summaryrefslogtreecommitdiff
path: root/src/compound.c
blob: c71b7c5b45a8a6fb381e6389fd5ec1526f5a7f88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
/* mpfr_compound_si --- compound(x,n) = (1+x)^n

Copyright 2021 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.

This file is part of the GNU MPFR Library.

The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */

#define MPFR_NEED_LONGLONG_H /* needed for MPFR_INT_CEIL_LOG2 */
#include "mpfr-impl.h"

/* assuming |(1+x)^n - 1| < 1/4*ulp(1), return correct rounding,
   where s is the sign of n*log2(1+x) */
static int
mpfr_compound_near_one (mpfr_ptr y, int s, mpfr_rnd_t rnd_mode)
{
  mpfr_set_ui (y, 1, rnd_mode); /* exact */
  if (rnd_mode == MPFR_RNDN || rnd_mode == MPFR_RNDF
      || (s > 0 && (rnd_mode == MPFR_RNDZ || rnd_mode == MPFR_RNDD))
      || (s < 0 && (rnd_mode == MPFR_RNDA || rnd_mode == MPFR_RNDU)))
    {
      /* round toward 1 */
      return -s;
    }
  else if (s > 0) /* necessarily RNDA or RNDU */
    {
      /* round toward +Inf */
      mpfr_nextabove (y);
      return +1;
    }
  else /* necessarily s < 0 and RNDZ or RNDD */
    {
      /* round toward 0 */
      mpfr_nextbelow (y);
      return -1;
    }
}

/* put in y the correctly rounded value of (1+x)^n */
int
mpfr_compound_si (mpfr_ptr y, mpfr_srcptr x, long n, mpfr_rnd_t rnd_mode)
{
  int inexact, compared, k, nloop;
  mpfr_t t;
  mpfr_exp_t e;
  mpfr_prec_t prec;
  MPFR_ZIV_DECL (loop);
  MPFR_SAVE_EXPO_DECL (expo);

  MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg n=%ld rnd=%d",
      mpfr_get_prec(x), mpfr_log_prec, x, n, rnd_mode),
     ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y, inexact));

  /* Special cases */
  if (MPFR_IS_SINGULAR (x))
    {
      if (MPFR_IS_INF (x) && MPFR_IS_NEG (x))
        {
          /* compound(-Inf,n) is NaN */
          MPFR_SET_NAN (y);
          MPFR_RET_NAN;
        }
      else if (n == 0 || MPFR_IS_ZERO (x))
        {
          /* compound(x,0) = 1 for x >= -1 or NaN (the only special value
             of x that is not concerned is -Inf, already handled);
             compound(0,n) = 1 */
          return mpfr_set_ui (y, 1, rnd_mode);
        }
      else if (MPFR_IS_NAN (x))
        {
          /* compound(NaN,n) is NaN, except for n = 0, already handled. */
          MPFR_SET_NAN (y);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_INF (x)) /* x = +Inf */
        {
          MPFR_ASSERTD (MPFR_IS_POS (x));
          if (n < 0) /* (1+Inf)^n = +0 for n < 0 */
            MPFR_SET_ZERO (y);
          else /* n > 0: (1+Inf)^n = +Inf */
            MPFR_SET_INF (y);
          MPFR_SET_POS (y);
          MPFR_RET (0); /* exact 0 or infinity */
        }
    }

  /* (1+x)^n = NaN for x < -1 */
  compared = mpfr_cmp_si (x, -1);
  if (compared < 0)
    {
      MPFR_SET_NAN (y);
      MPFR_RET_NAN;
    }

  /* compound(x,0) gives 1 for x >= 1 */
  if (n == 0)
    return mpfr_set_ui (y, 1, rnd_mode);

  if (compared == 0)
    {
      if (n < 0)
        {
          /* compound(-1,n) = +Inf with divide-by-zero exception */
          MPFR_SET_INF (y);
          MPFR_SET_POS (y);
          MPFR_SET_DIVBY0 ();
          MPFR_RET (0);
        }
      else
        {
          /* compound(-1,n) = +0 */
          MPFR_SET_ZERO (y);
          MPFR_SET_POS (y);
          MPFR_RET (0);
        }
    }

  if (n == 1)
    return mpfr_add_ui (y, x, 1, rnd_mode);

