1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
/* mpfr_sqrt -- square root of a floating-point number
Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
This file is part of the MPFR Library.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
#include "gmp.h"
#include "gmp-impl.h"
#include "mpfr.h"
#include "mpfr-impl.h"
/* #define DEBUG */
int
mpfr_sqrt (mpfr_ptr r, mpfr_srcptr u, mp_rnd_t rnd_mode)
{
mp_ptr up, rp, tmp, remp;
mp_size_t usize, rrsize;
mp_size_t rsize;
mp_size_t err;
mp_limb_t q_limb;
int odd_exp_u;
long rw, nw, k;
int inexact = 0, t;
unsigned long cc = 0;
int can_round = 0;
TMP_DECL(marker);
if (MPFR_IS_NAN(u))
{
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
if (MPFR_SIGN(u) < 0)
{
if (MPFR_IS_INF(u) || MPFR_NOTZERO(u))
{
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
else
{ /* sqrt(-0) = -0 */
MPFR_CLEAR_FLAGS(r);
MPFR_SET_ZERO(r);
MPFR_SET_NEG(r);
MPFR_RET(0);
}
}
MPFR_CLEAR_NAN(r);
MPFR_SET_POS(r);
if (MPFR_IS_INF(u))
{
MPFR_SET_INF(r);
MPFR_RET(0);
}
MPFR_CLEAR_INF(r);
if (MPFR_IS_ZERO(u))
{
MPFR_SET_ZERO(r);
MPFR_RET(0); /* zero is exact */
}
up = MPFR_MANT(u);
usize = (MPFR_PREC(u) - 1)/BITS_PER_MP_LIMB + 1;
#ifdef DEBUG
printf("Entering square root : ");
for(k = usize - 1; k >= 0; k--) { printf("%lu ", up[k]); }
printf(".\n");
#endif
/* Compare the mantissas */
odd_exp_u = (unsigned int) MPFR_GET_EXP (u) & 1;
MPFR_ASSERTN(MPFR_PREC(r) <= MPFR_INTPREC_MAX - 3);
rrsize = (MPFR_PREC(r) + 2 + odd_exp_u) / BITS_PER_MP_LIMB + 1;
MPFR_ASSERTN(rrsize <= MP_SIZE_T_MAX/2);
rsize = rrsize << 1;
/* One extra bit is needed in order to get the square root with enough
precision ; take one extra bit for rrsize in order to solve more
easily the problem of rounding to nearest.
Need to have 2*rrsize = rsize...
Take one extra bit if the exponent of u is odd since we shall have
to shift then.
*/
TMP_MARK(marker);
if (odd_exp_u) /* Shift u one bit to the right */
{
if (MPFR_PREC(u) & (BITS_PER_MP_LIMB - 1))
{
up = TMP_ALLOC(usize * BYTES_PER_MP_LIMB);
mpn_rshift(up, MPFR_MANT(u), usize, 1);
}
else
{
up = TMP_ALLOC((usize + 1) * BYTES_PER_MP_LIMB);
if (mpn_rshift(up + 1, MPFR_MANT(u), usize, 1))
up[0] = MPFR_LIMB_HIGHBIT;
else
up[0] = 0;
usize++;
}
}
MPFR_SET_EXP(r, MPFR_GET_EXP(u) != MPFR_EMAX_MAX
? (MPFR_GET_EXP(u) + odd_exp_u) / 2
: (MPFR_EMAX_MAX - 1) / 2 + 1);
do
{
err = rsize * BITS_PER_MP_LIMB;
if (rsize < usize)
err--;
if (err > rrsize * BITS_PER_MP_LIMB)
err = rrsize * BITS_PER_MP_LIMB;
tmp = (mp_ptr) TMP_ALLOC (rsize * BYTES_PER_MP_LIMB);
rp = (mp_ptr) TMP_ALLOC (rrsize * BYTES_PER_MP_LIMB);
remp = (mp_ptr) TMP_ALLOC (rsize * BYTES_PER_MP_LIMB);
if (usize >= rsize)
{
MPN_COPY (tmp, up + usize - rsize, rsize);
}
else
{
MPN_COPY (tmp + rsize - usize, up, usize);
MPN_ZERO (tmp, rsize - usize);
}
/* Do the real job */
#ifdef DEBUG
printf("Taking the sqrt of : ");
for(k = rsize - 1; k >= 0; k--)
printf("+%lu*2^%lu",tmp[k],k*BITS_PER_MP_LIMB);
printf(".\n");
#endif
