1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
|
% see http://hal.inria.fr/hal-00934443 to simplify/improve the ulp calculus
\documentclass[12pt]{amsart}
\usepackage{fullpage}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{url}
\usepackage{comment}
\usepackage{hyperref}
\usepackage{graphicx}
\pagestyle{plain}
\title{The MPFR\footnote{\lowercase{\url{http://www.mpfr.org/}}} Library:
Algorithms and Proofs}
\author{The MPFR team}
%%%%%%%%%%%%%% macros for the package algorithm2e %%%%%%%%%%%%%%%
\usepackage[english, lined, linesnumbered]{algorithm2e}
\SetKwData{tempv}{temp}
\SetKwData{tzero}{t0}
\SetKwData{tone}{t1}
\SetKwData{ivar}{i}
\SetKwData{kvar}{k}
\SetKwData{svar}{s}
\SetKwData{approxErr}{approxErr}
\SetKwData{evalErr}{evalErr}
\SetKwData{correctBits}{correctBits}
\SetKwData{wprec}{wprec}
\SetKwData{precc}{prec}
\SetKwData{cond}{cond}
\SetKwData{assumedExp}{assumedExp}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\DeclareMathOperator{\Ai}{Ai}
\DeclareMathOperator{\acosh}{acosh}
\DeclareMathOperator{\Li2}{Li_2}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\erfc}{erfc}
\def\O{{\mathcal O}}
\def\n{\textnormal}
\def\pinf{\bigtriangleup}
\def\minf{\bigtriangledown}
\def\q{\hspace*{5mm}}
\def\ulp{{\rm ulp}}
\def\Exp{{\rm \textsc exp}}
\def\prec{{\rm prec}}
\def\sign{{\rm sign}}
\def\Paragraph#1{\noindent {\sc #1}}
\def\Z{{\mathcal Z}}
\def\Q{{\mathbb Q}}
\def\R{{\mathbb R}}
\def\C{{\mathbb C}}
\def\N{{\mathcal N}}
\def\If{{\bf if}}
\def\then{{\bf then}}
\def\Else{{\bf else}}
\def\elif{{\bf elif}}
\def\for{{\bf for}}
\def\to{{\bf to}}
\def\while{{\bf while}}
\def\err{{\rm err}}
\def\cmod{\,\mathrm{cmod}\,}
\newcommand{\U}[1]{\quad \mbox{[Rule~\ref{#1}]}}
\newcommand{\fl}[1]{\widehat{#1}}
\newcommand{\rnd}[1]{\left\langle#1\right\rangle}
\DeclareMathOperator{\error}{error}
\newtheorem{Rule}{Rule}
\newtheorem{lemma}{Lemma}
\newtheorem{theorem}{Theorem}
\newtheorem{fact}{Fact}
\newtheorem{assumption}{Hypothesis}
\begin{document}
\maketitle
\sloppy
\tableofcontents
\section{Notations and Assumptions}
In the whole document, $\N()$ denotes rounding to nearest,
$\Z()$ rounding toward zero,
$\pinf()$ rounding toward plus infinity,
$\minf()$ rounding toward minus infinity,
and $\circ()$ any of those four rounding modes.
In the whole document, except special notice, all variables are assumed
to have the same precision, usually denoted $p$.
\section{Error calculus}
Let $n$ --- the working precision ---
be a positive integer (considered fixed in the following).
We write any nonzero real number $x$ in the form $x = m \cdot 2^e$
with $\frac{1}{2} \le |m| < 1$ and $e := \Exp(x)$, and
we define $\ulp(x) := 2^{\Exp(x) - n}$.
\subsection{Ulp calculus}
\begin{Rule} \label{R1}
$2^{-n} |x| < \ulp(x) \le 2^{-n+1} |x|$.
\end{Rule}
\begin{proof}
Obvious from $x = m \cdot 2^e$ with $\frac{1}{2} \le |m| < 1$.
\end{proof}
\begin{Rule} \label{R2}
If $a$ and $b$ have same precision $n$,
and $|a| \le |b|$, then $\ulp(a) \le \ulp(b)$.
\end{Rule}
\begin{proof}
Write $a = m_a \cdot 2^{e_a}$ and $b = m_b \cdot 2^{e_b}$.
Then $|a| \le |b|$ implies $e_a \le e_b$, thus
$\ulp(a) = 2^{e_a-n} \le 2^{e_b-n} = \ulp(b)$.
\end{proof}
\begin{Rule} \label{R3}
Let $x$ be a real number, and $y = \circ(x)$.
Then $|x - y| \leq \frac{1}{2} {\rm min}(\ulp(x), \ulp(y))$
in rounding to nearest,
and $|x - y| \leq {\rm min}(\ulp(x), \ulp(y))$ for the other rounding modes.
\end{Rule}
\begin{proof}
First consider rounding to nearest.
By definition, we have $|x-y| \leq \frac{1}{2} \ulp(y)$.
If $\ulp(y) \leq \ulp(x)$, then $|x-y| \leq \frac{1}{2} \ulp(y)
\leq \frac{1}{2} \ulp(x)$.
The only difficult case is when $\ulp(x) < \ulp(y)$, but then
necessarily $y$ is a power of two;
since in that case $y - \frac{1}{2} \ulp(y)$ is exactly representable,
the maximal possible difference between $x$ and $y$
is $\frac{1}{4} \ulp(y) = \frac{1}{2} \ulp(x)$, which concludes the proof
in the rounding to nearest case.
In rounding to zero, we always have $\ulp(y) \leq \ulp(x)$, so the rule
holds.
In rounding away from zero, the only difficult case is when
$\ulp(x) < \ulp(y)$, but then $y$ is a power of two, and since
$y - \frac{1}{2} \ulp(y)$ is exactly representable,
the maximal possible difference between $x$ and $y$ is $\frac{1}{2} \ulp(y)
= \ulp(x)$, which concludes the proof.
\end{proof}
\begin{Rule} \label{R4}
$\frac{1}{2} |a| \cdot \ulp(b) < \ulp(a b) < 2 |a| \cdot \ulp(b)$.
\end{Rule}
\begin{proof}
Write $a = m_a 2^{e_a}$, $b = m_b \cdot 2^{e_b}$, and $a b = m 2^e$
with $\frac{1}{2} \le m_a, m_b, m < 1$,
then $\frac{1}{4} 2^{e_a+e_b} \le |a b| < 2^{e_a+e_b}$,
thus $e = e_a + e_b$ or $e = e_a + e_b - 1$, which implies
$\frac{1}{2} 2^{e_a} \ulp(b) \le \ulp(a b) \le 2^{e_a} \ulp(b)$
using $2^{e_b-n} = \ulp(b)$, and the rule follows from
the fact that $|a| < 2^{e_a} \le 2|a|$ (equality on the right side can
occur only if $e = e_a + e_b$ and $m_a = \frac{1}{2}$, which are
incompatible).
\end{proof}
\begin{Rule} \label{R5}
$\ulp(2^k a) = 2^k \ulp(a)$.
\end{Rule}
\begin{proof}
Easy: if $a = m_a \cdot 2^{e_a}$, then $2^k a = m_a \cdot 2^{e_a+k}$.
\end{proof}
\begin{Rule} \label{R6}
Let $x > 0$, $\circ(\cdot)$ be any rounding, and $u := \circ(x)$,
then $\frac{1}{2} u < x < 2 u$.
\end{Rule}
\begin{proof}
Assume $x \geq 2 u$, then $2u$ is another representable number which is closer
from $x$ than $u$, which leads to a contradiction. The same argument proves
$\frac{1}{2} u < x$.
\end{proof}
\begin{Rule} \label{R7}
$\frac{1}{2} |a| \cdot \ulp(1) < \ulp(a) \leq |a| \cdot \ulp(1)$.
\end{Rule}
\begin{proof}
The left inequality comes from Rule~\ref{R4} with $b=1$,
and the right one from $|a| \ulp(1) \geq \frac{1}{2} 2^{e_a} 2^{1-n} =\ulp(a)$.
\end{proof}
\begin{Rule} \label{R8}
For any $x \neq 0$ and any rounding mode $\circ(\cdot)$,
we have $\ulp(x) \leq \ulp(\circ(x))$, and equality holds when rounding toward
zero, toward $-\infty$ for $x>0$, or toward $+\infty$ for $x<0$.
\end{Rule}
\begin{proof}
Without loss of generality, assume $x > 0$.
Let $x = m \cdot 2^e$ with $\frac{1}{2} \leq m < 1$.
As $\frac{1}{2} 2^{e_x}$ is a machine number, necessarily $\circ(x) \geq
\frac{1}{2} 2^{e_x}$, thus by Rule~\ref{R2}, then $\ulp(\circ(x)) \geq
2^{e_x - n} = \ulp(x)$.
If we round toward zero, then $\circ(x) \leq x$ and by Rule~\ref{R2} again,
$\ulp(\circ(x)) \leq \ulp(x)$.
\end{proof}
\begin{Rule} \label{R9}
\begin{eqnarray}\nonumber
&&\n{For}\;\; \error(u) \leq k_u \ulp(u),\;\; u.c_u^- \leq x \leq u.c_u^+\\\nonumber
&&\n{with}\;\; c_u^{-}=1- k_u 2^{1-p} \n{ and } c_u^{+}=1+ k_u 2^{1-p}
\end{eqnarray}
\begin{eqnarray}\nonumber
&&\n{For}\;\; u=\circ(x),\;\; u.c_u^- \leq x \leq u.c_u^+\\\nonumber
&&\n{if}\;\; u=\pinf(x),\n{ then } c_u^+=1\\\nonumber
&&\n{if}\;\; u=\minf(x),\n{ then } c_u^-=1\\\nonumber
&&\n{if}\;\; \n{for $x<0$ and } u=\Z(x),\n{ then } c_u^+=1 \\\nonumber
&&\n{if}\;\; \n{for $x>0$ and } u=\Z(x),\n{ then } c_u^-=1 \\\nonumber
&&\n{else}\;\; c_u^{-}=1-2^{1-p} \n{ and } c_u^{+}=1+2^{1-p}
\end{eqnarray}
\end{Rule}
\subsection{Relative error analysis}
Another way to get a bound on the error,
is to bound the relative error. This is sometimes easier than using the
``ulp calculus'' especially when performing only multiplications or divisions.
\begin{Rule} \label{R10}
If $u := \circ_p(x)$, then we can write both:
\[ u = x (1 + \theta_1), \qquad x = u (1 + \theta_2), \]
where $|\theta_i| \leq 2^{-p}$ for rounding to nearest, and
$|\theta_i| < 2^{1-p}$ for directed rounding.
\end{Rule}
\begin{proof}
This is a simple consequence of Rule~\ref{R3}. For rounding to nearest,
we have $|u-x| \leq \frac{1}{2} \ulp(t)$ for $t=u$ or $t=x$, hence by
Rule~\ref{R1} $|u-x| \leq 2^{-p}$.
\end{proof}
\begin{Rule} \label{R11}
Assume $x_1, \ldots, x_n$ are $n$ floating-point numbers in precision $p$,
and we compute an approximation of their product with the following sequence
of operations: $u_1 = x_1, u_2 = \circ(u_1 x_2), \ldots, u_n = \circ(u_{n-1}
x_n)$. If rounding away from zero, the total rounding error is bounded by
$2(n-1) \ulp(u_n)$.
\end{Rule}
\begin{proof}
We can write $u_1 x_2 = u_2 (1 - \theta_2), \ldots, u_{n-1} x_n = u_n
(1 - \theta_n)$, where $0 \leq \theta_i \leq 2^{1-p}$.
We get $x_1 x_2 \ldots x_n = u_n (1 - \theta_2) \ldots (1 - \theta_n)$,
which we can write $u_n (1-\theta)^{n-1}$ for some $0 \leq \theta \leq 2^{1-p}$
by the intermediate value theorem.
