1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
/* bernoulli -- internal function to compute Bernoulli numbers.
Copyright 2005-2017 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#include "mpfr-impl.h"
/* assume p >= 5 and is odd */
static int
isprime (unsigned long p)
{
unsigned long q;
MPFR_ASSERTD (p >= 5 && (p & 1) != 0);
for (q = 3; q * q <= p; q += 2)
if ((p % q) == 0)
return 0;
return 1;
}
/* Computes and stores B[2n]*(2n+1)! in b[n]
using Von Staudt–Clausen theorem, which says that the denominator of B[n]
divides the product of all primes p such that p-1 divides n.
Since B[n] = zeta(n) * 2*n!/(2pi)^n, we compute an approximation of
d * zeta(n) * 2*n!/(2pi)^n and round it to the nearest integer. */
static void
mpfr_bernoulli_internal (mpz_t *b, unsigned long n)
{
unsigned long p, err, zn;
mpz_t s, t, u, den;
mpz_ptr num;
mpfr_t y, z;
int ok;
/* Prec[n/2] is minimal precision so that result is correct for B[n] */
mpfr_prec_t prec;
mpfr_prec_t Prec[] = {0, 5, 5, 6, 6, 9, 16, 10, 19, 23, 25, 27, 35, 31,
42, 51, 51, 50, 73, 60, 76, 79, 83, 87, 101, 97,
108, 113, 119, 125, 149, 133, 146};
mpz_init (b[n]);
if (n == 0)
{
mpz_set_ui (b[0], 1);
return;
}
/* compute denominator */
num = b[n];
n = 2 * n;
mpz_init_set_ui (den, 6);
for (p = 5; p <= n+1; p += 2)
{
if ((n % (p-1)) == 0 && isprime (p))
mpz_mul_ui (den, den, p);
}
if (n <= 64)
prec = Prec[n >> 1];
else
{
/* evaluate the needed precision: zeta(n)*2*den*n!/(2*pi)^n <=
3.3*den*(n/e/2/pi)^n*sqrt(2*pi*n) */
prec = __gmpfr_ceil_log2 (7.0 * (double) n); /* bound 2*pi by 7 */
prec = (prec + 1) >> 1; /* sqrt(2*pi*n) <= 2^prec */
mpfr_init2 (z, 53);
mpfr_set_ui_2exp (z, 251469612, -32, MPFR_RNDU); /* 1/e/2/pi <= z */
mpfr_mul_ui (z, z, n, MPFR_RNDU);
mpfr_log2 (z, z, MPFR_RNDU);
mpfr_mul_ui (z, z, n, MPFR_RNDU);
p = mpfr_get_ui (z, MPFR_RNDU); /* (n/e/2/pi)^n <= 2^p */
mpfr_clear (z);
/* the +14 term ensures no rounding failure up to n=10000 */
prec += p + mpz_sizeinbase (den, 2) + 14;
}
try_again:
mpz_init (s);
mpz_init (t);
mpz_init (u);
mpz_set_ui (u, 1);
mpz_mul_2exp (u, u, prec); /* u = 2^prec */
mpz_ui_pow_ui (t, 3, n);
mpz_fdiv_q (s, u, t); /* multiply all terms by 2^prec */
/* we compute a lower bound of the series, thus the final result cannot
be too large */
for (p = 4; mpz_cmp_ui (t, 0) > 0; p++)
{
mpz_ui_pow_ui (t, p, n);
mpz_fdiv_q (t, u, t);
/* 2^prec/p^n-1 < t <= 2^prec/p^n */
mpz_add (s, s, t);
}
/* sum(2^prec/q^n-1, q=3..p) < t <= sum(2^prec/q^n, q=3..p)
thus the error on the truncated series is at most p-2.
The neglected part of the series is R = sum(1/x^n, x=p+1..infinity)
with int(1/x^n, x=p+1..infinity) <= R <= int(1/x^n, x=p..infinity)
thus 1/(n-1)/(p+1)^(n-1) <= R <= 1/(n-1)/p^(n-1). The difference between
the lower and upper bound is bounded by p^(-n), which is bounded by
2^(-prec) since t=0 in the above loop */
mpz_ui_pow_ui (t, p, n - 1);
mpz_mul_ui (t, t, n - 1);
mpz_cdiv_q (t, u, t);
mpz_add (s, s, t);
/* now 2^prec * (zeta(n)-1-1/2^n) - p < s <= 2^prec * (zeta(n)-1-1/2^n) */
/* add 1 which is 2^prec */
mpz_add (s, s, u);
/* add 1/2^n which is 2^(prec-n) */
mpz_cdiv_q_2exp (u, u, n);
mpz_add (s, s, u);
/* now 2^prec * zeta(n) - p < s <= 2^prec * zeta(n) */
/* multiply by n! */
mpz_fac_ui (t, n);
mpz_mul (s, s, t);
/* multiply by 2*den */
mpz_mul (s, s, den);
mpz_mul_2exp (s, s, 1);
/* now convert to mpfr */
mpfr_init2 (z, prec);
mpfr_set_z (z, s, MPFR_RNDZ);
/* now (2^prec * zeta(n) - p) * 2*den*n! - ulp(z) < z <=
2^prec * zeta(n) * 2*den*n!.
