1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
|
/* mpfr_li2 -- Dilogarithm.
Copyright 2007-2017 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* Compute the alternating series
s = S(z) = \sum_{k=0}^infty B_{2k} (z))^{2k+1} / (2k+1)!
with 0 < z <= log(2) to the precision of s rounded in the direction
rnd_mode.
Return the maximum index of the truncature which is useful
for determinating the relative error.
*/
static int
li2_series (mpfr_t sum, mpfr_srcptr z, mpfr_rnd_t rnd_mode)
{
int i;
mpfr_t s, u, v, w;
mpfr_prec_t sump, p;
mpfr_exp_t se, err;
MPFR_ZIV_DECL (loop);
/* The series converges for |z| < 2 pi, but in mpfr_li2 the argument is
reduced so that 0 < z <= log(2). Here is additionnal check that z is
(nearly) correct */
MPFR_ASSERTD (MPFR_IS_STRICTPOS (z));
MPFR_ASSERTD (mpfr_cmp_ui_2exp (z, 89, -7) <= 0); /* z <= 0.6953125 */
sump = MPFR_PREC (sum); /* target precision */
p = sump + MPFR_INT_CEIL_LOG2 (sump) + 4; /* the working precision */
mpfr_init2 (s, p);
mpfr_init2 (u, p);
mpfr_init2 (v, p);
mpfr_init2 (w, p);
MPFR_ZIV_INIT (loop, p);
for (;;)
{
mpfr_sqr (u, z, MPFR_RNDU);
mpfr_set (v, z, MPFR_RNDU);
mpfr_set (s, z, MPFR_RNDU);
se = MPFR_GET_EXP (s);
err = 0;
for (i = 1;; i++)
{
mpfr_mul (v, u, v, MPFR_RNDU);
mpfr_div_ui (v, v, 2 * i, MPFR_RNDU);
mpfr_div_ui (v, v, 2 * i, MPFR_RNDU);
mpfr_div_ui (v, v, 2 * i + 1, MPFR_RNDU);
mpfr_div_ui (v, v, 2 * i + 1, MPFR_RNDU);
/* here, v_2i = v_{2i-2} / (2i * (2i+1))^2 */
mpfr_mul_z (w, v, mpfr_bernoulli_cache(i), MPFR_RNDN);
/* here, w_2i = v_2i * B_2i * (2i+1)! with
error(w_2i) < 2^(5 * i + 8) ulp(w_2i) (see algorithms.tex) */
mpfr_add (s, s, w, MPFR_RNDN);
err = MAX (err + se, 5 * i + 8 + MPFR_GET_EXP (w))
- MPFR_GET_EXP (s);
err = 2 + MAX (-1, err);
se = MPFR_GET_EXP (s);
if (MPFR_GET_EXP (w) <= se - (mpfr_exp_t) p)
break;
}
/* the previous value of err is the rounding error,
the truncation error is less than EXP(z) - 6 * i - 5
(see algorithms.tex) */
err = MAX (err, MPFR_GET_EXP (z) - 6 * i - 5) + 1;
if (MPFR_CAN_ROUND (s, (mpfr_exp_t) p - err, sump, rnd_mode))
break;
MPFR_ZIV_NEXT (loop, p);
mpfr_set_prec (s, p);
mpfr_set_prec (u, p);
mpfr_set_prec (v, p);
mpfr_set_prec (w, p);
}
MPFR_ZIV_FREE (loop);
mpfr_set (sum, s, rnd_mode);
mpfr_clears (s, u, v, w, (mpfr_ptr) 0);
/* Let K be the returned value.
1. As we compute an alternating series, the truncation error has the same
sign as the next term w_{K+2} which is positive iff K%4 == 0.
2. Assume that error(z) <= (1+t) z', where z' is the actual value, then
error(s) <= 2 * (K+1) * t (see algorithms.tex).
*/
return 2 * i;
}
/* try asymptotic expansion when x is large and positive:
Li2(x) = -log(x)^2/2 + Pi^2/3 - 1/x + O(1/x^2).
More precisely for x >= 2 we have for g(x) = -log(x)^2/2 + Pi^2/3:
-2 <= x * (Li2(x) - g(x)) <= -1
thus |Li2(x) - g(x)| <= 2/x.
Assumes x >= 38, which ensures log(x)^2/2 >= 2*Pi^2/3, and g(x) <= -3.3.