Since $1-nt \leq (1-t)^n \leq 1$, we get $|x_1 x_2 \ldots x_n - u_n| \leq
(n-1) 2^{1-p} |u_n| \leq 2 (n-1) \ulp(u_n)$ by Rule~\ref{R1}.
\end{proof}
% \section{Generic error on basic operations}
\subsection{Generic error of addition/subtraction}\label{generic:sous}
We want to compute the generic error of the subtraction, the following rules
apply to addition too.
\begin{eqnarray}\nonumber
\textnormal{Note:}&& \error(u) \leq k_u \, \ulp(u), \;\; \error(v) \leq k_v \, \ulp(v)
\end{eqnarray}
\begin{eqnarray}\nonumber
\textnormal{Note:}&& \ulp(w)=2^{e_w-p}, \;\; \ulp(u)=2^{e_u-p},\;\; \ulp(v)=2^{e_v-p}\;\;\textnormal{with} \; p \; \textnormal{the precision} \\\nonumber
&& \ulp(u)=2^{d+e_w-p}, \;\; \ulp(v)=2^{d^{'}+e_w-p},\;\;\textnormal{with} \;\;d=e_u-e_w \;\; d^{'}=e_v-e_w
\end{eqnarray}
\begin{eqnarray}\nonumber
\error(w)& \leq &c_w \ulp(w) + k_u \ulp(u) + k_v \ulp(v) \\\nonumber
&=&(c_w+k_u 2^d+ k_v 2^{d^{'}}) \ulp(w)
\end{eqnarray}
\begin{eqnarray}\nonumber
&&\textnormal{If} \;\; ( u \geq 0 \;\;\textnormal{and}\;\; v \geq 0) \;\;\textnormal{or}\;\; (u \leq 0 \;\;\textnormal{and}\;\; v \leq 0)
\end{eqnarray}
\begin{eqnarray}\nonumber
\error(w)& \leq&(c_w + k_u + k_v) \, \ulp(w)
\end{eqnarray}
\begin{eqnarray}\nonumber
\textnormal{Note:}&&\textnormal{If}\;\; w=\N(u+v) \;\;\textnormal{Then}\;\; c_w =\frac{1}{2} \;\;\textnormal{else}\;\; c_w =1\\\nonumber
\end{eqnarray}
\subsection{Generic error of multiplication}\label{generic:mul}
We want to compute the generic error of the multiplication.
We assume here $u, v > 0$ are approximations of exact values respectively $x$
and $y$, with $|u - x| \leq k_u \, \ulp(u)$ and $|v - y| \leq k_v \, \ulp(v)$.
\begin{eqnarray}\nonumber
w&=&\circ(uv) \\\nonumber
% \textnormal{Note:}&& \error(u) \leq k_u \, \ulp(u), \;\; \error(v) \leq k_v \, \ulp(v)
\end{eqnarray}
\begin{eqnarray}\nonumber
\error(w)& = &|w - xy| \\\nonumber
& \leq &|w - u v| +|u v - x y| \\\nonumber
& \leq & c_w \ulp(w) + \frac{1}{2} [|u v-u y|+|u y-x y|+|u v-x v|+|x v-x y|]\\\nonumber
& \leq & c_w \ulp(w) + \frac{u+x}{2} k_v \ulp(v) + \frac{v+y}{2} k_u \ulp(u)\\\nonumber
& \leq & c_w \ulp(w) + \frac{u(1+c_u^+)}{2} k_v \ulp(v) + \frac{v(1+c_v^+)}{2} k_u \ulp(u) \U{R9}\\\nonumber
& \leq & c_w \ulp(w) + (1+c_u^+) k_v \ulp(uv) + (1+c_v^+) k_u \ulp(uv) \U{R4}\\\nonumber
& \leq & [ c_w + (1+c_u^+) k_v + (1+c_v^+) k_u ] \ulp(w)\U{R8}\\\nonumber
\end{eqnarray}
\begin{eqnarray}\nonumber
\textnormal{Note:}&&\textnormal{If}\;\; w=\N(uv) \;\;\textnormal{Then}\;\; c_w =\frac{1}{2} \;\;\textnormal{else}\;\; c_w =1
\end{eqnarray}
\subsection{Generic error of inverse}\label{generic:inv}
We want to compute the generic error of the inverse.
We assume $u > 0$.
\begin{eqnarray}\nonumber
w&=&\circ(\frac{1}{u}) \\\nonumber
\textnormal{Note:}&& \error(u) \leq k_u \, \ulp(u)
\end{eqnarray}
\begin{eqnarray}\nonumber
\error(w)& = &|w - \frac{1}{x}| \\\nonumber
& \leq &|w - \frac{1}{u}| +|\frac{1}{u} - \frac{1}{x}| \\\nonumber
& \leq & c_w \ulp(w) + \frac{1}{ux}|u-x| \\\nonumber
& \leq & c_w \ulp(w) + \frac{k_u}{ux} \ulp(u)
\end{eqnarray}
\begin{eqnarray}\nonumber
\textnormal{Note:}&& \frac{u}{c_u} \leq x\;\; \U{R6}\\\nonumber
&&\n{for } u=\minf(x),\;c_u=1 \n{ else } c_u=2\\\nonumber
&& \n{then: } \frac{1}{x} \leq c_u \frac{1}{u}
\end{eqnarray}
\begin{eqnarray}\nonumber
\error(w)& \leq & c_w \ulp(w) + c_u\frac{k_u}{u^2} \ulp(u)\\\nonumber
& \leq & c_w \ulp(w) + 2.c_u.k_u \ulp(\frac{u}{u^2}) \U{R4}\\\nonumber
& \leq & [c_w + 2.c_u.k_u].\ulp(w) \U{R8}
\end{eqnarray}
\begin{eqnarray}\nonumber
\textnormal{Note:}&&\textnormal{If}\;\; w=\N(\frac{1}{u}) \;\;\textnormal{Then}\;\; c_w =\frac{1}{2} \;\;\textnormal{else}\;\; c_w =1\\\nonumber\end{eqnarray}
\subsection{Generic error of division}\label{generic:div}
We want to compute the generic error of the division.
Without loss of generality, we assume all variables are positive.
\begin{eqnarray}\nonumber
w&=&\circ(\frac{u}{v}) \\\nonumber
\textnormal{Note:}&& \error(u) \leq k_u \, \ulp(u), \;\; \error(v) \leq k_v \, \ulp(v)
\end{eqnarray}
\begin{eqnarray}\nonumber
\error(w)& = &|w - \frac{x}{y}| \\\nonumber
& \leq &|w - \frac{u}{v}| +|\frac{u}{v} - \frac{x}{y}| \\\nonumber
& \leq & c_w \ulp(w) + \frac{1}{vy}|uy-vx| \\\nonumber
& \leq & c_w \ulp(w) + \frac{1}{vy}[|uy-xy|+|xy-vx| ]\\\nonumber
& \leq & c_w \ulp(w) + \frac{1}{vy}[y k_u \ulp(u)+ x k_v \ulp(v)]\\\nonumber
& = & c_w \ulp(w) + \frac{k_u}{v} \ulp(u)+ \frac{k_v x}{vy} \ulp(v)
\end{eqnarray}
\begin{eqnarray}\nonumber
\textnormal{Note:}&& \frac{\ulp(u)}{v} \leq 2 \ulp(\frac{u}{v}) \;\; \U{R4}\\\nonumber
&& 2 \ulp(\frac{u}{v}) \leq 2 \ulp(w) \;\; \U{R8}
\end{eqnarray}
\begin{eqnarray}\nonumber
\textnormal{Note:}&& x \leq c_u u \textnormal{ and } \frac{v}{c_v} \leq y\;\; \U{R6}\\\nonumber
&&\n{with } \n{for } u=\pinf(x),\;c_u=1 \n{ else } c_u=2\\\nonumber
&&\n{ and }\n{for } v=\minf(y),\;c_v=1 \n{ else } c_v=2\\\nonumber
&& \n{then: } \frac{x}{y} \leq c_u c_v \frac{u}{v}
\end{eqnarray}
\begin{eqnarray}\nonumber
\error(w)& \leq & c_w \ulp(w) + 2.k_u \ulp(w)+ c_u.c_v.\frac{k_v u}{vv} \ulp(v)\\\nonumber
& \leq & c_w \ulp(w) + 2.k_u \ulp(w)+ 2.c_u.c_v.k_v \ulp(\frac{u.v}{v.v}) \U{R4}\\\nonumber
& \leq & [c_w + 2.k_u+ 2.c_u.c_v.k_v].\ulp(w) \U{R8}
\end{eqnarray}
\begin{eqnarray}\nonumber
\textnormal{Note:}&&\textnormal{If}\;\; w=\N(\frac{u}{v}) \;\;\textnormal{Then}\;\; c_w =\frac{1}{2} \;\;\textnormal{else}\;\; c_w =1
\end{eqnarray}
Note that we can obtain a slightly different result by writing
$uy-vx = (uy - uv) + (uv - vx)$ instead of $(uy-xy)+(xy-vx)$.
Another result can be obtained using a relative error analysis.
Assume $x = u (1 + \theta_u)$ and $y = v (1 + \theta_v)$. Then
$|\frac{u}{v} - \frac{x}{y}| \leq \frac{1}{vy} |uy - uv|
+ \frac{1}{vy} |uv - xv|
= \frac{u}{y} (|\theta_u|+|\theta_v|)$.
If $v \leq y$ and $\frac{u}{v} \leq w$,
this is bounded by $w (|\theta_u|+|\theta_v|)$.
\subsection{Generic error of square root}\label{generic:sqrt}
We want to compute the generic error of the square root of a floating-point
number $u$, itself an approximation to a real $x$,
with $|u - x| \leq k_u \ulp(u)$.
If $v = \circ(\sqrt{u})$, then:
\begin{eqnarray}\nonumber
\error(v) := |v - \sqrt{x}|
& \leq &|v - \sqrt{u}| +|\sqrt{u} - \sqrt{x}| \\\nonumber
& \leq & c_v \ulp(v) + \frac{1}{\sqrt{u} + \sqrt{x}}|u-x| \\\nonumber
& \leq & c_v \ulp(v) + \frac{1}{\sqrt{u} + \sqrt{x}} k_u \ulp(u) \\\nonumber
\end{eqnarray}
Since by Rule~\ref{R9} we have $u.c_u^- \leq x$,
it follows $\frac{1}{\sqrt{x}+\sqrt{u}} \leq
\frac{1}{\sqrt{u}.(1+\sqrt{c_u^-})}$:
\begin{eqnarray}\nonumber
\error(v)& \leq & c_v \ulp(v) +
\frac{1}{\sqrt{u}.(1+\sqrt{c_u^-})} k_u \ulp(u) \\\nonumber
& \leq & c_v \ulp(v) + \frac{2}{1+\sqrt{c_u^-}}
k_u \ulp(\sqrt{u}) \;\; \U{R4}\\\nonumber
& \leq & (c_v + \frac{2k_u}{1+\sqrt{c_u^-}}) \ulp(v). \;\; \U{R8}\\\nonumber
\end{eqnarray}
If $u$ is less than $x$, we have $c_u^-=1$ and
we get the simpler formula
$|v-\sqrt{x}| \leq (c_v + k_u) \ulp(v)$.
