1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
|
/* mpfr_erf -- error function of a floating-point number
Copyright 2001, 2003 Free Software Foundation, Inc.
Contributed by Ludovic Meunier and Paul Zimmermann.
This file is part of the MPFR Library.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
#include "gmp.h"
#include "gmp-impl.h"
#include "mpfr.h"
#include "mpfr-impl.h"
/* #define DEBUG */
#define EXP1 2.71828182845904523536 /* exp(1) */
int mpfr_erf_0 _MPFR_PROTO((mpfr_ptr, mpfr_srcptr, mp_rnd_t));
#if 0
int mpfr_erf_inf _MPFR_PROTO((mpfr_ptr, mpfr_srcptr, mp_rnd_t));
int mpfr_erfc_inf _MPFR_PROTO((mpfr_ptr, mpfr_srcptr, mp_rnd_t));
#endif
int
mpfr_erf (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode)
{
double xf;
int sign_x;
mp_rnd_t rnd2;
double n = (double) MPFR_PREC(y);
int inex;
sign_x = MPFR_SIGN (x);
if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(x) ))
{
if (MPFR_IS_NAN(x))
{
MPFR_SET_NAN(y);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF(x)) /* erf(+inf) = +1, erf(-inf) = -1 */
return mpfr_set_si (y, MPFR_FROM_SIGN_TO_INT(sign_x), GMP_RNDN);
else if (MPFR_IS_ZERO(x)) /* erf(+0) = +0, erf(-0) = -0 */
return mpfr_set (y, x, GMP_RNDN); /* should keep the sign of x */
else
MPFR_ASSERTN(0);
}
/* now x is neither NaN, Inf nor 0 */
xf = mpfr_get_d (x, GMP_RNDN);
xf = xf * xf; /* xf ~ x^2 */
if (MPFR_IS_POS_SIGN(sign_x))
rnd2 = rnd_mode;
else
{
if (rnd_mode == GMP_RNDU)
rnd2 = GMP_RNDD;
else if (rnd_mode == GMP_RNDD)
rnd2 = GMP_RNDU;
else
rnd2 = rnd_mode;
}
/* use expansion at x=0 when e*x^2 <= n (target precision)
otherwise use asymptotic expansion */
if (xf > n * LOG2) /* |erf x| = 1 or 1- */
{
if (rnd2 == GMP_RNDN || rnd2 == GMP_RNDU)
{
mpfr_set_ui (y, 1, rnd2);
inex = 1;
}
else
{
mpfr_setmax (y, 0);
inex = -1;
}
}
else /* use Taylor */
{
inex = mpfr_erf_0 (y, x, rnd2);
}
if (MPFR_IS_NEG_SIGN(sign_x))
{
MPFR_CHANGE_SIGN (y);
return - inex;
}
else
{
return inex;
}
}
/* return x*2^e */
static
double mul_2exp (double x, mp_exp_t e)
{
if (e > 0)
{
while (e--)
x *= 2.0;
}
else
{
while (e++)
x /= 2.0;
}
return x;
}
/* evaluates erf(x) using the expansion at x=0:
erf(x) = 2/sqrt(Pi) * sum((-1)^k*x^(2k+1)/k!/(2k+1), k=0..infinity)
Assumes x is neither NaN nor infinite nor zero.
Assumes also that e*x^2 <= n (target precision).
*/
int
mpfr_erf_0 (mpfr_ptr res, mpfr_srcptr x, mp_rnd_t rnd_mode)
{
mp_prec_t n, m;
mp_exp_t nuk, sigmak;
double xf, tauk;
mpfr_t y, s, t, u;
unsigned int k;
long log2tauk;
int ok;
int inex;
n = MPFR_PREC(res); /* target precision */
xf = mpfr_get_d (x, GMP_RNDN);
/* initial working precision */
m = n + (mp_prec_t) (xf * xf / LOG2) + 8;
mpfr_init2 (y, 2);
mpfr_init2 (s, 2);
mpfr_init2 (t, 2);
mpfr_init2 (u, 2);
do
{
m += __gmpfr_ceil_log2 ((double) n);
mpfr_set_prec (y, m);
mpfr_set_prec (s, m);
mpfr_set_prec (t, m);
mpfr_set_prec (u, m);
mpfr_mul (y, x, x, GMP_RNDU); /* err <= 1 ulp */
mpfr_set_ui (s, 1, GMP_RNDN); /* exact */
mpfr_set_ui (t, 1, GMP_RNDN); /* exact */
tauk = 0.0;
for (k = 1; ; k++)
{
mpfr_mul (t, y, t, GMP_RNDU);
mpfr_div_ui (t, t, k, GMP_RNDU);
mpfr_div_ui (u, t, 2 * k + 1, GMP_RNDU);
sigmak = MPFR_EXP(s);
if (k % 2)
mpfr_sub (s, s, u, GMP_RNDN);
else
mpfr_add (s, s, u, GMP_RNDN);
sigmak -= MPFR_EXP(s);
nuk = MPFR_EXP(u) - MPFR_EXP(s);
if ((nuk < - (mp_exp_t) m) && ((double) k >= xf * xf))
break;
/* tauk <- 1/2 + tauk * 2^sigmak + (1+8k)*2^nuk */
tauk = 0.5 + mul_2exp (tauk, sigmak)
+ mul_2exp (1.0 + 8.0 * (double) k, nuk);
}
mpfr_mul (s, x, s, GMP_RNDU);
MPFR_EXP(s) ++;
mpfr_const_pi (t, GMP_RNDZ);
mpfr_sqrt (t, t, GMP_RNDZ);
mpfr_div (s, s, t, GMP_RNDN);
tauk = 4.0 * tauk + 11.0; /* final ulp-error on s */
log2tauk = __gmpfr_ceil_log2 (tauk);
ok = mpfr_can_round (s, m - log2tauk, GMP_RNDN, GMP_RNDZ,
n + (rnd_mode == GMP_RNDN));
if (ok == 0)
{
if (m < n + log2tauk)
m = n + log2tauk;
}
}
while (ok == 0);
inex = mpfr_set (res, s, rnd_mode);
mpfr_clear (y);
mpfr_clear (t);
mpfr_clear (u);
mpfr_clear (s);
return inex;
}
#if 0
/* evaluates erfc(x) using the expansion at x=infinity:
sqrt(Pi)*x*exp(x^2)*erfc(x) = 1 + sum((-1)^k*(1*3*...*(2k-1))/(2x^2)^k,k>=1)
Assumes x is neither NaN nor infinite nor zero.
