1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
|
/* mpfr_gamma_inc -- incomplete gamma function
Copyright 2016-2020 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* The incomplete gamma function is defined for x >= 0 and a not a negative
integer by:
gamma_inc(a,x) := Gamma(a,x) = int(t^(a-1) * exp(-t), t=x..infinity)
= Gamma(a) - gamma(a,x) with:
gamma(a,x) = int(t^(a-1) * exp(-t), t=0..x).
The function gamma(a,x) satisfies the Taylor expansions (we use the second
one in the code below):
gamma(a,x) = x^a * sum((-x)^k/k!/(a+k), k=0..infinity)
gamma(a,x) = x^a * exp(-x) * sum(x^k/(a*(a+1)*...*(a+k)), k=0..infinity)
*/
static int
mpfr_gamma_inc_negint (mpfr_ptr y, mpfr_srcptr a, mpfr_srcptr x, mpfr_rnd_t r);
int
mpfr_gamma_inc (mpfr_ptr y, mpfr_srcptr a, mpfr_srcptr x, mpfr_rnd_t rnd)
{
mpfr_prec_t w;
mpfr_t s, t, u;
int inex;
unsigned long k;
mpfr_exp_t e0, e1, e2, err;
MPFR_GROUP_DECL(group);
MPFR_ZIV_DECL(loop);
MPFR_SAVE_EXPO_DECL (expo);
if (MPFR_ARE_SINGULAR (a, x))
{
/* if a or x is NaN, return NaN */
if (MPFR_IS_NAN (a) || MPFR_IS_NAN (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
/* Note: for x < 0, gamma_inc (a, x) is a complex number */
if (MPFR_IS_INF (a) || MPFR_IS_INF (x))
{
if (MPFR_IS_INF (a) && MPFR_IS_INF (x))
{
if ((MPFR_IS_POS (a) && MPFR_IS_POS (x)) || MPFR_IS_NEG (x))
{
/* (a) gamma_inc(+Inf,+Inf) = NaN because
gamma_inc(x,x) tends to +Inf but
gamma_inc(x,x^2) tends to +0.
(b) gamma_inc(+/-Inf,-Inf) = NaN, for example
gamma_inc (a, -a) is a complex number
for a not an integer */
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else
{
/* gamma_inc(-Inf,+Inf) = +0 */
MPFR_SET_ZERO (y);
MPFR_SET_POS (y);
MPFR_RET (0); /* exact */
}
}
else /* only one of a, x is infinite */
{
if (MPFR_IS_INF (a))
{
MPFR_ASSERTD (MPFR_IS_INF (a) && MPFR_IS_FP (x));
if (MPFR_IS_POS (a))
{
/* gamma_inc(+Inf, x) = +Inf */
MPFR_SET_INF (y);
MPFR_SET_POS (y);
MPFR_RET (0); /* exact */
}
else /* a = -Inf */
{
/* gamma_inc(-Inf, x) = NaN for x <= 0
+Inf for 0 < x < 1
+0 for 1 <= x */
if (mpfr_cmp_ui (x, 0) <= 0)
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else if (mpfr_cmp_ui (x, 1) < 0)
{
MPFR_SET_INF (y);
MPFR_SET_POS (y);
MPFR_RET (0); /* exact */
}
else
{
MPFR_SET_ZERO (y);
MPFR_SET_POS (y);
MPFR_RET (0); /* exact */
}
}
}
else
{
MPFR_ASSERTD (MPFR_IS_FP (a) && MPFR_IS_INF (x));
if (MPFR_IS_POS (x))
{
/* x is +Inf: integral tends to zero */
MPFR_SET_ZERO (y);
MPFR_SET_POS (y);
MPFR_RET (0); /* exact */
}
else /* NaN for x < 0 */
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
}
}
}
if (MPFR_IS_ZERO (a) || MPFR_IS_ZERO (x))
{
if (MPFR_IS_ZERO (a))
{
if (mpfr_cmp_ui (x, 0) < 0)
{
/* gamma_inc(a,x) = NaN for x < 0 */
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else if (MPFR_IS_ZERO (x))
/* gamma_inc(a,0) = gamma(a) */
return mpfr_gamma (y, a, rnd); /* a=+0->+Inf, a=-0->-Inf */
else
{
/* gamma_inc (0, x) = int (exp(-t), t=x..infinity) = E1(x) */