\subsection{Generic error of the exponential }\label{generic:exp}
We want to compute the generic error of the exponential.
\begin{eqnarray}\nonumber
v&=&\circ(e^{u}) \\\nonumber
\textnormal{Note:}&& \error(u) \leq k_u \, \ulp(u)\\\nonumber
\end{eqnarray}
\begin{eqnarray}\nonumber
\error(v)& = &|v - e^{x}| \\\nonumber
& \leq &|v - e^{u}| +|e^{u} - e^{x}| \\\nonumber
& \leq & c_v \ulp(v) + e^t |u-x| \n{ with Rolle's theorem, for } t\in[x,u]\n{ or }t\in[u,x]
\end{eqnarray}
\begin{eqnarray}\nonumber
\error(v)& \leq & c_v \ulp(v) + c_u^* e^u k_u \ulp(u) \\\nonumber
& \leq & c_v \ulp(v) + 2 c_u^* u k_u \ulp(e^u) \;\U{R4}\\\nonumber
& \leq & (c_v + 2 c_u^* u k_u )\ulp(v) \;\U{R8}\\\nonumber
& \leq & (c_v + c_u^* 2^{\Exp(u)+1} k_u )\ulp(v)
\end{eqnarray}
\begin{eqnarray}\nonumber
\textnormal{Note:}&& u= m_u 2^{e_u} \n{ and }\ulp(u)=2^{e_u-p} \n{ with } p \n{ the precision} \\\nonumber
\n{ Case }&x \leq u& c_u^* =1 \\\nonumber
\n{ Case }&u \leq x& \\\nonumber
&& x \leq u + k_u \ulp(u)\\\nonumber
&& e^x \leq e^u e^{k_u \ulp(u)}\\\nonumber
&&e^x \leq e^u e^{k_u 2^{e_u-p}}\\\nonumber
&\n{then}& c_u^* = e^{k_u 2^{\Exp(u)-p}}\\\nonumber
\end{eqnarray}
\subsection{Generic error of the logarithm}\label{generic:log}
Assume $x$ and $u$ are positive values,
with $|u - x| \leq k_u \ulp(u)$.
We additionally assume $u \leq 4x$. Let $v = \circ(\log u)$.
\begin{eqnarray}\nonumber
\error(v)& = &|v - \log x|
\leq |v - \log u| +|\log u - \log x| \\\nonumber
& \leq & c_v \ulp(v) + |\log\frac{x}{u}|
\leq c_v \ulp(v) + 2 \frac{|x-u|}{u} \\\nonumber
& \leq & c_v \ulp(v) + \frac{2 k_u \, \ulp(u)}{u}
\leq c_v \ulp(v) + 2 k_u \, \ulp(1)\;\; \U{R7}\\\nonumber
& \leq & c_v \ulp(v) + 2 k_u \, 2^{1-e_v} \ulp(v)
\leq (c_v + k_u 2^{2-e_v}) \ulp(v).
\end{eqnarray}
We used at line 2 the inequality $|\log t| \leq 2 |t-1|$ which holds
for $t \geq \rho$, where $\rho \approx 0.203$ satisfies $\log \rho =2(\rho-1)$.
At line 4, $e_v$ stands for the exponent of $v$, i.e,
$v = m \cdot 2^{e_v}$ with $1/2 \leq |m| < 1$.
\subsection{Ulp calculus vs relative error}
The error in ulp (ulp-error) and the relative error are related as follows.
Let $n$ be the working precision.
Consider $u = \circ(x)$, then the error on $u$ is at most
$\ulp(u) = 2^{\Exp(u)-n} \leq |u| \cdot 2^{1-n}$, thus the relative error
is $\leq 2^{1-n}$.
Respectively, if the relative error is $\leq \delta$, then the error
is at most $\delta |u| \leq \delta 2^n \ulp(u)$. (Going from the ulp-error
to the relative error and back, we lose a factor of two.)
It is sometimes more convenient to use the relative error instead of the
error in ulp (ulp-error), in particular when only multiplications or
divisions are made.
In that case,
Higham \cite{Higham02} proposes the following framework:
we associate to each variable the cumulated number $k$ of roundings that were
made.
The $i$th rounding introduces a relative error of $\delta_i$,
with $|\delta_i| \leq 2^{1-n}$, i.e. the computed result is
$1+\delta_i$ times the exact result.
Hence $k$ successive roundings give a error factor of $(1+\delta_1)
(1+\delta_2) \cdots (1+\delta_k)$, which is between $(1-\varepsilon)^k$
and $(1+\varepsilon)^k$ with $\varepsilon = 2^{1-n}$.
In particular, if all roundings are away, the final relative error is
at most $k \varepsilon = k \cdot 2^{1-n}$, thus at most $2k$ ulps.
\begin{lemma} \label{rel_ulp}
If a value is computed by $k$ successive multiplications or divisions,
each with rounding away from zero, and precision $n$, then the final
error is bounded by $2k$ ulps.
\end{lemma}
If the rounding are not away from zero, the following lemma is still useful
% \cite{Graillat05}:
\cite[Lemma 3.1]{Higham02}:
\begin{lemma} \label{lemma_graillat}
Let $\delta_1, \ldots, \delta_n$ be $n$ real values such that
$|\delta_i| \leq \epsilon$, for $n \epsilon < 1$.
Then we can write $\prod_{i=1}^n (1+\delta_i)
= 1 + \theta$ with
\[ |\theta| \leq \frac{n \epsilon}{1 - n \epsilon}. \]
The same holds if some terms $1+\delta_i$ are replaced by $1/(1+\delta_i)$.
\end{lemma}
\begin{proof}
The maximum values of $\theta$ are obtained when all the $\delta_i$ are
$\epsilon$, or all are $-\epsilon$, thus it suffices to prove
\[ (1+\epsilon)^n \leq 1 + \frac{n \epsilon}{1 - n \epsilon}
= \frac{1}{1 - n \epsilon}
\quad \mbox{and} \quad
(1-\epsilon)^n \geq 1 - \frac{n \epsilon}{1 - n \epsilon}
= \frac{1 - 2 n \epsilon}{1 - n \epsilon}. \]
For the first inequality, we have $(1+\epsilon)^n = e^{n \log(1+\epsilon)}$,
and since $\log(1+x) \leq x$, it follows $(1+\epsilon)^n \leq e^{n \epsilon}
= \sum_{k \geq 0} \frac{(n \epsilon)^k}{k!} \leq \sum_{k \geq 0}
(n \epsilon)^k = \frac{1}{1 - n \epsilon}$.
For the second inequality, we first prove by induction that $(1-\epsilon)^n
\geq 1 - n \epsilon$ for integer $n \geq 0$.
It follows $(1-\epsilon)^n (1 - n \epsilon) \geq (1 - n \epsilon)^2 \geq
1 - 2 n \epsilon$, which concludes the proof.
Now assume some of the terms $1+\delta$ are replaced by $1/(1+\delta)$.
The worst case is when $1/(1+\delta) = 1/(1-\epsilon)$ or
$1/(1+\epsilon)$.
If $1/(1+\delta) = 1/(1+\epsilon)$, we can write
$1/(1+\delta) = 1 - \delta'$ with $|\delta'| = \epsilon/(1+\epsilon)
< \epsilon$, thus this is covered by the previous proof.
If $1/(1+\delta) = 1/(1-\epsilon)$, it suffices to prove that
$1/(1-\epsilon)^n \leq 1/(1-n\epsilon)$, i.e., that
$(1-\epsilon)^n \geq 1-n\epsilon$, which is true.
\end{proof}
\section{Low level functions}
\subsection{The {\tt mpfr\_add} function}
\begin{verbatim}
mpfr_add (A, B, C, rnd)
/* on suppose B et C de me^me signe, et EXP(B) >= EXP(C) */
0. d = EXP(B) - EXP(C) /* d >= 0 par hypothe`se */
1. Soient B1 les prec(A) premiers bits de B, et B0 le reste
C1 les bits de C correspondant a` B1, C0 le reste
/* B0, C1, C0 peuvent e^tre vides, mais pas B1 */
<----------- A ---------->
<----------- B1 ---------><------ B0 ----->
<---------- C1 -------><------------ C0 ----------->
2. A <- B1 + (C1 >> d)
3. q <- compute_carry (B0, C0, rnd)
4. A <- A + q
\end{verbatim}
\subsection{The {\tt mpfr\_cmp2} function}
This function computes the exponent shift when subtracting $c > 0$ from
$b \ge c$. In other terms, if $\Exp(x) :=
\lfloor \frac{\log x}{\log 2} \rfloor$,
it returns $\Exp(b) - \Exp(b-c)$.
This function admits the following specification in terms of the binary
representation of the mantissa of $b$ and $c$: if $b = u 1 0^n r$ and
$c = u 0 1^n s$, where $u$ is the longest common prefix to $b$ and $c$,
and $(r,s)$ do not start with $(0, 1)$, then ${\tt mpfr\_cmp2}(b,c)$ returns
$|u| + n$ if $r \ge s$, and $|u| + n + 1$ otherwise, where $|u|$ is the number
of bits of $u$.
As it is not very efficient to compare $b$ and $c$ bit-per-bit, we propose
the following algorithm, which compares $b$ and $c$ word-per-word.
Here $b[n]$ represents the $n$th word from the mantissa of $b$, starting from
the most significant word $b[0]$, which has its most significant bit set.
The values $c[n]$ represent the words of $c$, after a possible shift if the
exponent of $c$ is smaller than that of $b$.
\begin{verbatim}
n = 0; res = 0;
while (b[n] == c[n])
n++;
res += GMP_NUMB_BITS;
/* now b[n] > c[n] and the first res bits coincide */
dif = b[n] - c[n];
while (dif == 1)
n++;
dif = (dif << GMP_NUMB_BITS) + b[n] - c[n];
res += GMP_NUMB_BITS;
/* now dif > 1 */
res += GMP_NUMB_BITS - number_of_bits(dif);
if (!is_power_of_two(dif))
return res;
/* otherwise result is res + (low(b) < low(c)) */
do
n++;
while (b[n] == c[n]);
return res + (b[n] < c[n]);
\end{verbatim}
\subsection{The {\tt mpfr\_sub} function}
The algorithm used is as follows, where $w$ denotes the number of bits
per word. We assume that $a$, $b$ and $c$ denote different variables
(if $a:=b$ or $a:=c$, we have first to copy $b$ or $c$), and
that the rounding mode is either $\N$ (nearest),
$\Z$ (toward zero), or $\infty$ (away from zero).
\begin{quote}
Algorithm {\tt mpfr\_sub}. \\
Input: $b$, $c$ of same sign with $b > c > 0$, a rounding mode
$\circ \in \{ \N, \Z, \infty \}$ \\
Side effect: store in $a$ the value of $\circ(b - c)$ \\
Output: $0$ if $\circ(b - c) = b-c$, $1$ if $\circ(b - c) > b-c$,
and $-1$ if $\circ(b - c) < b-c$ \\
${\tt an} \leftarrow \lceil \frac{\prec(a)}{w} \rceil$,
${\tt bn} \leftarrow \lceil \frac{\prec(b)}{w} \rceil$,
${\tt cn} \leftarrow \lceil \frac{\prec(c)}{w} \rceil$ \\
${\tt cancel} \leftarrow {\tt mpfr\_cmp2}(b, c)$; \quad
${\tt diff\_exp} \leftarrow \Exp(b)-\Exp(c)$ \\
${\tt shift_b} \leftarrow (-{\tt cancel}) \bmod w$; \quad
${\tt cancel_b} \leftarrow ({\tt cancel} + {\tt shift_b})/w$ \\
\If\ ${\tt shift_b} > 0$ \then\
${\tt b}[0 \dots \mbox{\tt bn}] \leftarrow
{\tt mpn\_rshift}({\tt b}[0 \dots {\tt bn}-1], {\tt shift_b})$;
${\tt bn} \leftarrow {\tt bn} + 1$ \\
${\tt shift_c} \leftarrow ({\tt diff\_exp}-{\tt cancel}) \bmod w$; \quad
${\tt cancel_c} \leftarrow ({\tt cancel} + {\tt shift_c}-{\tt diff\_exp})/w$ \\
\If\ ${\tt shift_c} > 0$ \then\
${\tt c}[0 \dots \mbox{\tt cn}] \leftarrow
{\tt mpn\_rshift}({\tt c}[0 \dots {\tt cn}-1], {\tt shift_c})$;
${\tt cn} \leftarrow {\tt cn} + 1$ \\
$\Exp(a) \leftarrow \Exp(b) - {\tt cancel}$; \quad
$\sign(a) \leftarrow \sign(b)$ \\
$a[0 \dots {\tt an}-1] \leftarrow b[{\tt bn} - {\tt cancel_b} - {\tt an}
\dots {\tt bn} - {\tt cancel_b} - 1]$ \\
$a[0 \dots {\tt an}-1] \leftarrow a[0 \dots {\tt an}-1] - c[{\tt cn} -
{\tt cancel_c} - {\tt an} \dots {\tt cn} - {\tt cancel_c} - 1]$ \\
${\tt sh} \leftarrow {\tt an} \cdot w - \prec(a)$; \quad
$r \leftarrow a[0] \bmod 2^{\tt sh}$; \quad
$a[0] \leftarrow a[0] - r$ \\
\end{quote}
where $b[i]$ and $c[i]$ is meant as $0$ for negative $i$,
and $c[i]$ is meant as $0$ for $i \ge {\tt cn}$
(${\tt cancel_b} \ge 0$, but ${\tt cancel_c}$ may be negative).