Return 0 if asymptotic expansion failed (unable to round), otherwise
returns 1 for RNDF, and correct ternary value otherwise.
*/
static int
mpfr_li2_asympt_pos (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
mpfr_t g, h;
mpfr_prec_t w = MPFR_PREC (y) + 20;
int inex = 0;
MPFR_ASSERTN (mpfr_cmp_ui (x, 38) >= 0);
mpfr_init2 (g, w);
mpfr_init2 (h, w);
mpfr_log (g, x, MPFR_RNDN); /* rel. error <= |(1 + theta) - 1| */
mpfr_sqr (g, g, MPFR_RNDN); /* rel. error <= |(1 + theta)^3 - 1| <= 2^(2-w) */
mpfr_div_2ui (g, g, 1, MPFR_RNDN); /* rel. error <= 2^(2-w) */
mpfr_const_pi (h, MPFR_RNDN); /* error <= 2^(1-w) */
mpfr_sqr (h, h, MPFR_RNDN); /* rel. error <= 2^(2-w) */
mpfr_div_ui (h, h, 3, MPFR_RNDN); /* rel. error <= |(1 + theta)^4 - 1|
<= 5 * 2^(-w) */
/* since x is chosen such that log(x)^2/2 >= 2 * (Pi^2/3), we should have
g >= 2*h, thus |g-h| >= |h|, and the relative error on g is at most
multiplied by 2 in the difference, and that by h is unchanged. */
MPFR_ASSERTN (MPFR_EXP (g) > MPFR_EXP (h));
mpfr_sub (g, h, g, MPFR_RNDN); /* err <= ulp(g)/2 + g*2^(3-w) + g*5*2^(-w)
<= ulp(g) * (1/2 + 8 + 5) < 14 ulp(g).
If in addition 2/x <= 2 ulp(g), i.e.,
1/x <= ulp(g), then the total error is
bounded by 16 ulp(g). */
if ((MPFR_EXP (x) >= (mpfr_exp_t) w - MPFR_EXP (g)) &&
MPFR_CAN_ROUND (g, w - 4, MPFR_PREC (y), rnd_mode))
{
inex = mpfr_set (y, g, rnd_mode);
if (rnd_mode == MPFR_RNDF)
inex = 1;
}
mpfr_clear (g);
mpfr_clear (h);
return inex;
}
/* try asymptotic expansion when x is large and negative:
Li2(x) = -log(-x)^2/2 - Pi^2/6 - 1/x + O(1/x^2).
More precisely for x <= -2 we have for g(x) = -log(-x)^2/2 - Pi^2/6:
|Li2(x) - g(x)| <= 1/|x|.
Assumes x <= -7, which ensures |log(-x)^2/2| >= Pi^2/6, and g(x) <= -3.5.
Return 0 if asymptotic expansion failed (unable to round), otherwise
returns 1 for RNDF, and correct ternary value otherwise.
*/
static int
mpfr_li2_asympt_neg (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
mpfr_t g, h;
mpfr_prec_t w = MPFR_PREC (y) + 20;
int inex = 0;
MPFR_ASSERTN (mpfr_cmp_si (x, -7) <= 0);
mpfr_init2 (g, w);
mpfr_init2 (h, w);
mpfr_neg (g, x, MPFR_RNDN);
mpfr_log (g, g, MPFR_RNDN); /* rel. error <= |(1 + theta) - 1| */
mpfr_sqr (g, g, MPFR_RNDN); /* rel. error <= |(1 + theta)^3 - 1| <= 2^(2-w) */
mpfr_div_2ui (g, g, 1, MPFR_RNDN); /* rel. error <= 2^(2-w) */
mpfr_const_pi (h, MPFR_RNDN); /* error <= 2^(1-w) */
mpfr_sqr (h, h, MPFR_RNDN); /* rel. error <= 2^(2-w) */
mpfr_div_ui (h, h, 6, MPFR_RNDN); /* rel. error <= |(1 + theta)^4 - 1|
<= 5 * 2^(-w) */
MPFR_ASSERTN (MPFR_EXP (g) >= MPFR_EXP (h));
mpfr_add (g, g, h, MPFR_RNDN); /* err <= ulp(g)/2 + g*2^(2-w) + g*5*2^(-w)
<= ulp(g) * (1/2 + 4 + 5) < 10 ulp(g).