mpfr_t minus_x;
MPFR_TMP_INIT_NEG(minus_x, x);
/* mpfr_eint(x) for x < 0 returns -E1(-x) */
inex = mpfr_eint (y, minus_x, MPFR_INVERT_RND(rnd));
MPFR_CHANGE_SIGN(y);
return -inex;
}
}
else /* x = 0: gamma_inc(a,0) = gamma(a) */
return mpfr_gamma (y, a, rnd);
}
}
/* for x < 0 return NaN */
if (MPFR_SIGN(x) < 0)
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
if (mpfr_integer_p (a) && MPFR_SIGN(a) < 0)
return mpfr_gamma_inc_negint (y, a, x, rnd);
MPFR_SAVE_EXPO_MARK (expo);
w = MPFR_PREC(y) + 13; /* working precision */
MPFR_GROUP_INIT_2(group, w, s, t);
mpfr_init2 (u, 2); /* u is special (see below) */
MPFR_ZIV_INIT (loop, w);
for (;;)
{
mpfr_exp_t expu, precu, exps;
mpfr_t s_abs;
mpfr_exp_t decay = 0;
MPFR_BLOCK_DECL (flags);
/* Note: in the error analysis below, theta represents any value of
absolute value less than 2^(-w) where w is the working precision (two
instances of theta may represent different values), cf Higham's book.
*/
/* to ensure that u = a + k is exact, we have three cases:
(1) EXP(a) <= 0, then we need PREC(u) >= 1 - EXP(a) + PREC(a)
(2) EXP(a) - PREC(a) <= 0 < E(a), then PREC(u) >= PREC(a)
(3) 0 < EXP(a) - PREC(a), then PREC(u) >= EXP(a) */
precu = MPFR_GET_EXP(a) <= 0 ?
MPFR_ADD_PREC (MPFR_PREC(a), 1 - MPFR_EXP(a))
: (MPFR_EXP(a) <= MPFR_PREC(a)) ? MPFR_PREC(a) : MPFR_EXP(a);
MPFR_ASSERTD (precu + 1 <= MPFR_PREC_MAX);
mpfr_set_prec (u, precu + 1);
expu = (MPFR_EXP(a) > 0) ? MPFR_EXP(a) : 1;
/* estimate Taylor series */
mpfr_ui_div (t, 1, a, MPFR_RNDA); /* t = 1/a * (1 + theta) */
mpfr_set (s, t, MPFR_RNDA); /* s = 1/a * (1 + theta) */
if (MPFR_IS_NEG(a))
{
mpfr_init2 (s_abs, 32);
mpfr_abs (s_abs, s, MPFR_RNDU);
}
for (k = 1;; k++)
{
mpfr_mul (t, t, x, MPFR_RNDU); /* t = x^k/(a * ... * (a+k-1))
* (1 + theta)^(2k) */
inex = mpfr_add_ui (u, a, k, MPFR_RNDZ); /* u = a+k exactly */
MPFR_ASSERTD(inex == 0);
mpfr_div (t, t, u, MPFR_RNDA); /* t = x^k/(a * ... * (a+k))
* (1 + theta)^(2k+1) */
mpfr_add (s, s, t, MPFR_RNDZ);
/* when s is zero, we consider ulp(s) = ulp(t) */
exps = (MPFR_IS_ZERO(s)) ? MPFR_GET_EXP(t) : MPFR_GET_EXP(s);
if (MPFR_IS_NEG(a))
{
if (MPFR_IS_POS(t))
mpfr_add (s_abs, s_abs, t, MPFR_RNDU);
else
mpfr_sub (s_abs, s_abs, t, MPFR_RNDU);
}
/* we stop when |t| < ulp(s), u > 0 and |x/u| < 1/2, which ensures
that the tail is at most 2*ulp(s) */
MPFR_ASSERTD (MPFR_NOTZERO(t));
if (MPFR_GET_EXP(t) + w <= exps && MPFR_IS_POS(u) &&
MPFR_GET_EXP(x) + 1 < MPFR_GET_EXP(u))
break;
/* if there was an exponent shift in u, increase the precision of
u so that mpfr_add_ui (u, a, k) remains exact */
if (MPFR_EXP(u) > expu) /* exponent shift in u */
{
MPFR_ASSERTD(MPFR_EXP(u) == expu + 1);
expu = MPFR_EXP(u);
mpfr_set_prec (u, mpfr_get_prec (u) + 1);
}
}
if (MPFR_IS_NEG(a))
{
decay = MPFR_GET_EXP(s_abs) - MPFR_GET_EXP(s);
mpfr_clear (s_abs);
}
/* For a > 0, since all terms are positive, we have
s = S * (1 + theta)^(2k+3) with S being the infinite Taylor series.