The rounding is determined by a left-to-right subtraction of the neglected
limb of $b$ and $c$, until one is able to determine the correct rounding
\emph{and} the correct ternary value.
After the above algorithm, there are three cases where one cannot conclude:
\begin{enumerate}
\item if ${\tt sh} = 0$, since the low part of $b-c$ can have any value
between $-1$ ulp and $1$ ulp. The result might be $a-1$, $a$ or $a+1$;
\item if ${\tt sh} > 0$ and $r = 2^{\tt sh - 1}$: the result might be
$a$ or $a+1$;
\item if ${\tt sh} > 0$ and $r = 0$: the result is always $a$, but we cannot
determine the ternary value.
\end{enumerate}
In those three cases we look at the most significant neglected limbs from
$b$ and $c$ until we can conclude.
In case 1 the first limb is special, since it will rule out one of the
possible results $a-1$, $a$ or $a+1$.
Up from the second limb, the analysis is invariant.
The corresponding tree is the following:
\centerline{\includegraphics[width=13cm,angle=90]{sub_tree.pdf}}
\subsection{The {\tt mpfr\_mul} function}
{\tt mpfr\_mul} uses two algorithms: if the precision of the operands
is small enough, a plain multiplication using {\tt mpn\_mul} is used
(there is no error, except in the final rounding);
otherwise it uses {\tt mpfr\_mulhigh\_n}.
In this case, it trunks the two operands to $m$ limbs:
$1/2 \leq b < 1$ and $1/2 \leq c < 1$, $b = bh+bl$ and $c = ch+cl$
($B=2^{32} or 2^{64}$).
The error comes from:
\begin {itemize}
\item Truncation: $ \leq bl.ch + bh.cl + bl.cl \leq bl + cl \leq 2 B^{-m}$
\item Mulders: Assuming $\error(Mulders(n)) \leq \error(mulhigh\_basecase(n))$,
\begin{eqnarray*}
\error(mulhigh(n))
& \leq & (n-1) (B-1)^2 B^{-n-2} + \cdots + 1 (B-1)^2 B^{-2n} \\
& = & \sum_{i=1}^{n-1}{(n-i) (B-1)^2 B^{-n-1-i}}
= (B-1)^2 B^{-n-1} \sum_{i=1}^{n-1}{B^{-i}} \\
& = & (b-1)^2 B^{-n-1} \frac{B^{1-n}-n+n B-B}{(1-B)^2} \leq n B^{-n}.
\end{eqnarray*}
\end {itemize}
Total error: $\leq (m+2) B^{-m}$.
\subsection{The {\tt mpfr\_div} function}
The goals of the code of the {\tt mpfr\_div} function include the fact
that the complexity should, while preserving correct
rounding, depend on the precision required on the result rather than
on the precision given on the operands.
Let $u$ be the dividend, $v$ the divisor, and $p$ the target precision
for the quotient. We denote by $q$ the real quotient $u/v$, with infinite
precision, and $n \geq p$ the working precision.
The idea --- as in the square root algorithm below --- is to use GMP's
integer division: divide the most $2n$ or $2n-1$ significant bits from $u$ by
the most $n$ significant bits from $v$ will give a good approximation of
the quotient's integer significand.
The main difficulties arise when $u$ and $v$ have a larger precision than
$2n$ and $n$ respectively, since we have to truncate them.
We distinguish two cases: whether the divisor is truncated or not.
\subsubsection{Full divisor.}
This is the easy case. Write $u = u_1 + u_0$ where $u_0$ is the truncated
part, and $v = v_1$. Without loss of generality we can assume that
$\ulp(u_1)=\ulp(v_1)=1$, thus $u_1$ and $v_1$ are integers, and
$0 \leq u_0 < 1$.
Since $v_1$ has $n$ significant bits, we have $2^{n-1} \leq v_1 < 2^n$.
(We normalize $u$ so that the integer quotient gives exactly $n$ bits;
this is easy by comparing the most significant bits of $u$ and $v$,
thus $2^{2n-2} \leq u_1 < 2^{2n}$.)
The integer division of $u_1$ by $v_1$ yields $q_1$ and $r$
such that $u_1 = q_1 v_1 + r$, with $0 \leq r < v_1$, and
$q_1$ having exactly $n$ bits.
In that case we have
\[ q_1 \leq q=\frac{u}{v} < q_1 + 1. \]
Indeed, $q = \frac{u}{v} \geq \frac{u_1}{v_1} = \frac{q_1 v_1 + r}{v_1}$,
and $q \leq \frac{u_1+u_0}{v_1} \leq q_1 + \frac{r + u_0}{v_1} < q_1 + 1$,
since $r + u_0 < r+1 \leq v_1$.
\subsubsection{Truncated divisor.} This is the hard case.
Write $u = u_1 + u_0$, and $v = v_1 + v_0$, where $0 \leq u_0, v_0 < 1$
with the same conventions as above.
We prove in that case that:
\begin{equation} \label{diveq}
q_1-2 < q = \frac{u}{v} < q_1 + 1.
\end{equation}
The upper bound holds as above.
For the lower bound, we have $u - (q_1-2) v >
u_1 - (q_1-2) (v_1+1) \geq q_1 v_1 - (q_1-2) (v_1+1)
= 2 (v_1+1) - q_1 \geq 2^n - q_1 > 0$.
This lower bound is the best possible, since $q_1-1$ would be wrong;
indeed, consider $n=3$, $v_1=4$, $v_0 = 7/8$, $u=24$: this gives $q_1 = 6$,
but $u/v = 64/13 < q_1-1 = 5$.
As a consequence of Eq.~(\ref{diveq}), if the open interval $(q_1-2, q_1+1)$
contains no rounding boundary for the target precision, we can deduce the
correct rounding of $u/v$ just from the value of $q_1$.
In other words, for directed rounding, the two only ``bad cases'' are when
the binary representation of $q_1$ ends with $\underbrace{0000}_{n-p}$
or $\underbrace{0001}_{n-p}$.
We even can decide if rounding is correct, since when $q_1$ ends with $0010$,
the exact value cannot end with $0000$, and similarly
when $q_1$ ends with $1111$.
Hence if $n=p+k$, i.e.\ if we use $k$ extra bits with respect to the target
precision $p$, the failure probability is $2^{1-k}$.
\subsubsection{Avoiding Ziv's strategy.}
In the failure case ($q_1$ ending with $000\ldots 000x$ with directed rounding,
or $100 \ldots 000x$ with rounding to nearest),
we could try again with a larger working precision $p$.
However, we then need to perform a second
division, and we are not sure this new computation will enable us to conclude.
In fact, we can conclude directly. Recall that $u_1 = q_1 v_1 + r$.
Thus $u = q_1 v + (r + u_0 - q_1 v_0)$.
We have to decide which of the following five cases holds:
(a) $q_1 - 2 < q < q_1 - 1$, (b) $q = q_1-1$,
(c) $q_1-1 < q < q_1$, (d) $q=q_1$, (e) $q_1 < q < q_1+1$.
\begin{quote}
$s \leftarrow q_1 v_0$ \\
\textbf{if} $s < r + u_0$ \textbf{then} $q \in (q_1, q_1+1)$ \\
\textbf{elif} $s = r + u_0$ \textbf{then} $q = q_1$ \\
\textbf{else} \\ % u = (q1-1) v + (r + u_0 - s + v)
\q $t \leftarrow s - (r + u_0)$ \\ % u = (q1-1) v + (v - t)
\q \textbf{if} $t < v$ \textbf{then} $q \in (q_1 - 1, q_1)$ \\
\textbf{elif} $t=v$ \textbf{then} $q = q_1-1$ \\
\textbf{else} $q \in (q_1 - 2, q_1-1)$
\end{quote}
\begin{comment}
Let $u = u_n 2^{u_e}$, $v = v_n
2^{v_e}$, where $u_n$ and $v_n$ are in $[1/2, 1[$. Let $q_p$ be the
precision required on $q$. Put
$b_p = \min(v_p, q_p + \varepsilon_p)$,
$a_p = b_p + q_p + \varepsilon_p$, where $\varepsilon_p$ is a small value
to be chosen.
First, a integer division of $u_{hi} = \lfloor
u_n 2^{a_p} \rfloor$ by
$v_{hi} = \lfloor v_n 2^{b_p} \rfloor$
is performed. Write $u_{hi} = \tilde{q} v_{hi} + \tilde{r}$.
If this division is not a full one, to obtain the real value
of the quotient, if $\delta = max(u_p, v_p)$, we have to
divide $u_n 2^{q_p + \varepsilon_p + \delta}$ by
$v_n 2^{\delta}$.
In that case, $2^{q_p + \varepsilon_p + \delta} u_n = \tilde{q}v_n
2^{\delta} + \tilde{r} 2^{\delta - q_p - \varepsilon_p} + u_{lo} -
\tilde{q}v_{lo}$, with obvious notations.
A positive correction on $q$ has to come from the contribution of
$\tilde{r} 2^{\delta - q_p - \varepsilon_p} + u_{lo}$. The
first term is at most $v_{hi} 2^{\delta - q_p - \varepsilon_p}$.
As for $u_{lo}$, we have $u_{lo} < 2^{\delta-q_p-\varepsilon_p}$. Hence,
the sum $u_{lo} + \tilde{r} 2^{\delta - q_p - \varepsilon_p} < 2v$,
and the positive correction is at most 1.
We now have to estimate $\tilde{q}v_{lo}$. It is easily seen that
$\tilde{q} < 2^{q_p + \varepsilon_p + 1}$. As for $v_{lo}$, we have
$v_{lo} < 2^{\delta - q_p - \varepsilon_p}$, so that
$\tilde{q} v_{lo} < 2^{\delta + 1}$, to be compared with $v_n 2^{\delta}$,
so that a negative correction is at most 3. As a consequence, to be able
to decide rounding after the first stage, one should choose
$\varepsilon_p \geq 3$ (to include the round-to-nearest case).
\end{comment}
\subsubsection{Using Mulders' short division}
For larger operands, Mulders' short division might be faster than calling
GMP's integer division. A detailed description of Mulders' short division
for integers can be found in \cite{HaZi11}.
We assume that we want the quotient integer significant on $n-1$ limbs,
and we perform a short division on $n$ limbs.
Let $q$ be the real quotient $u/v$, scaled so that it has exactly $n$ limbs;
let $q_1$ be the integer division we would perform using GMP's integer
division as described above, and let $q_2$ be the approximate quotient
returned by Algorithm \texttt{ShortDiv} or \texttt{FoldDiv} from \cite{HaZi11}.
From the above analysis, we know that $q_1 - 2 < q < q_1 + 1$, the divisor
being truncated or not.
From Theorems~1 and~2 from \cite{HaZi11}, we have
$q_1 - 2n \leq q_2 \leq q_1 + 2n$.
It thus follows:
\[ q_1 - (2n+2) < q < q_2 + (2n+1), \]
and in all cases the difference between $q$ and $q_2$ is less than $2n+2$
ulps (on $n$ limbs).