Since z <= 2^prec * zeta(n) * 2*den*n!,
ulp(z) <= 2*zeta(n) * 2*den*n!, thus
(2^prec * zeta(n)-(p+1)) * 2*den*n! < z <= 2^prec * zeta(n) * 2*den*n! */
mpfr_div_2exp (z, z, prec, MPFR_RNDZ);
/* now (zeta(n) - (p+1)/2^prec) * 2*den*n! < z <= zeta(n) * 2*den*n! */
/* divide by (2pi)^n */
mpfr_init2 (y, prec);
mpfr_const_pi (y, MPFR_RNDU);
/* pi <= y <= pi * (1 + 2^(1-prec)) */
mpfr_mul_2exp (y, y, 1, MPFR_RNDU);
/* 2pi <= y <= 2pi * (1 + 2^(1-prec)) */
mpfr_pow_ui (y, y, n, MPFR_RNDU);
/* (2pi)^n <= y <= (2pi)^n * (1 + 2^(1-prec))^(n+1) */
mpfr_div (z, z, y, MPFR_RNDZ);
/* now (zeta(n) - (p+1)/2^prec) * 2*den*n! / (2pi)^n / (1+2^(1-prec))^(n+1)
<= z <= zeta(n) * 2*den*n! / (2pi)^n, and since zeta(n) >= 1:
den * B[n] * (1 - (p+1)/2^prec) / (1+2^(1-prec))^(n+1)
<= z <= den * B[n]
Since 1 / (1+2^(1-prec))^(n+1) >= (1 - 2^(1-prec))^(n+1) >=
1 - (n+1) * 2^(1-prec):
den * B[n] / (2pi)^n * (1 - (p+1)/2^prec) * (1-(n+1)*2^(1-prec))
<= z <= den * B[n] thus
den * B[n] * (1 - (2n+p+3)/2^prec) <= z <= den * B[n] */
/* the error is bounded by 2^(EXP(z)-prec) * (2n+p+3) */
for (err = 0, p = 2 * n + p + 3; p > 1; err++, p = (p + 1) >> 1);
zn = MPFR_LIMB_SIZE(z) * GMP_NUMB_BITS; /* total number of bits of z */
if (err >= prec)
ok = 0;
else
{
err = prec - err;
/* now the absolute error is bounded by 2^(EXP(z) - err):
den * B[n] - 2^(EXP(z) - err) <= z <= den * B[n]
thus if subtracting 2^(EXP(z) - err) does not change the rounding
(up) we are ok */
err = mpn_scan1 (MPFR_MANT(z), zn - err);
/* weight of this 1 bit is 2^(EXP(z) - zn + err) */
ok = MPFR_EXP(z) < zn - err;
}
mpfr_get_z (num, z, MPFR_RNDU);
if ((n & 2) == 0)
mpz_neg (num, num);
/* multiply by (n+1)! */
mpz_mul_ui (t, t, n + 1);
mpz_divexact (t, t, den); /* t was still n! */
mpz_mul (num, num, t);
mpz_set_ui (den, 1);
mpfr_clear (y);
mpfr_clear (z);
mpz_clear (s);
mpz_clear (t);
mpz_clear (u);
if (!ok)
{
prec += prec / 10;
goto try_again;
}
mpz_clear (den);
}
static MPFR_THREAD_ATTR mpz_t *bernoulli_table = NULL;
static MPFR_THREAD_ATTR unsigned long bernoulli_size = 0;
static MPFR_THREAD_ATTR unsigned long bernoulli_alloc = 0;
mpz_srcptr
mpfr_bernoulli_cache (unsigned long n)
{
unsigned long i;
if (n >= bernoulli_size)
{
if (bernoulli_alloc == 0)
{
bernoulli_alloc = MAX(16, n + n/4);
bernoulli_table = (mpz_t *)
(*__gmp_allocate_func) (bernoulli_alloc * sizeof (mpz_t));
bernoulli_size = 0;
}
else if (n >= bernoulli_alloc)
{
bernoulli_table = (mpz_t *) (*__gmp_reallocate_func)
(bernoulli_table, bernoulli_alloc * sizeof (mpz_t),
(n + n/4) * sizeof (mpz_t));
bernoulli_alloc = n + n/4;
}
MPFR_ASSERTD (bernoulli_alloc > n);
MPFR_ASSERTD (bernoulli_size >= 0);
for (i = bernoulli_size; i <= n; i++)
mpfr_bernoulli_internal (bernoulli_table, i);
bernoulli_size = n+1;
}
MPFR_ASSERTD (bernoulli_size > n);
return bernoulli_table[n];
}
void
mpfr_bernoulli_freecache (void)
{
unsigned long i;
if (bernoulli_table != NULL)
{
for (i = 0; i < bernoulli_size; i++)
{
mpz_clear (bernoulli_table[i]);
}
(*__gmp_free_func) (bernoulli_table, bernoulli_alloc * sizeof (mpz_t));
bernoulli_table = NULL;
bernoulli_alloc = 0;
bernoulli_size = 0;
}
}
|