For a < 0, the error is bounded by that on the sum s_abs of absolute
values of the terms, i.e., S_abs * [(1 + theta)^(2k+3) - 1]. Thus we
can simply use the same error analysis as for a > 0, adding an error
corresponding to the decay of exponent between s_abs and s. */
/* multiply by exp(-x) */
mpfr_exp (t, x, MPFR_RNDZ); /* t = exp(x) * (1+theta) */
mpfr_div (s, s, t, MPFR_RNDZ); /* s = <exact value> * (1+theta)^(2k+5) */
/* multiply by x^a */
mpfr_pow (t, x, a, MPFR_RNDZ); /* t = x^a * (1+theta) */
mpfr_mul (s, s, t, MPFR_RNDZ); /* s = Gamma(a,x) * (1+theta)^(2k+7) */
/* Since |theta| < 2^(-w) using the Taylor expansion of log(1+x)
we have log(1+theta) = theta1 with |theta1| < 1.16*2^(-w) for w >= 2,
thus (1+theta)^(2k+7) = exp((2k+7)*theta1).
Assuming 2k+7 = t*2^w for |t| < 0.5, we have
|(2k+7)*theta1| = |t*2^w*theta1| < 0.58.
For |u| < 0.58 we have |exp(u)-1| < 1.36*|u|
thus |(1+theta)^(2k+7) - 1| < 1.36*0.58*(2k+7)/2^w < 0.79*(2k+7)/2^w.
Since one ulp is at worst a relative error of 2^(1-w),
the error on s is at most 2^(decay+1)*(2k+7) ulps. */
/* subtract from gamma(a) */
MPFR_BLOCK (flags, mpfr_gamma (t, a, MPFR_RNDZ));
MPFR_ASSERTN (!MPFR_OVERFLOW (flags)); /* FIXME: support overflow */
/* t = gamma(a) * (1+theta) */
e0 = MPFR_GET_EXP (t);
e1 = (MPFR_IS_ZERO(s)) ? __gmpfr_emin : MPFR_GET_EXP (s);
mpfr_sub (s, t, s, MPFR_RNDZ);
/* if s is zero, we can assume ulp(s) = ulp(t), but anyway we won't
be able to round */
e2 = (MPFR_IS_ZERO(s)) ? e0 : MPFR_GET_EXP (s);
/* the final error is at most 1 ulp (for the final subtraction)
+ 2^(e0-e2) ulps # for the error in t
+ 2^(decay+1)*(2k+7) ulps * 2^(e1-e2) # for the error in gamma(a,x) */
e1 += decay + 1 + MPFR_INT_CEIL_LOG2 (2*k+7);
/* Now the error is <= 1 + 2^(e0-e2) + 2^(e1-e2).
Since the formula is symmetric in e0 and e1, we can assume without
loss of generality e0 >= e1, then:
if e0 = e1: err <= 1 + 2*2^(e0-e2) <= 2^(e0-e2+2)
if e0 > e1: err <= 1 + 1.5*2^(e0-e2)
<= 2^(e0-e2+1) if e0 > e2
<= 2^2 otherwise */
if (e0 == e1)
{
/* Check that e0 - e2 + 2 <= MPFR_EXP_MAX */
MPFR_ASSERTD (e2 >= 2 || e0 <= (MPFR_EXP_MAX - 2) + e2);
/* Check that e0 - e2 + 2 >= MPFR_EXP_MIN */
MPFR_ASSERTD (e2 <= 2 || e0 >= MPFR_EXP_MIN + (e2 - 2));
err = e0 - e2 + 2;
}
else
{
e0 = (e0 > e1) ? e0 : e1; /* max(e0,e1) */
MPFR_ASSERTD (e0 <= e2 || e2 >= 1 || e0 <= (MPFR_EXP_MAX - 1) + e2);
err = (e0 > e2) ? e0 - e2 + 1 : 2;
}
if (MPFR_LIKELY (MPFR_CAN_ROUND (s, w - err, MPFR_PREC(y), rnd)))
break;
MPFR_ZIV_NEXT (loop, w);
MPFR_GROUP_REPREC_2(group, w, s, t);
}
MPFR_ZIV_FREE (loop);
mpfr_clear (u);
inex = mpfr_set (y, s, rnd);
MPFR_GROUP_CLEAR(group);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inex, rnd);
}
/* For a negative integer, we have (formula 6.5.19):
gamma(-n,x) = (-1)^n/n! [E_1(x) - exp(-x) sum((-1)^j*j!/x^(j+1), j=0..n-1)]
See also http://arxiv.org/pdf/1407.0349v1.pdf.