Since we want to round $q$ on $n-1$ limbs, and usually $2n+2$ is small
compared to the limb value, in most cases we will be able to round correctly.
In the rare cases where we are not able to round correctly, we can either
revert to the above method using integer division, or better use the
approximate quotient $q_2$ to deduce the exact quotient $q_1$ and the
corresponding remainder, which will trade a division for a multiplication.
\subsection{The {\tt mpfr\_sqrt} function}
The \texttt{mpfr\_sqrt} implementation uses the \texttt{mpn\_sqrtrem}
function from GMP's \texttt{mpn} level:
given a positive integer $m$, it computes $s$ and $r$ such that
$m = s^2 + r$ with $s^2 \leq m < (s+1)^2$, or equivalently $0 \leq r \leq 2s$.
In other words, $s$ is the integer square root of $m$, rounded toward zero.
The idea is to multiply the input significand by some power of two,
in order to obtain an integer significand $m$ whose integer square root
$s$ will have exactly $p$ bits, where $p$ is the target precision.
This is easy: $m$ should have either $2p$ or $2p-1$ bits.
For directed rounding, we then know that the result significand will be
either $s$ or $s+1$, depending on the square root remainder $r$ being zero
or not.
\begin{quote}
Algorithm $\texttt{FPSqrt}$. \\
Input: $x = m \cdot 2^e$, a target precision $p$, a rounding mode $\circ$ \\
Output: $y = \circ_p(\sqrt{x})$ \\
If $e$ is odd, $(m', f) \leftarrow (2m, e-1)$, else $(m',f) \leftarrow (m,e)$ \\
Write $m' := m_1 2^{2k} + m_0$, $m_1$ having $2p$ or $2p-1$ bits, $0 \leq m_0 < 2^{2k}$ \\
$(s, r) \leftarrow \texttt{SqrtRem}(m_1)$ \\
If round to zero or down or $r=m_0=0$, return $s \cdot 2^{k+f/2}$ \\
else return $(s+1) \cdot 2^{k+f/2}$.
\end{quote}
In case the input has more than $2p$ or $2p-1$ bits, it needs to be truncated,
but the crucial point is that that truncated part will not overlap with the
remainder $r$ from the integer square root, so the \emph{sticky bit} is
simply zero when both parts are zero.
For rounding to nearest, the simplest way is to ask $p+1$ bits for the
integer square root --- thus $m$ has now $2p+1$ or $2p+2$ bits.
In such a way, we directly get the rounding bit, which is the parity bit
of $s$, and the sticky bit is determined as above.
Otherwise, we have to compare the value of the whole remainder, i.e.\ $r$ plus
the possible truncated input, with $s + 1/4$, since $(s+1/2)^2 =
s^2 + s + 1/4$.
Note that equality can occur --- i.e.\ the ``nearest even rounding rule'' ---
only when the input has at least $2p+1$ bits; in particular it can not
happen in the common case when input and output have the same precision.
\subsection{The inverse square root}
The inverse square root (function \texttt{mpfr\_rec\_sqrt}) is based on
Ziv's strategy and the \texttt{mpfr\_mpn\_rec\_sqrt} function, which given
a precision $p$, and an input $1 \leq a < 4$,
returns an approximation $x$ satisfying
\[ x - \frac{1}{2} \cdot 2^{-p} \leq a^{-1/2} \leq x + 2^{-p}. \]
The \texttt{mpfr\_mpn\_rec\_sqrt} function is based on Newton's iteration
and the following lemma,
the proof of which can be found in \cite{BrZi06}:
\begin{lemma} \label{lemma3}
Let $A, x > 0$, and $x' = x + \frac{x}{2} (1 - Ax^2)$. Then
\[ 0 \leq A^{-1/2} - x' = \frac{3}{2} \frac{x^3}{\theta^4} (A^{-1/2}-x)^2, \]
for some $\theta \in (x, A^{-1/2})$.
\end{lemma}
We first describe the recursive iteration:
\begin{quote}
Algorithm $\texttt{ApproximateInverseSquareRoot}$. \\
Input: $1 \leq a, A < 4$ and $1/2 \leq x < 1$ with
$x - \frac{1}{2} \cdot 2^{-h} \leq a^{-1/2} \leq x + 2^{-h}$ \\
Output: $X$ with $X - \frac{1}{2} \cdot 2^{-n} \leq A^{-1/2} \leq X + 2^{-n}$,
where $n \leq 2h-3$ \\
\q $r \leftarrow x^2$ \qquad [exact] \\
\q $s \leftarrow A r$ \qquad [exact] \\
\q $t \leftarrow 1-s$ \qquad [rounded at weight $2^{-2h}$ toward $-\infty$]\\
\q $u \leftarrow x t$ \qquad [exact] \\
\q $X \leftarrow x + u/2$ \qquad [rounded at weight $2^{-n}$ to nearest]
\end{quote}
\begin{lemma} \label{lemma_recsqrt}
If $h \geq 11$, $0 \leq A - a < 2^{-h}$, then the output $X$ of algorithm
$\texttt{ApproximateInverseSquareRoot}$ satisfies
\begin{equation} \label{rec_sqrt_eq1}
X - \frac{1}{2} \cdot 2^{-n} \leq A^{-1/2} \leq X + 2^{-n}.
\end{equation}
\end{lemma}
\begin{proof}
Firstly, $a \leq A < a+2^{-h}$ yields
$a^{-1/2} - \frac{1}{2} \cdot 2^{-h} \leq A^{-1/2} \leq a^{-1/2}$,
thus $x - 2^{-h} \leq A^{-1/2} \leq x + 2^{-h}$.
Lemma~\ref{lemma3} implies that the value $x'$ that would return
Algorithm $\texttt{ApproximateInverseSquareRoot}$ if there was no rounding
error satisfies $0 \leq A^{-1/2} - x' = \frac{3}{2} \frac{x^3}{\theta^4}
(A^{-1/2}-x)^2$. Since $\theta \in (x, A^{-1/2})$, and
$A^{-1/2} \leq x + 2^{-h}$, we have $x \leq \theta + 2^{-h}$,
which yields $\frac{x^3}{\theta^3} \leq (1 + \frac{2^{-h}}{\theta})^3
\leq (1 + 2^{-10})^3 \leq 1.003$ since $\theta \geq 1/2$ and $h \geq 11$.
Thus $0 \leq A^{-1/2} - x' \leq 3.01 \cdot 2^{-2h}$.
Finally the errors while rounding $1-s$ and $x+u/2$ in the algorithm
yield $\frac{1}{2} \cdot 2^{-n} \leq x' - X \leq \frac{1}{2} \cdot 2^{-n}
+ \frac{1}{2} \cdot 2^{-2h}$, thus the final inequality is:
\[ \frac{1}{2} \cdot 2^{-n} \leq A^{-1/2} - X \leq
\frac{1}{2} \cdot 2^{-n} + 3.51 \cdot 2^{-2h}. \]
For $2h \geq n+3$, we have $3.51 \cdot 2^{-2h} \leq \frac{1}{2} \cdot 2^{-n}$,
which concludes the proof.
\end{proof}
The initial approximation is obtained using a bipartite table for $h=11$.
More precisely, we split a $13$-bit input $a = a_1 a_0. a_{-1} \ldots a_{-11}$
into three parts of $5$, $4$ and $4$ bits respectively, say $\alpha,
\beta, \gamma$, and we deduce a $11$-bit approximation
$x = 0.x_{-1} x_{-2} \ldots x_{-11}$ of the form
$T_1[\alpha, \beta] + T_2[\alpha,\gamma]$, where both tables have $384$
entries each.
Those tables satisfy:
\[ x + (\frac{1}{4} - \varepsilon) 2^{-11} \leq a^{-1/2} \leq
x + (\frac{1}{4} + \varepsilon) 2^{-11}, \]
with $\varepsilon \leq 1.061$.
% the worst-case is obtained for a=2289/2048, where
% a^{-1/2} = 1937.1891686292820586, and x = 1938 (shifted by $2^{11}$).
Note that this does not fulfill the initial condition of
Algorithm $\texttt{ApproximateInverseSquareRoot}$, since
we have $x - 0.811 \cdot 2^{-h} \leq a^{-1/2} \leq x + 1.311 \cdot 2^{-h}$,
% 0.811 = 1.061 - 0.25, 1.311 = 1.061 + 0.25
which yields $X - \frac{1}{2} \cdot 2^{-n} \leq A^{-1/2} \leq
X + 1.21 \cdot 2^{-n}$,
thus the right bound is not a priori fulfilled.
% (3*1.003*1.311^2+0.5)/8+0.5 <= 1.21
However the only problematic case is $n=19$, which gives exactly
$(n+3)/2 = 11$, since for $12 \leq n \leq 18$,
the error terms in $2^{-2h}$ are halved.
An exhaustive search of all possible inputs for $h=11$ and $n=19$ gives
\[ X - \frac{1}{2} \cdot 2^{-n} \leq A^{-1/2} \leq X + 0.998 \cdot 2^{-n},\]
the worst case being $A=1990149, X=269098$ (scaled by $2^{19}$).
Thus as soon as $n \geq 2$, Eq.~(\ref{rec_sqrt_eq1}) is fulfilled.
\medskip
In summary, Algorithm $\texttt{ApproximateInverseSquareRoot}$ provides an
approximation $X$ of $A^{-1/2}$ with an error of at most one ulp.
However if the input $A$ was itself truncated at precision $\geq p$
from an input $A_0$ ---
for example when the output precision $p$ is less than the input precision ---
then we have $|X - A^{-1/2}| \leq \ulp(X)$, and
$|A^{-1/2} - A_0^{-1/2}| \leq \frac{1}{2} |A - A_0| A^{-3/2}
\leq \frac{1}{2} \frac{|A - A_0|}{A} A^{-1/2}
\leq 2^{-p} A^{-1/2} \leq \ulp(X)$, thus
$|X - A_0^{-1/2}| \leq 2 \, \ulp(X)$.
\subsection{The \texttt{mpfr\_remainder} and \texttt{mpfr\_remquo} functions}
The \texttt{mpfr\_remainder} and \texttt{mpfr\_remquo} are useful
functions for argument reduction. Given two floating-point numbers $x$ and
$y$, \texttt{mpfr\_remainder} computes the correct rounding of
$x \cmod y := x - q y$, where
$q = \lfloor x/y \rceil$, with ties rounded to the nearest even integer,
as in the rounding to nearest mode.
Additionally, \texttt{mpfr\_remquo} returns a value congruent to $q$
modulo $2^n$, where $n$ is a small integer (say $n \leq 64$, see the
documentation), and having the same sign as $q$ or being zero.
This can be efficiently implemented by calling \texttt{mpfr\_remainder} on
$x$ and $2^n y$. Indeed, if $x = r' \cmod (2^n y)$, and
$r' = q' y + r$ with $|r| \leq y/2$, then
$q \equiv q' \mod 2^n$. No double-rounding problem can occur, since if
$x/(2^n y) \in {\mathbb Z} + 1/2$,
then $r'=\pm 2^{n-1} y$, thus $q'=\pm 2^{n-1}$ and $r=0$.
Whatever the input $x$ and $y$, it should be noted that if $\ulp(x) \geq
\ulp(y)$, then $x - q y$ is always
exactly representable in the precision of $y$ unless its exponent is smaller
than the minimum exponent. To see this,
let $\ulp(y) = 2^{-k}$;
multiplying $x$ and $y$ by $2^k$ we get $X = 2^k x$ and
$Y = 2^k y$ such that $\ulp(Y)=1$,
and $\ulp(X) \geq \ulp(Y)$, thus both $X$ and $Y$ are integers.
Now perform the division of $X$ by $Y$, with quotient rounded to nearest:
$X = q Y + R$, with $|R| \leq Y/2$. Since $R$ is an integer, it is
necessarily representable with the precision of $Y$, and thus of $y$.