If in addition |1/x| <= 4 ulp(g), then the
total error is bounded by 16 ulp(g). */
if ((MPFR_EXP (x) >= (mpfr_exp_t) (w - 2) - MPFR_EXP (g)) &&
MPFR_CAN_ROUND (g, w - 4, MPFR_PREC (y), rnd_mode))
{
inex = mpfr_neg (y, g, rnd_mode);
if (rnd_mode == MPFR_RNDF)
inex = 1;
}
mpfr_clear (g);
mpfr_clear (h);
return inex;
}
/* Compute the real part of the dilogarithm defined by
Li2(x) = -\Int_{t=0}^x log(1-t)/t dt */
int
mpfr_li2 (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
int inexact;
mpfr_exp_t err;
mpfr_prec_t yp, m;
MPFR_ZIV_DECL (loop);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
("y[%Pu]=%.*Rg inexact=%d",
mpfr_get_prec (y), mpfr_log_prec, y, inexact));
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (x))
{
MPFR_SET_NEG (y);
MPFR_SET_INF (y);
MPFR_RET (0);
}
else /* x is zero */
{
MPFR_ASSERTD (MPFR_IS_ZERO (x));
MPFR_SET_SAME_SIGN (y, x);
MPFR_SET_ZERO (y);
MPFR_RET (0);
}
}
/* Li2(x) = x + x^2/4 + x^3/9 + ..., more precisely for 0 < x <= 1/2
we have |Li2(x) - x| < x^2/2 <= 2^(2EXP(x)-1) and for -1/2 <= x < 0
we have |Li2(x) - x| < x^2/4 <= 2^(2EXP(x)-2) */
if (MPFR_IS_POS (x))
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, x, -MPFR_GET_EXP (x), 1, 1, rnd_mode,
{});
else
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, x, -MPFR_GET_EXP (x), 2, 0, rnd_mode,
{});
MPFR_SAVE_EXPO_MARK (expo);
yp = MPFR_PREC (y);
m = yp + MPFR_INT_CEIL_LOG2 (yp) + 13;
if (MPFR_LIKELY ((mpfr_cmp_ui (x, 0) > 0) && (mpfr_cmp_ui_2exp (x, 1, -1) <= 0)))
/* 0 < x <= 1/2: Li2(x) = S(-log(1-x))-log^2(1-x)/4 */
{
mpfr_t s, u;
mpfr_exp_t expo_l;
int k;
mpfr_init2 (u, m);
mpfr_init2 (s, m);
MPFR_ZIV_INIT (loop, m);
for (;;)
{
mpfr_ui_sub (u, 1, x, MPFR_RNDN);
mpfr_log (u, u, MPFR_RNDU);
if (MPFR_IS_ZERO(u))
goto next_m;
mpfr_neg (u, u, MPFR_RNDN); /* u = -log(1-x) */
expo_l = MPFR_GET_EXP (u);
k = li2_series (s, u, MPFR_RNDU);
err = 1 + MPFR_INT_CEIL_LOG2 (k + 1);
mpfr_sqr (u, u, MPFR_RNDU);
mpfr_div_2ui (u, u, 2, MPFR_RNDU); /* u = log^2(1-x) / 4 */
mpfr_sub (s, s, u, MPFR_RNDN);
/* error(s) <= (0.5 + 2^(d-EXP(s))
+ 2^(3 + MAX(1, - expo_l) - EXP(s))) ulp(s) */
err = MAX (err, MAX (1, - expo_l) - 1) - MPFR_GET_EXP (s);
err = 2 + MAX (-1, err);
if (MPFR_CAN_ROUND (s, (mpfr_exp_t) m - err, yp, rnd_mode))
break;
next_m:
MPFR_ZIV_NEXT (loop, m);
mpfr_set_prec (u, m);
mpfr_set_prec (s, m);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (y, s, rnd_mode);
mpfr_clear (u);
mpfr_clear (s);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inexact, rnd_mode);
}
else if (!mpfr_cmp_ui (x, 1))
/* Li2(1)= pi^2 / 6 */
{
mpfr_t u;
mpfr_init2 (u, m);
MPFR_ZIV_INIT (loop, m);
for (;;)
{