Assumes 'a' is a negative integer.
*/
static int
mpfr_gamma_inc_negint (mpfr_ptr y, mpfr_srcptr a, mpfr_srcptr x,
mpfr_rnd_t rnd)
{
mpfr_t s, t, abs_a, neg_x;
unsigned long j;
mpfr_prec_t w;
int inex;
mpfr_exp_t exp_s, new_exp_s, exp_t, err_s, logj;
MPFR_GROUP_DECL(group);
MPFR_ZIV_DECL(loop);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_ASSERTD(mpfr_integer_p (a));
MPFR_ASSERTD(mpfr_cmp_ui (a, 0) < 0);
MPFR_TMP_INIT_ABS(abs_a, a);
/* below, theta represents any value such that |theta| <= 2^(-w) */
w = MPFR_PREC(y) + 10; /* initial working precision */
MPFR_SAVE_EXPO_MARK (expo);
MPFR_GROUP_INIT_2(group, w, s, t);
MPFR_ZIV_INIT (loop, w);
for (;;)
{
/* we require |a| <= 2^(w-3) for the error analysis below */
if (MPFR_GET_EXP(a) + 3 > w)
w = MPFR_GET_EXP(a) + 3;
mpfr_ui_div (t, 1, x, MPFR_RNDN); /* t = 1/x * (1 + theta) */
mpfr_set (s, t, MPFR_RNDN);
MPFR_ASSERTD (MPFR_NOTZERO(s));
exp_t = exp_s = MPFR_GET_EXP(s); /* max. exponent of s/t during loop */
new_exp_s = exp_s;
for (j = 1; mpfr_cmp_ui (abs_a, j) > 0; j++)
{
/* invariant: t = (-1)^(j-1)*(j-1)!/x^j * (1 + theta)^(2j-1) */
mpfr_mul_ui (t, t, j, MPFR_RNDN);
mpfr_neg (t, t, MPFR_RNDN); /* exact */
mpfr_div (t, t, x, MPFR_RNDN);
/* now t = (-1)^j*j!/x^(j+1) * (1 + theta)^(2j+1).
We have (1 + theta)^(2j+1) = exp((2j+1)*log(1+theta)).
For |u| <= 1/2, we have |log(1+u)| <= 1.4 |u| thus:
|(1+theta)^(2j+1)-1| <= max |exp(1.4*(2j+1)*u)-1| for |u|<=2^(-w).
Now for |v| <= 1/2 we have |exp(v)-1| <= 0.7*|v| thus:
|(1+theta)^(2j+1) - 1| <= 2*(2j+1)*2^(-w)
as long as 1.4*(2j+1)*2^(-w) <= 1/2, which is true when j<2^(w-3).
Since j < |a| it suffices that |a| <= 2^(w-3).
In that case the rel. error on t is bounded by 2*(2j+1)*2^(-w),
thus the error in ulps is bounded by 2*(2j+1) ulp(t). */
if (MPFR_IS_ZERO(t)) /* underflow on t */
break;
if (MPFR_GET_EXP(t) > exp_t)
exp_t = MPFR_GET_EXP(t);
mpfr_add (s, s, t, MPFR_RNDN);
/* if s is zero, we can assume its ulp is that of t */
new_exp_s = (MPFR_IS_ZERO(s)) ? MPFR_GET_EXP(t) : MPFR_GET_EXP(s);
if (new_exp_s > exp_s)
exp_s = new_exp_s;
}
/* the error on s is bounded by (j-1) * 2^(exp_s - EXP(s)) * 1/2
for the mpfr_add roundings, plus
sum(2*(2i+1), i=1..j-1) * 2^(exp_t - EXP(s)) for the error on t.