Assumes also that e*x^2 > n (target precision).
Since n >= 2, we have x >= sqrt(2/e), and since
f(x) := sqrt(Pi)*x*exp(x^2)*erfc(x) is increasing, we have
f(x) >= f(sqrt(2/e)) ~ 0.7142767512, thus the final partial sum
should be > 0.5, and MPFR_EXP(s) should always be >= 0.
*/
int
mpfr_erfc_inf (mpfr_ptr res, mpfr_srcptr x, mp_rnd_t rnd)
{
mp_prec_t n, m;
mpfr_t y, s, t;
unsigned long k;
double tauk;
long log2tauk;
mp_exp_t sigmak, nuk;
double xf = mpfr_get_d1 (x);
n = MPFR_PREC(res); /* target precision */
mpfr_init2 (y, 2);
mpfr_init2 (s, 2);
mpfr_init2 (t, 2);
m = n; /* working precision */
xf = xf * xf; /* approximation of x^2 */
do
{
m += __gmpfr_ceil_log2 ((double) n);
/* check that 2 * (EXP(x) - 1) * x^2 > m, which ensures the smallest
term is less than 2^(-m) */
if (2.0 * (double) (MPFR_EXP(x) - 1) * xf <= (double) m)
{
mpfr_clear (y);
mpfr_clear (s);
mpfr_clear (t);
return mpfr_erf_0 (res, x, rnd);
}
mpfr_set_prec (y, m);
mpfr_set_prec (s, m);
mpfr_set_prec (t, m);
mpfr_mul (y, x, x, GMP_RNDD); /* err <= 1 ulp */
MPFR_EXP(y) ++; /* exact */
mpfr_set_ui (s, 1, GMP_RNDN); /* exact */
mpfr_set_ui (t, 1, GMP_RNDN); /* exact */
tauk = 0.0;
for (k = 1; k <= (unsigned long) xf; k++)
{
mpfr_mul_ui (t, t, 2 * k - 1, GMP_RNDU);
mpfr_div (t, t, y, GMP_RNDU);
sigmak = MPFR_EXP(s);
if (k % 2)
mpfr_sub (s, s, t, GMP_RNDN);
else
mpfr_add (s, s, t, GMP_RNDN);
sigmak -= MPFR_EXP(s);
nuk = MPFR_EXP(t) - MPFR_EXP(s);
if (nuk < - (mp_exp_t) m)
break;
/* tauk <- 1/2 + tauk * 2^sigmak + 2^(2k+2+nuk) */
tauk = 0.5 + mul_2exp (tauk, sigmak)
+ mul_2exp (1.0, 2 * k + 2 + nuk);
}
if (nuk >= - (mp_exp_t) m)
abort();
mpfr_add_one_ulp (y, GMP_RNDU); /* x^2 rounded up */
nuk = MPFR_EXP(y);
mpfr_exp (t, y, GMP_RNDU);
mpfr_mul (t, t, x, GMP_RNDU);
mpfr_const_pi (y, GMP_RNDD);
mpfr_sqrt (y, y, GMP_RNDD);
mpfr_mul (t, t, y, GMP_RNDN);
mpfr_div (s, s, t, GMP_RNDN);
/* final error bound on s */
tauk = mul_2exp (3.0, nuk + 5) + 2.0 * tauk + 115.0;
log2tauk = __gmpfr_ceil_log2 (tauk);
}
while (mpfr_can_round (s, m - log2tauk, GMP_RNDN, rnd, n) == 0);
mpfr_set (res, s, rnd);
mpfr_clear (y);
mpfr_clear (s);
mpfr_clear (t);
return 1;
}
/* evaluates erf(x) using the expansion at x=infinity for erfc(x) = 1 - erf(x).
Assumes x is neither NaN nor infinite nor zero.
Assumes also that e*x^2 > n (target precision).
*/
int
mpfr_erf_inf (mpfr_ptr res, mpfr_srcptr x, mp_rnd_t rnd)
{
mp_prec_t n, m;
mpfr_t tmp;
mp_exp_t sh;
n = MPFR_PREC(res); /* target precision */
m = n;
mpfr_init2 (tmp, 2);
do
{
m += __gmpfr_ceil_log2 ((double) n);
mpfr_set_prec (tmp, m);
mpfr_erfc_inf (tmp, x, GMP_RNDN); /* err <= 1/2 ulp */
sh = MPFR_EXP(tmp);
mpfr_ui_sub (tmp, 1, tmp, GMP_RNDN); /* err <= 1/2 + 1/2*2^sh */
sh -= MPFR_EXP(tmp);
/* the final error is bounded by 2^max(sh, 0) */
if (sh < 0)
sh = 0;
}
while (mpfr_can_round (tmp, m - sh, GMP_RNDN, rnd, n) == 0);
mpfr_set (res, tmp, rnd);
mpfr_clear (tmp);
return 1;
}
#endif
|