The quotient $q$ of $x/y$ is the same as that of $X/Y$, the remainder
$x - q y$ is $2^{-k} R$.
We assume without loss of generality that $x, y > 0$, and that
$\ulp(y) = 1$, i.e., $y$ is an integer.
\begin{quote}
Algorithm Remainder. \\
Input: $x$, $y$ with $\ulp(y)=1$, a rounding mode $\circ$ \\
Output: $x \cmod y$, rounded according to $\circ$ \\
1. If $\ulp(x) < 1$, decompose $x$ into $x_h + x_l$ with $\ulp(x_h) \geq 1$
and $0 \leq x_l < 1$. \\
1a. $r \leftarrow \mathrm{Remainder}(x_h, y)$ [exact, $-y/2 \leq r \leq y/2$]\\
1b. if $r < y/2$ or $x_l = 0$ then return $\circ(r + x_l)$ \\
1c. else return $\circ(r + x_l - y) = \circ(x_l - r)$ \\
2. Write $x = m \cdot 2^k$ with $k \geq 0$ \\
3. $z \leftarrow 2^k \bmod y$ [binary exponentiation] \\
4. Return $\circ(mz \cmod y)$.
\end{quote}
Note: at step (1a) the auxiliary variable $r$ has the precision of $y$;
since $x_h$ and $y$ are integers, so is $r$ and the result is exact by the
above reasoning. At step (1c) we have $r=y/2$, thus $r-y$ simplifies to $-r$.
\section{High level functions}
\subsection{The cosine function}
To evaluate $\cos x$ with a target precision of $n$ bits, we use the following
algorithm with working precision $m$, after an additive argument reduction
which reduces $x$ in the interval $[-\pi, \pi]$, using the
\texttt{mpfr\_remainder} function:
\begin{quote}
$k \leftarrow \lfloor \sqrt{n/2} \rfloor$ \\
$r \leftarrow x^2$ rounded up \\ % err <= ulp(r)
$r \leftarrow r/2^{2k}$ \\ % err <= ulp(r)
$s \leftarrow 1, t \leftarrow 1$ \\ % err = 0
{\bf for} $l$ {\bf from} $1$ {\bf while} $\Exp(t) \ge -m$ \\
\q $t \leftarrow t \cdot r$ rounded up \\ % err <= (3*l-1)*ulp(t)
\q $t \leftarrow \frac{t}{(2l-1)(2l)}$ rounded up \\ % err <= 3*l*ulp(t)
\q $s \leftarrow s + (-1)^l t$ rounded down\\ % err <= l/2^m
{\bf do} $k$ times \\
\q $s \leftarrow 2 s^2$ rounded up \\
\q $s \leftarrow s - 1$ \\
return $s$ \\
\end{quote}
The error on $r$ after $r \leftarrow x^2$
is at most $1 \ulp(r)$ and remains $1 \ulp(r)$ after
$r \leftarrow r/2^{2k}$ since that division is just an exponent shift.
By induction, the error on $t$ after step $l$ of the for-loop is at most
$3 l \ulp(t)$.
Hence as long as $3 l \ulp(t)$ remains less than $\le 2^{-m}$
during that loop
(this is possible as soon as $r < 1/\sqrt{2}$)
and the loop goes to $l_0$, the error on $s$ after the for-loop is at most
$2 l_0 2^{-m}$ (for $|r| < 1$, it is easy to check that $s$ will remain
in the interval $[\frac{1}{2}, 1[$, thus $\ulp(s) = 2^{-m}$).
(An additional $2^{-m}$ term represents the truncation error,
but for $l=1$ the value of $t$ is exact, giving $(2 l_0 - 1) + 1 = 2 l_0$.)
Denoting by $\epsilon_i$ the maximal error on $s$ after the $i$th step
in the do-loop, we have $\epsilon_0 = 2 l_0 2^{-m}$ and
$\epsilon_{k+1} \le 4 \epsilon_k + 2^{-m}$,
giving $\epsilon_k \le (2 l_0+1/3) 2^{2k-m}$.
\subsection{The sine function}
The sine function is computed from the cosine, with a working precision of
$m$ bits, after an additive argument reduction in $[-\pi, \pi]$:
\begin{quote}
$c \leftarrow \cos x$ rounded away \\
$t \leftarrow c^2$ rounded away \\
$u \leftarrow 1 - t$ rounded to zero \\
$s \leftarrow {\rm sign}(x) \sqrt{u}$ rounded to zero \\
\end{quote}
This algorithm ensures that the approximation $s$ is between zero and $\sin x$.
Since all variables are in $[-1, 1]$, where $\ulp() \leq 2^{-m}$,
all absolute errors are less than $2^{-m}$.
We denote by $\epsilon_i$ a generic error with $0 \leq \epsilon_i < 2^{-m}$.
We have $c = \cos x + \epsilon_1$;
$t = c^2 + \epsilon_2 = \cos^2 x + 4 \epsilon_3$;
$u = 1 - t - \epsilon_4 = 1 - \cos^2 x - 5 \epsilon_5$;
$|s| = \sqrt{u} - \epsilon_6 =
\sqrt{1 - \cos^2 x - 5 \epsilon_5} - \epsilon_6
\geq \left|\sin x\right| - \frac{5 \epsilon_5}{2 |s|} + \epsilon_6$
(by Rolle's theorem,
$|\sqrt{u} - \sqrt{u'}| \le \frac{1}{2 \sqrt{v}} |u-u'|$ for
$v \in [u, u']$, we apply it here with $u=1 - \cos^2 x - 5 \epsilon_5$,
$u'=1 - \cos^2 x$.)
Therefore, if $2^{e-1} \leq |s| < 2^e$, the absolute error on $s$
is bounded by $2^{-m} (\frac{5}{2} 2^{1-e}+1) \leq 2^{3-m-e}$.
\subsubsection{An asymptotically fast algorithm for sin and cos.}
We extend here the algorithm proposed by Brent for the exponential function
to the simultaneous computation of sin and cos. The idea is the following.
We first reduce the input $x$ to the range $0 < x < 1/2$.
Then we decompose $x$ as follows:
\[ x = \sum_{i=1}^{k} \frac{r_i}{2^{2^i}}, \]
where $r_i$ is an integer, $0 \leq r_i < 2^{2^{i-1}}$.
We define $x_j = \sum_{i=j}^{k} \frac{r_i}{2^{2^i}}$; then $x = x_1$,
and we can write $x_j = \frac{r_j}{2^{2^j}} + x_{j+1}$. Thus with
$S_j := \sin \frac{r_j}{2^{2^j}}$ and $C_j := \cos \frac{r_j}{2^{2^j}}$:
\[ \sin x_j = S_j \cos x_{j+1} + C_j \sin x_{j+1}, \quad
\cos x_j = C_j \cos x_{j+1} - S_j \sin x_{j+1}. \]
The $2k$ values $S_j$ and $C_j$ can be computed by a binary splitting
algorithm, each one in $O(M(n) \log n)$.
Then each pair $(\sin x_j, \cos x_j)$ can be computed from
$(\sin x_{j+1}, \sin x_{j+1})$ with four multiplies and two additions or
subtractions.
\paragraph{Error analysis.}
We use here Higham's method. We assume that the values of $S_j$
and $C_j$ are approximated up to a multiplicative factor of the form
$(1+u)^3$, where $|u| \leq 2^{-p}$, $p \geq 4$ being the working precision.
We also assume that $\cos x_{j+1}$ and $\sin x_{j+1}$ are
approximated with a factor of the form $(1+u)^{k_j}$.
With rounding to nearest, the values of $S_j \cos x_{j+1}$,
$C_j \sin x_{j+1}$, $C_j \cos x_{j+1}$ and $S_j \sin x_{j+1}$ are thus
approximated with a factor $(1+u)^{k_j+4}$.
The value of $\sin x_j$ is approximated with a factor $(1+u)^{k_j+5}$ since
there all terms are nonnegative.
We now analyze the effect of the cancellation in
$C_j \cos x_{j+1} - S_j \sin x_{j+1}$.
We have $\frac{r_j}{2^{2^j}} < 2^{-2^{j-1}}$, and for simplicity we define
$l := 2^{j-1}$;
thus $0 \leq S_j \leq 2^{-l}$, and $1-2^{-2l-1} \leq C_j \leq 1$.
Similarly we have $x_{j+1} < 2^{-2l}$, thus
$0 \leq \sin x_{j+1} \leq 2^{-2l}$, and $1-2^{-4l-1} \leq \cos x_{j+1} \leq 1$.
The error is multiplied by a maximal ratio of
\[ \frac{C_j \cos x_{j+1} + S_j \sin x_{j+1}}
{C_j \cos x_{j+1} - S_j \sin x_{j+1}} \leq
\frac{1+2^{-l} \cdot 2^{-2l}}{(1-2^{-2l-1})(1-2^{-4l-1})-2^{-l} \cdot 2^{-2l}},
\]
which we can bound by
\[ \frac{1+2^{-3l}}{1-2^{-2l}} \leq \frac{1}{(1-2^{-2l})(1-2^{-3l})}
\leq \frac{1}{1-2^{-2l+1}}. \]
The product of all those factors for $j \geq 1$ is bounded by $3$
(remember $l := 2^{j-1}$).
In summary, the maximal error is of the form $3 [(1+u)^{5k}-1]$, where
$2^{2^{k-1}} < p \leq 2^{2^k}$.
For $p \geq 4$, $5k \cdot 2^{-p}$ is bounded by $5/16$, and
$(1+2^{-p})^{5k} - 1 \leq e^{5k \cdot 2^{-p}} - 1 \leq \frac{6}{5}
\cdot 5k \cdot 2^{-p} = 6k \cdot 2^{-p}$.
Thus the final relative error bound is $18k \cdot 2^{-p}$.
Since $k \leq 6$ for $p \leq 2^{64}$, this gives a uniform relative error
bound of $2^{-p+7}$.
\subsection{The tangent function}
The tangent function is computed from the \texttt{mpfr\_sin\_cos} function,
which computes simultaneously $\sin x$ and $\cos x$
with a working precision of $m$ bits:
\begin{quote}
$s, c \leftarrow \circ(\sin x), \circ(\cos x)$ \quad [to nearest] \\
$t \leftarrow \circ(s/c)$ \quad [to nearest] \\
\end{quote}
We have $s = \sin(x) (1 + \theta_1)$ and $c = \cos(x) (1 + \theta_2)$
with $|\theta_1|, |\theta_2| \leq 2^{-m}$, thus
$t = (\tan x) (1 + \theta)^3$ with $|\theta| \leq 2^{-m}$.
For $m \geq 2$, $|\theta| \leq 1/4$,
$|(1 + \theta)^3 - 1| \leq 4 |\theta|$, thus we can write
$t = (\tan x) (1 + 4 \theta)$, thus
$|t - \tan x| \leq 4 \ulp(t)$.
\subsection{The exponential function}
The {\tt mpfr\_exp} function implements three different algorithms.
For very large precision, it uses a $\O(M(n) \log^2 n)$ algorithm
based on binary splitting (see \cite{Jeandel00}).
This algorithm is used only for precision greater
than for example $10000$ bits on an Athlon.
For smaller precisions, it uses Brent's method;
if $r = (x - n \log 2)/2^k$ where $0 \le r < \log 2$, then
\[ \exp(x) = 2^n \cdot \exp(r)^{2^k} \]
and $\exp(r)$ is computed using the Taylor expansion:
\[ \exp(r) = 1 + r + \frac{r^2}{2!} + \frac{r^3}{3!} + \cdots \]
As $r < 2^{-k}$, if the target precision is $n$ bits, then only
about $l = n/k$ terms of the Taylor expansion are needed.
This method thus requires the evaluation of the Taylor series to
order $n/k$, and $k$ squares to compute $\exp(r)^{2^k}$.
