1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
/* mpfr_log2 -- log base 2
Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
Contributed by the Arenaire and Caramel projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* The computation of r=log2(a)
r=log2(a)=log(a)/log(2) */
int
mpfr_log2 (mpfr_ptr r, mpfr_srcptr a, mpfr_rnd_t rnd_mode)
{
int inexact;
MPFR_SAVE_EXPO_DECL (expo);
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (a)))
{
/* If a is NaN, the result is NaN */
if (MPFR_IS_NAN (a))
{
MPFR_SET_NAN (r);
MPFR_RET_NAN;
}
/* check for infinity before zero */
else if (MPFR_IS_INF (a))
{
if (MPFR_IS_NEG (a))
/* log(-Inf) = NaN */
{
MPFR_SET_NAN (r);
MPFR_RET_NAN;
}
else /* log(+Inf) = +Inf */
{
MPFR_SET_INF (r);
MPFR_SET_POS (r);
MPFR_RET (0);
}
}
else /* a is zero */
{
MPFR_ASSERTD (MPFR_IS_ZERO (a));
MPFR_SET_INF (r);
MPFR_SET_NEG (r);
MPFR_RET (0); /* log2(0) is an exact -infinity */
}
}
/* If a is negative, the result is NaN */
if (MPFR_UNLIKELY (MPFR_IS_NEG (a)))
{
MPFR_SET_NAN (r);
MPFR_RET_NAN;
}
/* If a is 1, the result is 0 */
if (MPFR_UNLIKELY (mpfr_cmp_ui (a, 1) == 0))
{
MPFR_SET_ZERO (r);
MPFR_SET_POS (r);
MPFR_RET (0); /* only "normal" case where the result is exact */
}
/* If a is 2^N, log2(a) is exact*/
if (MPFR_UNLIKELY (mpfr_cmp_ui_2exp (a, 1, MPFR_GET_EXP (a) - 1) == 0))
return mpfr_set_si(r, MPFR_GET_EXP (a) - 1, rnd_mode);
MPFR_SAVE_EXPO_MARK (expo);
/* General case */
{
/* Declaration of the intermediary variable */
mpfr_t t, tt;
/* Declaration of the size variable */
mpfr_prec_t Ny = MPFR_PREC(r); /* target precision */
mpfr_prec_t Nt; /* working precision */
mpfr_exp_t err; /* error */
MPFR_ZIV_DECL (loop);
/* compute the precision of intermediary variable */
/* the optimal number of bits : see algorithms.tex */
Nt = Ny + 3 + MPFR_INT_CEIL_LOG2 (Ny);
/* initialise of intermediary variable */
mpfr_init2 (t, Nt);
mpfr_init2 (tt, Nt);
/* First computation of log2 */
MPFR_ZIV_INIT (loop, Nt);
for (;;)
{
/* compute log2 */
mpfr_const_log2(t,MPFR_RNDD); /* log(2) */
mpfr_log(tt,a,MPFR_RNDN); /* log(a) */
mpfr_div(t,tt,t,MPFR_RNDN); /* log(a)/log(2) */
/* estimation of the error */
err = Nt-3;
if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode)))
break;
/* actualisation of the precision */
MPFR_ZIV_NEXT (loop, Nt);
mpfr_set_prec (t, Nt);
mpfr_set_prec (tt, Nt);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (r, t, rnd_mode);
mpfr_clear (t);
mpfr_clear (tt);
}
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (r, inexact, rnd_mode);
}
|