q_limb = mpn_sqrtrem (rp, remp, tmp, rsize);
#ifdef DEBUG
printf ("The result is : \n");
printf ("sqrt : ");
for (k = rrsize - 1; k >= 0; k--)
printf ("%lu ", rp[k]);
printf ("(inexact = %lu)\n", q_limb);
#endif
can_round = mpfr_can_round_raw(rp, rrsize, 1, err,
GMP_RNDZ, rnd_mode, MPFR_PREC(r));
/* If we used all the limbs of both the dividend and the divisor,
then we have the correct RNDZ rounding */
if (!can_round && (rsize < 2*usize))
{
#ifdef DEBUG
printf("Increasing the precision.\n");
#endif
}
}
while (!can_round && (rsize < 2*usize) && (rsize += 2) && (rrsize++));
#ifdef DEBUG
printf ("can_round = %d\n", can_round);
#endif
/* This part may be deplaced upper to avoid a few mpfr_can_round_raw */
/* when the square root is exact. It is however very unprobable that */
/* it would improve the behaviour of the present code on average. */
if (!q_limb) /* the sqrtrem call was exact, possible exact square root */
{
/* if we have taken into account the whole of up */
for (k = usize - rsize - 1; k >= 0; k++)
if (up[k] != 0)
break;
if (k < 0)
goto fin; /* exact square root ==> inexact = 0 */
}
if (can_round)
{
cc = mpfr_round_raw (rp, rp, err, 0, MPFR_PREC(r), rnd_mode, &inexact);
if (inexact == 0) /* exact high part: inex flag depends on remainder */
inexact = -q_limb;
rrsize = (MPFR_PREC(r) - 1)/BITS_PER_MP_LIMB + 1;
}
else
{
/* Use the return value of sqrtrem to decide of the rounding */
/* Note that at this point the sqrt has been computed */
/* EXACTLY. */
switch (rnd_mode)
{
case GMP_RNDZ :
case GMP_RNDD :
inexact = -1; /* result is truncated */
break;
case GMP_RNDN :
/* Not in the situation ...0 111111 */
rw = (MPFR_PREC(r) + 1) & (BITS_PER_MP_LIMB - 1);
if (rw != 0)
{
rw = BITS_PER_MP_LIMB - rw;
nw = 0;
}
else
nw = 1;
if ((rp[nw] >> rw) & 1 && /* Not 0111111111 */
(q_limb || /* Nonzero remainder */
(rw ? (rp[nw] >> (rw + 1)) & 1 :
(rp[nw] >> (BITS_PER_MP_LIMB - 1)) & 1))) /* or even r. */
{
cc = mpn_add_1 (rp + nw, rp + nw, rrsize, MP_LIMB_T_ONE << rw);
inexact = 1;
}
else
inexact = -1;
break;
case GMP_RNDU:
/* we should arrive here only when the result is inexact, i.e.
either q_limb > 0 (the remainder from mpn_sqrtrem is non-zero)
or up[0..usize-rsize-1] is non zero, thus we have to add one
ulp, and inexact = 1 */
inexact = 1;
t = MPFR_PREC(r) & (BITS_PER_MP_LIMB - 1);
rsize = (MPFR_PREC(r) - 1)/BITS_PER_MP_LIMB + 1;
cc = mpn_add_1 (rp + rrsize - rsize, rp + rrsize - rsize, rsize,
t != 0 ?
MP_LIMB_T_ONE << (BITS_PER_MP_LIMB - t) :
MP_LIMB_T_ONE);
}
}
if (cc)
{
/* Is a shift necessary here? Isn't the result 1.0000...? */
mpn_rshift (rp, rp, rrsize, 1);
rp[rrsize-1] |= MPFR_LIMB_HIGHBIT;
MPFR_SET_EXP (r, MPFR_GET_EXP (r) + 1);
}
fin:
rsize = rrsize;
rrsize = (MPFR_PREC(r) - 1)/BITS_PER_MP_LIMB + 1;
MPN_COPY(MPFR_MANT(r), rp + rsize - rrsize, rrsize);
if (MPFR_PREC(r) & (BITS_PER_MP_LIMB - 1))
MPFR_MANT(r)[0] &= ~((MP_LIMB_T_ONE <<
(BITS_PER_MP_LIMB -
(MPFR_PREC(r) & (BITS_PER_MP_LIMB - 1)))) - 1);
TMP_FREE(marker);
return inexact;
}
|