If the Taylor series is evaluated using a naive way, the optimal
value of $k$ is about $n^{1/2}$, giving a complexity of $\O(n^{1/2} M(n))$.
This is what is implemented in {\tt mpfr\_exp2\_aux}.
If we use a baby step/giant step approach, the Taylor series
can be evaluated in $\O(l^{1/2})$ nonscalar multiplications
--- i.e., with both operands of full $n$-bit size --- as described in
\cite{PaSt73},
thus the evaluation requires $(n/k)^{1/2} + k$ multiplications,
and the optimal $k$ is now about $n^{1/3}$,
giving a total complexity of $\O(n^{1/3} M(n))$.
This is implemented in the function {\tt mpfr\_exp2\_aux2}.
(Note: the algorithm from Paterson and Stockmeyer was rediscovered by Smith,
who named it ``concurrent series'' in \cite{Smith91}.)
\subsection{The logarithm function}
The logarithm function \verb!mpfr_log! is defined using this
approximated formula~\cite{Muller97} based on the arithmetic-geometric
mean (denoted by AG):
$$ \log x \approx \frac{\pi}{\mbox{2~AG(1,4/s)}} - m \log 2 + o(\log x ~2^{-p})$$
with $ s = x \cdot 2^m > 2^{p/2}$.\\
First, the arithmetic-geometric mean $\mbox{AG}(u_0,v_0)$ is computed as in
mathematics with rounding to nearest:
$$ {\tilde u_{n+1}} = {\mathcal N} \left( \sqrt{{\mathcal N}({\tilde u_n}~{\tilde v_n})}~\right) \qquad
{\tilde v_{n+1}} = \frac{{\mathcal N} ({\tilde u_n} + {\tilde v_n})}{2} $$
We denote by $u_n$ and $v_n$ the exact mathematical values. By
induction, it can be proved that:
$$ u_n~ {\left(1-\frac{\ulp(1)}{2}\right)}^{\frac{3}{2}n+1} \leq {\tilde u_n} \leq u_n~ {\left(1+\frac{\ulp(1)}{2}\right)}^{\frac{3}{2}n+1}$$
$$ v_n~ {\left(1-\frac{\ulp(1)}{2}\right)}^{\frac{3}{2}n+1} \leq {\tilde v_n} \leq {\tilde v_n}~ {\left(1+\frac{\ulp(1)}{2}\right)}^{\frac{3}{2}n+1}$$
Then, if $n \ge \lceil \log \left( \frac{v_0 - u_0}{2~u_0}\right) \rceil$,
$$\frac{|{\tilde v_n} - AG(u_0,v_0)|}{v_0} \le n~2^{\frac{3}{2}n+2-p}+8 \cdot 4^{- \frac{2^n~u_0}{v_0 - u_0}}.$$
Therefore the arithmetic-geometric mean can be computed using the
previous error bound and the \verb!mpfr_can_round! function. It
should be noted that the arithmetic-geometric mean of two different
non-zero floating-point numbers is transcendental, therefore there is
no table maker's dilemma here.
From the arithmetic-geometric mean, we deduce the logarithm, naively
bounding the round-off errors. The only point is that the subtraction
may be a cancellation: a maximum of $\log \left(\frac{p \log
2}{|x-1|}\right)$ bits can be lost.
\subsection{The error function}
Let $n$ be the target precision, and $x$ be the input value.
For $|x| \geq \sqrt{n \log 2}$, we have $|\erf x| = 1$
or $1^{-}$ according to the rounding mode.
Otherwise we use the Taylor expansion.
\subsubsection{Taylor expansion}
\[ \erf z = \frac{2}{\sqrt{\pi}} \sum_{k=0}^{\infty} \frac{(-1)^k}
{k! (2k+1)} z^{2k+1} \]
\begin{quote}
\verb|erf_0|$(z, n)$, assumes $z^2 \le n/e$ \\
working precision is $m$ \\
$y \leftarrow \circ (z^2)$ [rounded up] \\
$s \leftarrow 1$ \\
$t \leftarrow 1$ \\
{\bf for} $k$ {\bf from} $1$ {\bf do} \\
\q $t \leftarrow \circ (y t)$ [rounded up] \\
\q $t \leftarrow \circ (t/k)$ [rounded up] \\
\q $u \leftarrow \circ (\frac{t}{2k+1})$ [rounded up] \\
\q $s \leftarrow \circ (s + (-1)^k u)$ [nearest] \\
\q {\bf if} $\Exp(u) < \Exp(s) - m$ and $k \geq z^2$
{\bf then} break \\
$r \leftarrow 2 \circ (z s)$ [rounded up] \\
$p \leftarrow \circ (\pi)$ [rounded down] \\
$p \leftarrow \circ (\sqrt{p})$ [rounded down] \\
$r \leftarrow \circ (r/p)$ [nearest]
\end{quote}
Let $\varepsilon_k$ be the ulp-error on $t$ (denoted $t_k$)
after the loop with index $k$.
According to Lemma~\ref{rel_ulp}, since $t_k$ is computed after $2k$
roundings ($t_0=1$ is exact), we have $\varepsilon_k \leq 4k$.
The error on $u$ at loop $k$ is thus at most
$1+2\varepsilon_k \leq 1+8k$.
Let $\sigma_k$ and $\nu_k$ be the exponent shifts between the new value of
$s$ at step $k$ and respectively the old value of $s$, and $u$.
Writing $s_k$ and $u_k$ for the values of $s$ and $u$ at the end of step $k$,
we have $\sigma_k := \Exp(s_{k-1}) - \Exp(s_k)$
and $\nu_k := \Exp(u_k) - \Exp(s_k)$.
The ulp-error $\tau_k$ on $s_k$ satisfies
$\tau_k \leq \frac{1}{2} + \tau_{k-1} 2^{\sigma_k} + (1+8k) 2^{\nu_k}$.
The halting condition $k \geq z^2$ ensures that $u_j \leq u_{j-1}$ for
$j \geq k$, thus the series $\sum_{j=k}^{\infty} u_j$ is an alternating series,
and the truncated part is bounded by its first term $|u_k| < {\rm ulp}(s_k)$.
So the ulp-error between $s_k$ and $\sum_{k=0}^{\infty} \frac{(-1)^k z^2}{k!
(2k+1)}$ is bounded by $1+\tau_k$.
Now the error after $r \leftarrow 2 \circ (z s)$ is bounded by
$1 + 2 (1+\tau_k) = 2 \tau_k + 3$.
That on $p$ after $p \leftarrow \circ (\pi)$ is $1$ ulp,
and after $p \leftarrow \circ (\sqrt{p})$ we get $2$ ulps
(since $p \leftarrow \circ (\pi)$ was rounded down).
The final error on $r$ is thus at most
$1 + 2 (2 \tau_k + 3) + 4 = 4 \tau_k + 11$
(since $r$ is rounded up and $p$ is rounded down).
\subsubsection{Very large arguments}
Since $\erfc x \leq \frac{1}{\sqrt{\pi} x e^{x^2}}$,
we have for $x^2 \geq n \log 2$ (which implies $x \geq 1$)
that $\erfc x \leq 2^{-n}$, thus
$\erf x = 1$ or $\erf x = 1 - 2^{-n}$ according to the rounding mode.
More precisely, \cite[formul{\ae} 7.1.23 and 7.1.24]{AbSt73} gives:
\[ \sqrt{\pi} x e^{x^2} \erfc x \approx
1 + \sum_{k=1}^n (-1)^k \frac{1 \times 3 \times \cdots \times (2k-1)}
{(2x^2)^k}, \]
with the error bounded in absolute value by the next term and of the same sign.
\subsection{The hyperbolic cosine function}
The {\tt mpfr\_cosh} ($\cosh{x}$) function implements the hyperbolic
cosine as :
\[\cosh x = \frac{1}{2} \left( e^{x} + \frac{1}{e^x} \right).\]
The algorithm used for the calculation of the hyperbolic cosine is as follows\footnote{$\circ()$ represent the rounding error and $\error(u)$ the
error associate with the calculation of $u$}:
\begin{eqnarray}\nonumber
u&\leftarrow&\circ(e^x)\\\label{coshalgo1}
v&\leftarrow&\circ({u}^{-1})\\\label{coshalgo2}
w&\leftarrow&\circ(u+v)\\\label{coshalgo3}
s&\leftarrow&\frac{1}{2} w\\\label{coshalgo4}
\end{eqnarray}
Now, we have to bound the rounding error for each step of this
algorithm. First, let us consider the parity of hyperbolic cosine
($\cosh(-x)=\cosh(x)$) : the problem is reduced to calculate $\cosh x$
with $x \geq 0$. We can deduce $e^x \geq 1$ and $0 \leq e^{-x} \leq
1$.
\begin{center}
\begin{tabular}{l l l}
\begin{minipage}{2.5cm}
${\textnormal{error}}(u)$
$u \leftarrow \circ(e^x)$\\
$-\infty \;\; (\bullet)$
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
|u-e^x| &\leq& \ulp(u)\\\nonumber
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
{\hspace{7cm}}
\end{minipage}\\%\hline
\begin{minipage}{2.5cm}
${\textnormal{error}}(v)$
$v \leftarrow \circ({u}^{-1}) $\\
$+\infty \;\; (\bullet\bullet)$
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
&&|v-e^{-x}| \\\nonumber
& \leq& |v - u^{-1}| + |u^{-1} - e^{-x}|\\\nonumber
& \leq& \ulp(v) + \frac{1}{u \cdot e^x} |u-e^{x}|\\\nonumber
& \leq& \ulp(v) + \frac{1}{u^2} \ulp(u)\;\;(\star)\\\nonumber
& \leq& \ulp(v) + 2 \ulp(\frac{1}{u})\;\;(\star\star)\\\nonumber
& \leq& 3 \, \ulp(v)\;\;(\star\star\star)
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
$(\star)$
With $\frac{1}{e^x} \leq \frac{1}{u}$,\\
for that we must have $u \leq e^x$,\\
it is possible with a rounding of\\
$u$ to $-\infty \;\; (\bullet)$
$(\star\star)$
From inequation \U{R4},
\[ a \cdot \ulp(b) \leq 2 \cdot \ulp(a \cdot b)\]
if $a =\frac{1}{u^2},\;b = u$ then
\[ \frac{1}{u^2} \ulp(u) \leq 2 \ulp(\frac{1}{u})\]
$(\star\star\star)$
If $\ulp(\frac{1}{u}) \leq ulp(v)$,\\
it is possible with a rounding of \\
$v$ to $+\infty \;\; (\bullet)$\\
\end{minipage}\\%\hline
\begin{minipage}{2.5cm}
${\textnormal{error}}(w)$
$w \leftarrow \circ(u+v) $
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
&&|w-(e^{x}+e^{-x})| \\\nonumber
& \leq& |w - (u+v)|+|u - e^x|+|v - e^{-x}|\\\nonumber
& \leq& \ulp(w) + \ulp(u) + 3\ulp(v)\\\nonumber
& \leq& \ulp(w) + 4\ulp(u)\;\;(\star)\\\nonumber
& \leq& 5\ulp(w)\;\;(\star\star)\\\nonumber
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
$(\star)$
With $v \leq 1\leq u$
then $\ulp(v) \leq \ulp(u)$
$(\star\star)$
With $u \leq w$
then $\ulp(u) \leq \ulp(w)$
\end{minipage}\\%\hline
\begin{minipage}{2.5cm}
${\textnormal{error}}(s)$
$s \leftarrow \circ(\frac{w}{2}) $
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{center}
\begin{eqnarray}\nonumber
{\textnormal{error}}(s) & = & {\textnormal{error}}(w)\\\nonumber
& \leq & 5\ulp(s)
\end{eqnarray}
\end{center}
\end{minipage} &
\begin{minipage}{6cm}
\end{minipage}
\end{tabular}
\end{center}
That shows the rounding error on the calculation of $\cosh x$ can be
bound by $5 \;\; \ulp$ on the result. So, to calculate the size of
intermediary variables, we have to add, at least, $\lceil \log_2 5 \rceil=3$ bits the wanted
precision.