mpfr_const_pi (u, MPFR_RNDU);
mpfr_sqr (u, u, MPFR_RNDN);
mpfr_div_ui (u, u, 6, MPFR_RNDN);
err = m - 4; /* error(u) <= 19/2 ulp(u) */
if (MPFR_CAN_ROUND (u, err, yp, rnd_mode))
break;
MPFR_ZIV_NEXT (loop, m);
mpfr_set_prec (u, m);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (y, u, rnd_mode);
mpfr_clear (u);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inexact, rnd_mode);
}
else if (mpfr_cmp_ui (x, 2) >= 0)
/* x >= 2: Li2(x) = -S(-log(1-1/x))-log^2(x)/2+log^2(1-1/x)/4+pi^2/3 */
{
int k;
mpfr_exp_t expo_l;
mpfr_t s, u, xx;
if (mpfr_cmp_ui (x, 38) >= 0)
{
inexact = mpfr_li2_asympt_pos (y, x, rnd_mode);
if (inexact != 0)
goto end_of_case_gt2;
}
mpfr_init2 (u, m);
mpfr_init2 (s, m);
mpfr_init2 (xx, m);
MPFR_ZIV_INIT (loop, m);
for (;;)
{
mpfr_ui_div (xx, 1, x, MPFR_RNDN);
mpfr_neg (xx, xx, MPFR_RNDN);
mpfr_log1p (u, xx, MPFR_RNDD);
mpfr_neg (u, u, MPFR_RNDU); /* u = -log(1-1/x) */
expo_l = MPFR_GET_EXP (u);
k = li2_series (s, u, MPFR_RNDN);
mpfr_neg (s, s, MPFR_RNDN);
err = MPFR_INT_CEIL_LOG2 (k + 1) + 1; /* error(s) <= 2^err ulp(s) */
mpfr_sqr (u, u, MPFR_RNDN);
mpfr_div_2ui (u, u, 2, MPFR_RNDN); /* u= log^2(1-1/x)/4 */
mpfr_add (s, s, u, MPFR_RNDN);
err =
MAX (err,
3 + MAX (1, -expo_l) + MPFR_GET_EXP (u)) - MPFR_GET_EXP (s);
err = 2 + MAX (-1, err); /* error(s) <= 2^err ulp(s) */
err += MPFR_GET_EXP (s);
mpfr_log (u, x, MPFR_RNDU);
mpfr_sqr (u, u, MPFR_RNDN);
mpfr_div_2ui (u, u, 1, MPFR_RNDN); /* u = log^2(x)/2 */
mpfr_sub (s, s, u, MPFR_RNDN);
err = MAX (err, 3 + MPFR_GET_EXP (u)) - MPFR_GET_EXP (s);
err = 2 + MAX (-1, err); /* error(s) <= 2^err ulp(s) */
err += MPFR_GET_EXP (s);
mpfr_const_pi (u, MPFR_RNDU);
mpfr_sqr (u, u, MPFR_RNDN);
mpfr_div_ui (u, u, 3, MPFR_RNDN); /* u = pi^2/3 */
mpfr_add (s, s, u, MPFR_RNDN);
err = MAX (err, 2) - MPFR_GET_EXP (s);
err = 2 + MAX (-1, err); /* error(s) <= 2^err ulp(s) */
if (MPFR_CAN_ROUND (s, (mpfr_exp_t) m - err, yp, rnd_mode))
break;
MPFR_ZIV_NEXT (loop, m);
mpfr_set_prec (u, m);
mpfr_set_prec (s, m);
mpfr_set_prec (xx, m);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (y, s, rnd_mode);
mpfr_clears (s, u, xx, (mpfr_ptr) 0);
end_of_case_gt2:
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inexact, rnd_mode);
}
else if (mpfr_cmp_ui (x, 1) > 0)
/* 2 > x > 1: Li2(x) = S(log(x))+log^2(x)/4-log(x)log(x-1)+pi^2/6 */
{
int k;
mpfr_exp_t e1, e2;
mpfr_t s, u, v, xx;
mpfr_init2 (s, m);
mpfr_init2 (u, m);
mpfr_init2 (v, m);
mpfr_init2 (xx, m);
MPFR_ZIV_INIT (loop, m);
for (;;)
{
mpfr_log (v, x, MPFR_RNDU);
k = li2_series (s, v, MPFR_RNDN);
e1 = MPFR_GET_EXP (s);
mpfr_sqr (u, v, MPFR_RNDN);
mpfr_div_2ui (u, u, 2, MPFR_RNDN); /* u = log^2(x)/4 */