The latter sum is (2*j^2-2) * 2^(exp_t - EXP(s)). */
logj = MPFR_INT_CEIL_LOG2(j);
exp_s += logj - 1;
exp_t += 1 + 2 * logj;
/* now the error on s is bounded by 2^(exp_s-EXP(s))+2^(exp_t-EXP(s)) */
exp_s = (exp_s >= exp_t) ? exp_s + 1 : exp_t + 1;
err_s = exp_s - new_exp_s;
/* now the error on the sum S := sum((-1)^j*j!/x^(j+1), j=0..n-1)
is bounded by 2^err_s ulp(s) */
MPFR_TMP_INIT_NEG(neg_x, x);
mpfr_exp (t, neg_x, MPFR_RNDN); /* t = exp(-x) * (1 + theta) */
mpfr_mul (s, s, t, MPFR_RNDN);
if (MPFR_IS_ZERO(s))
{
MPFR_ASSERTD (MPFR_NOTZERO(t));
new_exp_s += MPFR_GET_EXP(t);
}
/* s = exp(-x) * (S +/- 2^err_s ulp(S)) * (1 + theta)^2.
= exp(-x) * (S +/- 2^err_s ulp(S)) * (1 +/- 3 ulp(1))
The error on s is bounded by:
exp(-x) * [2^err_s*ulp(S) + S*3*ulp(1) + 2^err_s*ulp(S)*3*ulp(1)]
<= ulp(s) * [2^(err_s+1) + 6 + 1]
<= ulp(s) * 2^(err_s+2) as long as err_s >= 2. */
err_s = (err_s >= 2) ? err_s + 2 : 4;
/* now the error on s is bounded by 2^err_s ulp(s) */
mpfr_eint (t, neg_x, MPFR_RNDN); /* t = -E1(-x) * (1 + theta) */
mpfr_neg (t, t, MPFR_RNDN); /* exact */
exp_s = (MPFR_IS_ZERO(s)) ? new_exp_s : MPFR_GET_EXP(s);
MPFR_ASSERTD (MPFR_NOTZERO(t));
exp_t = MPFR_GET_EXP(t);
mpfr_sub (s, t, s, MPFR_RNDN); /* E_1(x) - exp(-x) * S */
if (MPFR_IS_ZERO(s)) /* cancellation: increase working precision */
goto next_w;
/* err(s) <= 1/2 * ulp(s) [mpfr_sub]
+ 2^err_s * 2^(exp_s-EXP(s)) * ulp(s) [previous error on s]
+ 1/2 * 2^(exp_t-EXP(s)) * ulp(s) [error on t] */
exp_s += err_s;
exp_t -= 1;
exp_s = (exp_s >= exp_t) ? exp_s + 1 : exp_t + 1;
MPFR_ASSERTD (MPFR_NOTZERO(s));
err_s = exp_s - MPFR_GET_EXP(s);
/* err(s) <= 1/2 * ulp(s) + 2^err_s * ulp(s) */
/* divide by n! */
mpfr_gamma (t, abs_a, MPFR_RNDN); /* t = (n-1)! * (1 + theta) */
mpfr_mul (t, t, abs_a, MPFR_RNDN); /* t = n! * (1 + theta)^2 */
mpfr_div (s, s, t, MPFR_RNDN);
/* since (1 + theta)^2 converts to an error of at most 3 ulps
for w >= 2, the final error is at most:
2 * (1/2 + 2^err_s) * ulp(s) [error on previous s]
+ 2 * 3 * ulp(s) [error on t]
+ 1 * ulp(s) [product of errors]
= ulp(s) * (2^(err_s+1) + 8) */
err_s = (err_s >= 2) ? err_s + 1 : 4;
/* the final error is bounded by 2^err_s * ulp(s) */
/* Is there a better way to compute (-1)^n? */
mpfr_set_si (t, -1, MPFR_RNDN);
mpfr_pow (t, t, abs_a, MPFR_RNDN);
if (MPFR_IS_NEG(t))
mpfr_neg (s, s, MPFR_RNDN);
if (MPFR_LIKELY (MPFR_CAN_ROUND (s, w - err_s, MPFR_PREC(y), rnd)))
break;
next_w:
MPFR_ZIV_NEXT (loop, w);
MPFR_GROUP_REPREC_2(group, w, s, t);
}
MPFR_ZIV_FREE (loop);
inex = mpfr_set (y, s, rnd);
MPFR_GROUP_CLEAR(group);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inex, rnd);
}
|