp[0] = np[0] + q1;

  return qh;
}

/* Put in {qp, n} an approximation of N={np, 2*n} divided by D={dp, n},
   with the most significant limb of the quotient as return value (0 or 1).
   Assumes the most significant bit of D is set. Clobbers N.

   This implements the ShortDiv algorithm from reference [1].

   Assumes n >= 2 (which should be fulfilled also in the recursive calls).
*/
mp_limb_t
mpfr_divhigh_n (mpfr_limb_ptr qp, mpfr_limb_ptr np, mpfr_limb_ptr dp,
                mp_size_t n)
{
  mp_size_t k, l;
  mp_limb_t qh, cy;
  mpfr_limb_ptr tp;
  MPFR_TMP_DECL(marker);

  MPFR_STAT_STATIC_ASSERT (MPFR_DIVHIGH_TAB_SIZE >= 15); /* so that 2*(n/3) >= (n+4)/2 */
  MPFR_ASSERTD(n >= 2);
  k = MPFR_LIKELY (n < MPFR_DIVHIGH_TAB_SIZE) ? divhigh_ktab[n] : 2*(n/3);

  if (k == 0)
    {
#if defined(WANT_GMP_INTERNALS) && defined(HAVE___GMPN_SBPI1_DIVAPPR_Q)
      mpfr_pi1_t dinv2;
      invert_pi1 (dinv2, dp[n - 1], dp[n - 2]);
      if (n > 2) /* sbpi1_divappr_q wants n > 2 */
        return __gmpn_sbpi1_divappr_q (qp, np, n + n, dp, n, dinv2.inv32);
      else
        return mpfr_divhigh_n_basecase (qp, np, dp, n);
#else /* use our own code for base-case short division */
      return mpfr_divhigh_n_basecase (qp, np, dp, n);
#endif
    }

  /* Check the bounds from [1]. In addition, we forbid k=n-1, which would
     give l=1 in the recursive call. It follows n >= 5. */
  MPFR_ASSERTD ((n+4)/2 <= k && k < n-1);

  MPFR_TMP_MARK (marker);
  l = n - k;
  /* first divide the most significant 2k limbs from N by the most significant
     k limbs of D */
  qh = mpn_divrem (qp + l, 0, np + 2 * l, 2 * k, dp + l, k); /* exact */

  /* it remains {np,2l+k} = {np,n+l} as remainder */

  /* now we have to subtract high(Q1)*D0 where Q1=qh*B^k+{qp+l,k} and
     D0={dp,l} */
  tp = MPFR_TMP_LIMBS_ALLOC (2 * l);
  mpfr_mulhigh_n (tp, qp + k, dp, l);
  /* we are only interested in the upper l limbs from {tp,2l} */
  cy = mpn_sub_n (np + n, np + n, tp + l, l);
  if (qh)
    cy += mpn_sub_n (np + n, np + n, dp, l);
  while (cy > 0) /* Q1 was too large: subtract 1 to Q1 and add D to np+l */
    {
      qh -= mpn_sub_1 (qp + l, qp + l, k, MPFR_LIMB_ONE);
      cy -= mpn_add_n (np + l, np + l, dp, n);
    }

  /* now it remains {np,n+l} to divide by D */
  cy = mpfr_divhigh_n (qp, np + k, dp + k, l);
  qh += mpn_add_1 (qp + l, qp + l, k, cy);
  MPFR_TMP_FREE(marker);

  return qh;
}