mpfr_add (s, s, u, MPFR_RNDN);
mpfr_sub_ui (xx, x, 1, MPFR_RNDN);
mpfr_log (u, xx, MPFR_RNDU);
e2 = MPFR_GET_EXP (u);
mpfr_mul (u, v, u, MPFR_RNDN); /* u = log(x) * log(x-1) */
mpfr_sub (s, s, u, MPFR_RNDN);
mpfr_const_pi (u, MPFR_RNDU);
mpfr_sqr (u, u, MPFR_RNDN);
mpfr_div_ui (u, u, 6, MPFR_RNDN); /* u = pi^2/6 */
mpfr_add (s, s, u, MPFR_RNDN);
/* error(s) <= (31 + (k+1) * 2^(1-e1) + 2^(1-e2)) ulp(s)
see algorithms.tex */
err = MAX (MPFR_INT_CEIL_LOG2 (k + 1) + 1 - e1, 1 - e2);
err = 2 + MAX (5, err);
if (MPFR_CAN_ROUND (s, (mpfr_exp_t) m - err, yp, rnd_mode))
break;
MPFR_ZIV_NEXT (loop, m);
mpfr_set_prec (s, m);
mpfr_set_prec (u, m);
mpfr_set_prec (v, m);
mpfr_set_prec (xx, m);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (y, s, rnd_mode);
mpfr_clears (s, u, v, xx, (mpfr_ptr) 0);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inexact, rnd_mode);
}
else if (mpfr_cmp_ui_2exp (x, 1, -1) > 0) /* 1/2 < x < 1 */
/* 1 > x > 1/2: Li2(x) = -S(-log(x))+log^2(x)/4-log(x)log(1-x)+pi^2/6 */
{
int k;
mpfr_t s, u, v, xx;
mpfr_init2 (s, m);
mpfr_init2 (u, m);
mpfr_init2 (v, m);
mpfr_init2 (xx, m);
MPFR_ZIV_INIT (loop, m);
for (;;)
{
mpfr_log (u, x, MPFR_RNDD);
mpfr_neg (u, u, MPFR_RNDN);
k = li2_series (s, u, MPFR_RNDN);
mpfr_neg (s, s, MPFR_RNDN);
err = 1 + MPFR_INT_CEIL_LOG2 (k + 1) - MPFR_GET_EXP (s);
mpfr_ui_sub (xx, 1, x, MPFR_RNDN);
mpfr_log (v, xx, MPFR_RNDU);
mpfr_mul (v, v, u, MPFR_RNDN); /* v = - log(x) * log(1-x) */
mpfr_add (s, s, v, MPFR_RNDN);
err = MAX (err, 1 - MPFR_GET_EXP (v));
err = 2 + MAX (3, err) - MPFR_GET_EXP (s);
mpfr_sqr (u, u, MPFR_RNDN);
mpfr_div_2ui (u, u, 2, MPFR_RNDN); /* u = log^2(x)/4 */
mpfr_add (s, s, u, MPFR_RNDN);
err = MAX (err, 2 + MPFR_GET_EXP (u)) - MPFR_GET_EXP (s);
err = 2 + MAX (-1, err) + MPFR_GET_EXP (s);
mpfr_const_pi (u, MPFR_RNDU);
mpfr_sqr (u, u, MPFR_RNDN);
mpfr_div_ui (u, u, 6, MPFR_RNDN); /* u = pi^2/6 */
mpfr_add (s, s, u, MPFR_RNDN);
err = MAX (err, 3) - MPFR_GET_EXP (s);
err = 2 + MAX (-1, err);
if (MPFR_CAN_ROUND (s, (mpfr_exp_t) m - err, yp, rnd_mode))
break;
MPFR_ZIV_NEXT (loop, m);
mpfr_set_prec (s, m);
mpfr_set_prec (u, m);
mpfr_set_prec (v, m);
mpfr_set_prec (xx, m);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (y, s, rnd_mode);
mpfr_clears (s, u, v, xx, (mpfr_ptr) 0);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inexact, rnd_mode);
}
else if (mpfr_cmp_si (x, -1) >= 0)
/* 0 > x >= -1: Li2(x) = -S(log(1-x))-log^2(1-x)/4 */
{
int k;
mpfr_exp_t expo_l;
mpfr_t s, u, xx;
mpfr_init2 (s, m);
mpfr_init2 (u, m);
mpfr_init2 (xx, m);
MPFR_ZIV_INIT (loop, m);
for (;;)
{
mpfr_neg (xx, x, MPFR_RNDN);