  MPFR_SAVE_EXPO_MARK (expo);

  prec = MPFR_PREC(y);
  prec += MPFR_INT_CEIL_LOG2 (prec) + 6;

  mpfr_init2 (t, prec);

  k = MPFR_INT_CEIL_LOG2(SAFE_ABS (unsigned long, n));  /* thus |n| <= 2^k */

  MPFR_ZIV_INIT (loop, prec);
  for (nloop = 0; ; nloop++)
    {
      /* we compute (1+x)^n as 2^(n*log2p1(x)) */
      inexact = mpfr_log2p1 (t, x, MPFR_RNDN) != 0;
      e = MPFR_GET_EXP(t);
      /* |t - log2(1+x)| <= 1/2*ulp(t) = 2^(e-prec-1) */
      inexact |= mpfr_mul_si (t, t, n, MPFR_RNDN) != 0;
      /* |t - n*log2(1+x)| <= 2^(e2-prec-1) + |n|*2^(e-prec-1)
                           <= 2^(e2-prec-1) + 2^(e+k-prec-1) <= 2^(e+k-prec)
                          where |n| <= 2^k, and e2 is the new exponent of t. */
      MPFR_ASSERTD(MPFR_GET_EXP(t) <= e + k);
      e += k;
      /* |t - n*log2(1+x)| <= 2^(e-prec) */
      /* detect overflow */
      if (nloop == 0 && mpfr_cmp_si (t, __gmpfr_emax) >= 0)
        {
          MPFR_ZIV_FREE (loop);
          mpfr_clear (t);
          MPFR_SAVE_EXPO_FREE (expo);
          return mpfr_overflow (y, rnd_mode, 1);
        }
      /* detect underflow */
      if (nloop == 0 && mpfr_cmp_si (t, __gmpfr_emin - 1) <= 0)
        {
          MPFR_ZIV_FREE (loop);
          mpfr_clear (t);
          MPFR_SAVE_EXPO_FREE (expo);
          return mpfr_underflow (y,
                            (rnd_mode == MPFR_RNDN) ? MPFR_RNDZ : rnd_mode, 1);
        }
      /* Detect cases where result is 1 or 1+ulp(1) or 1-1/2*ulp(1):
         |2^t - 1| = |exp(t*log(2)) - 1| <= |t|*log(2) < |t| */
      if (nloop == 0 && MPFR_GET_EXP(t) < - (mpfr_exp_t) MPFR_PREC(y))
        {
          /* since ulp(1) = 2^(1-PREC(y)), we have |t| < 1/4*ulp(1) */
          /* mpfr_compound_near_one must be called in the extended
             exponent range, so that 1 is representable. */
          inexact = mpfr_compound_near_one (y, MPFR_SIGN (t), rnd_mode);
          goto end;
        }
      inexact |= mpfr_exp2 (t, t, MPFR_RNDA) != 0;
      /* |t - (1+x)^n| <= ulp(t) + |t|*log(2)*2^(e-prec)
                       < 2^(EXP(t)-prec) + 2^(EXP(t)+e-prec) */
      e = (e >= 0) ? e + 1 : 1;
      /* now |t - (1+x)^n| < 2^(EXP(t)+e-prec) */

      if (MPFR_LIKELY (inexact == 0 ||
                       MPFR_CAN_ROUND (t, prec - e, MPFR_PREC(y), rnd_mode)))
        break;

      /* Exact cases like compound(0.5,2) = 9/4 must be detected, since
         except for 1+x power of 2, the log2p1 above will be inexact,
         so that in the Ziv test, inexact != 0 and MPFR_CAN_ROUND will
         fail (even for RNDN, as the ternary value cannot be determined),
         yielding an infinite loop.
         For an exact case in precision prec(y), 1+x will necessarily
         be exact in precision prec(y), thus also in prec(t), where
         prec(t) >= prec(y), and we can use mpfr_pow_si under this
         condition (which will also evaluate some non-exact cases). */
      if (mpfr_add_ui (t, x, 1, MPFR_RNDZ) == 0)
        {
          inexact = mpfr_pow_si (y, t, n, rnd_mode);
          goto end;
        }

      MPFR_ZIV_NEXT (loop, prec);
      mpfr_set_prec (t, prec);
    }

  inexact = mpfr_set (y, t, rnd_mode);

 end:
  MPFR_ZIV_FREE (loop);
  mpfr_clear (t);

  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (y, inexact, rnd_mode);
}