mpfr_log1p (u, xx, MPFR_RNDN);
k = li2_series (s, u, MPFR_RNDN);
mpfr_neg (s, s, MPFR_RNDN);
expo_l = MPFR_GET_EXP (u);
err = 1 + MPFR_INT_CEIL_LOG2 (k + 1) - MPFR_GET_EXP (s);
mpfr_sqr (u, u, MPFR_RNDN);
mpfr_div_2ui (u, u, 2, MPFR_RNDN); /* u = log^2(1-x)/4 */
mpfr_sub (s, s, u, MPFR_RNDN);
err = MAX (err, - expo_l);
err = 2 + MAX (err, 3);
if (MPFR_CAN_ROUND (s, (mpfr_exp_t) m - err, yp, rnd_mode))
break;
MPFR_ZIV_NEXT (loop, m);
mpfr_set_prec (s, m);
mpfr_set_prec (u, m);
mpfr_set_prec (xx, m);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (y, s, rnd_mode);
mpfr_clears (s, u, xx, (mpfr_ptr) 0);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inexact, rnd_mode);
}
else
/* x < -1: Li2(x)
= S(log(1-1/x))-log^2(-x)/4-log(1-x)log(-x)/2+log^2(1-x)/4-pi^2/6 */
{
int k;
mpfr_t s, u, v, w, xx;
if (mpfr_cmp_si (x, -7) <= 0)
{
inexact = mpfr_li2_asympt_neg (y, x, rnd_mode);
if (inexact != 0)
goto end_of_case_ltm1;
}
mpfr_init2 (s, m);
mpfr_init2 (u, m);
mpfr_init2 (v, m);
mpfr_init2 (w, m);
mpfr_init2 (xx, m);
MPFR_ZIV_INIT (loop, m);
for (;;)
{
mpfr_ui_div (xx, 1, x, MPFR_RNDN);
mpfr_neg (xx, xx, MPFR_RNDN);
mpfr_log1p (u, xx, MPFR_RNDN);
k = li2_series (s, u, MPFR_RNDN);
mpfr_ui_sub (xx, 1, x, MPFR_RNDN);
mpfr_log (u, xx, MPFR_RNDU);
mpfr_neg (xx, x, MPFR_RNDN);
mpfr_log (v, xx, MPFR_RNDU);
mpfr_mul (w, v, u, MPFR_RNDN);
mpfr_div_2ui (w, w, 1, MPFR_RNDN); /* w = log(-x) * log(1-x) / 2 */
mpfr_sub (s, s, w, MPFR_RNDN);
err = 1 + MAX (3, MPFR_INT_CEIL_LOG2 (k+1) + 1 - MPFR_GET_EXP (s))
+ MPFR_GET_EXP (s);
mpfr_sqr (w, v, MPFR_RNDN);
mpfr_div_2ui (w, w, 2, MPFR_RNDN); /* w = log^2(-x) / 4 */
mpfr_sub (s, s, w, MPFR_RNDN);
err = MAX (err, 3 + MPFR_GET_EXP(w)) - MPFR_GET_EXP (s);
err = 2 + MAX (-1, err) + MPFR_GET_EXP (s);
mpfr_sqr (w, u, MPFR_RNDN);
mpfr_div_2ui (w, w, 2, MPFR_RNDN); /* w = log^2(1-x) / 4 */
mpfr_add (s, s, w, MPFR_RNDN);
err = MAX (err, 3 + MPFR_GET_EXP (w)) - MPFR_GET_EXP (s);
err = 2 + MAX (-1, err) + MPFR_GET_EXP (s);
mpfr_const_pi (w, MPFR_RNDU);
mpfr_sqr (w, w, MPFR_RNDN);
mpfr_div_ui (w, w, 6, MPFR_RNDN); /* w = pi^2 / 6 */
mpfr_sub (s, s, w, MPFR_RNDN);
err = MAX (err, 3) - MPFR_GET_EXP (s);
err = 2 + MAX (-1, err) + MPFR_GET_EXP (s);
if (MPFR_CAN_ROUND (s, (mpfr_exp_t) m - err, yp, rnd_mode))
break;
MPFR_ZIV_NEXT (loop, m);
mpfr_set_prec (s, m);
mpfr_set_prec (u, m);
mpfr_set_prec (v, m);
mpfr_set_prec (w, m);
mpfr_set_prec (xx, m);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (y, s, rnd_mode);
mpfr_clears (s, u, v, w, xx, (mpfr_ptr) 0);
end_of_case_ltm1:
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inexact, rnd_mode);
}
MPFR_RET_NEVER_GO_HERE ();
}
|