\subsection{The inverse hyperbolic cosine function}
The {\tt mpfr\_acosh} function implements the inverse hyperbolic
cosine. For $x < 1$, it returns NaN; for $x=1$, $\acosh x = 0$;
for $x > 1$, the formula $\acosh x = \log ( \sqrt{x^2-1} + x )$
is implemented using the following algorithm:
\begin{quote}
$q \leftarrow \circ(x^2)$ [down] \\
$r \leftarrow \circ(q-1)$ [down] \\
$s \leftarrow \circ(\sqrt{r})$ [nearest] \\
$t \leftarrow \circ(s + x)$ [nearest] \\
$u \leftarrow \circ(\log t)$ [nearest]
\end{quote}
Let us first assume that $r \ne 0$. The error on $q$ is at most $1\,\ulp(q)$,
thus that on $r$ is at most $\ulp(r) + \ulp(q) = (1+E)\,\ulp(r)$ with
$d = \Exp(q) - \Exp(r)$ and $E = 2^d$.
Since $r$ is smaller than $x^2-1$, we can use the simpler formula for the
error on the square root, which gives a bound $(\frac{3}{2} + E)\,\ulp(s)$
for the error on $s$, and $(2 + E)\,\ulp(t)$ for that on $t$. This gives
a final bound of $(\frac{1}{2} + (2 + E) 2^{2-\Exp(u)})\,\ulp(u)$ for the
error on $u$ (\textsection\ref{generic:log}).
We have: $2 + E \leq 2^{1 + \mathrm{max}(1,d)}$. Thus the rounding error
on the calculation of $\acosh x$ can be bounded by
$(\frac{1}{2} + 2^{3 + \mathrm{max}(1,d) - \Exp(u)})\,\ulp(u)$.
If we obtain $r = 0$, which means that $x$ is near from $1$,
we need another algorithm.
One has $x = 1 + z$, with $0 < z < 2^{-p}$, where $p$ is the intermediate
precision (which may be smaller than the precision of $x$). The formula
can be rewritten:
$\acosh x = \log (1 + \sqrt{z(2+z)} + z) = \sqrt{2z} (1 - \varepsilon(z))$
where $0 < \varepsilon(z) < z / 12$.
% > series(log(1+z+sqrt(z*(2+z)))/sqrt(2*z),z=0);
% 2 3 4 5
% z 3 z 5 z 35 z 63 z (11/2)
% 1 - ---- + ---- - ---- + ----- - ----- + O(z )
% 12 160 896 18432 90112
We use the following algorithm:
\begin{quote}
$q \leftarrow \circ(x - 1)$ [down] \\
$r \leftarrow 2q$ \\
$s \leftarrow \circ(\sqrt{r})$ [nearest]
\end{quote}
The error on $q$ is at most $1\,\ulp(q)$, thus the error on $r$ is at most
$1\,\ulp(r)$. Since $r$ is smaller than $2z$, we can use the simpler formula
for the error on the square root, which gives a bound $\frac{3}{2}\,\ulp(s)$
for the error on $s$. The error on $\acosh x$ is bounded by the sum of the
error bound on $\sqrt{2z}$ and $\varepsilon(z) \sqrt{2z} <
\frac{2^{-p}}{12} 2^{1+\Exp(s)} = \frac{1}{6}\,\ulp(s)$.
Thus the rounding error on the calculation of $\acosh x$ can be bounded by
$\left(\frac{3}{2} + \frac{1}{6}\right)\,\ulp(s) < 2\,\ulp(s)$.
\subsection{The hyperbolic sine function}
The {\tt mpfr\_sinh} ($\sinh{x}$) function implements the hyperbolic
sine as :
\[\sinh x = \frac{1}{2} \left( e^{x} - \frac{1}{e^x} \right).\]
The algorithm used for the calculation of the hyperbolic sine is as follows\footnote{$\circ()$ represent the rounding error and $\error(u)$ the
error associated with the calculation of $u$}:
\begin{eqnarray}\nonumber
u&\leftarrow&\circ(e^x)\\\nonumber
v&\leftarrow&\circ({u}^{-1})\\\nonumber
w&\leftarrow&\circ(u-v)\\\nonumber
s&\leftarrow&\frac{1}{2} w
\end{eqnarray}
Now, we have to bound the rounding error for each step of this
algorithm. First, let consider the parity of hyperbolic sine
($\sinh(-x)=-\sinh(x)$) : the problem is reduced to calculate $\sinh x$
with $x \geq 0$. We can deduce $e^x \geq 1$ and $0 \leq e^{-x} \leq
1$.
\begin{center}
\begin{tabular}{l l l}
\begin{minipage}{2.5cm}
${\textnormal{error}}(u)$
$u \leftarrow \minf(e^x)$\\
$(\bullet)$
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
|u-e^x| &\leq& \ulp(u)\\\nonumber
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
{\hspace{7cm}}
\end{minipage}\\%\hline
\begin{minipage}{2.5cm}
${\textnormal{error}}(v)$
$v \leftarrow \pinf({u}^{-1}) $\\
$(\bullet\bullet)$
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
&&|v-e^{-x}| \\\nonumber
& \leq& |v - u^{-1}| + |u^{-1} - e^{-x}|\\\nonumber
& \leq& \ulp(v) + \frac{1}{u \cdot e^x} |u-e^{x}|\\\nonumber
& \leq& \ulp(v) + \frac{1}{u^2} \ulp(u)\;\;(\star)\\\nonumber
& \leq& \ulp(v) + 2 \ulp(\frac{1}{u})\;\;(\star\star)\\\nonumber
& \leq& 3 \, \ulp(v)\;\;(\star\star\star)
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
$(\star)$
With $\frac{1}{u} \leq \frac{1}{e^x}$,\\
for that we must have $e^x \leq u$,\\
it is possible with $u=\minf(e^x)$ $(\bullet)$
$(\star\star)$
From inequation \U{R4},
\[ a \cdot \ulp(b) \leq 2 \cdot \ulp(a \cdot b)\]
if $a =\frac{1}{u^2},\;b = u$ then
\[ \frac{1}{u^2} \ulp(u) \leq 2 \ulp(\frac{1}{u})\]
$(\star\star\star)$
If $\ulp(\frac{1}{u}) \leq \ulp(v)$,\\
it is possible with $v=\pinf(u^{-1})$ $(\bullet\bullet)$
\end{minipage}\\%\hline
\begin{minipage}{2.5cm}
${\textnormal{error}}(w)$
$w \leftarrow \circ(u-v) $
\end{minipage} &
\begin{minipage}{7.8cm}
\begin{eqnarray}\nonumber
&&|w-(e^{x}-e^{-x})| \\\nonumber
& \leq& |w - (u-v)|+|u - e^x|+|-v + e^{-x}|\\\nonumber
& \leq& \ulp(w) + \ulp(u) + 3\ulp(v)\\\nonumber
& \leq& \ulp(w) + 4\ulp(u)\;\;(\star)\\\nonumber
& \leq& (1+ 4 \cdot 2^{\Exp(u)-\Exp(w)}) \ulp(w)\;\;(\star\star)\\\nonumber
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
$(\star)$
With $v \leq 1\leq u$
then $\ulp(v) \leq \ulp(u)$
$(\star\star)$
see subsection \ref{generic:sous}
\end{minipage}\\%\hline
\begin{minipage}{2.5cm}
${\textnormal{error}}(s)$
$s \leftarrow \circ(\frac{w}{2}) $
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{center}
\begin{eqnarray}\nonumber
{\textnormal{error}}(s) & = & {\textnormal{error}}(w)\\\nonumber
& \leq & (1+ 4 \cdot 2^{\Exp(u)-\Exp(w)}) \ulp(w)
\end{eqnarray}
\end{center}
\end{minipage} &
\begin{minipage}{6cm}
\end{minipage}
\end{tabular}
\end{center}
That show the rounding error on the calculation of $\sinh x$ can be bound by $(1+ 4 \cdot 2^{\Exp(u)-\Exp(w)}) \ulp(w)$, then the number of bits need to add to the want accuracy to define intermediary variable is :
\[
N_t=\lceil \log_2(1+ 4 \cdot 2^{\Exp(u)-\Exp(w)}) \rceil
\]
\subsection{The inverse hyperbolic sine function}
The {\tt mpfr\_asinh} ($\n{asinh}{x}$) function implements the inverse hyperbolic sine as :
\[\n{asinh} = \log \left( \sqrt{x^2+1} + x \right).\]
The algorithm used for the calculation of the inverse hyperbolic sine is as follows
\begin{eqnarray}\nonumber
s&\leftarrow&\circ(x^2)\\\nonumber
t&\leftarrow&\circ(s+1)\\\nonumber
u&\leftarrow&\circ(\sqrt{t})\\\nonumber
v&\leftarrow&\circ(u+x)\\\nonumber
w&\leftarrow&\circ(\log v)
\end{eqnarray}
Now, we have to bound the rounding error for each step of this
algorithm. First, let consider the parity of hyperbolic arc sine
($\n{asinh}(-x)=-\n{asinh}(x)$) : the problem is reduced to calculate $\n{asinh} x$
with $x \geq 0$.
\begin{center}
\begin{tabular}{l l l}
\begin{minipage}{2.5cm}
${\textnormal{error}}(s)$
$s \leftarrow \circ(x^2) $
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
&&|s-x^2| \\\nonumber
& \leq& \ulp(s)\;\;(\star)\\\nonumber
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
\end{minipage}\\%\hline
\begin{minipage}{2.5cm}
${\textnormal{error}}(t)$
$t \leftarrow \minf(s+1) $
$(\bullet)$
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
&&|t-(x^2+1)| \\\nonumber
& \leq& 2 \ulp(t) \;\;(\star)\\\nonumber
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
($\star$)
see subsection \ref{generic:sous}
\end{minipage}\\%\hline
\begin{minipage}{2.5cm}
${\textnormal{error}}(u)$
$u \leftarrow \circ(\sqrt{t}) $
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
&&|u-\sqrt{x^2+1}| \\\nonumber
& \leq& 3 \ulp(u) \;(\star)
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
($\star$)
see subsection \ref{generic:sqrt}
with ($\bullet$)
\end{minipage}\\%\hline
\begin{minipage}{2.5cm}
${\textnormal{error}}(v)$
$v \leftarrow \circ(u+x) $
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
&&|v-(\sqrt{x^2+1}+x)| \\\nonumber
& \leq& 5 \ulp(v) \;(\star)
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
($\star$)
see subsection \ref{generic:sous}
\end{minipage}\\%\hline
\begin{minipage}{2.5cm}
${\textnormal{error}}(w)$
$w \leftarrow \circ(\log v) $
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
&&|w-\log(\sqrt{x^2+1}+x)| \\\nonumber
& \leq& (1+5.2^{2-\Exp(w)}) \ulp(w) \;\star
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
($\star$)
see subsection \ref{generic:log}
\end{minipage}
\end{tabular}
\end{center}
That shows the rounding error on the calculation of $\n{asinh} x$ can
be bound by $ (1+5.2^{2-\Exp(w)})\;\; \ulp$ on the result. So, to
calculate the size of intermediary variables, we have to add, at
least, $\lceil \log_2 (1+5.2^{2-\Exp(w)}) \rceil$ bits the wanted
precision.
\subsection{The hyperbolic tangent function}
The hyperbolic tangent (\texttt{mpfr\_tanh}) is computed from the exponential:
\[ \tanh x = \frac{ e^{2 x} -1 }{ e^{2 x} +1}. \]
The algorithm used is as follows, with working
precision $p$ and rounding to nearest:
\begin{quote}
$u \leftarrow \circ(2 x)$ \\
$v \leftarrow \circ(e^u)$ \\
$w \leftarrow \circ(v+1)$ \\
$r \leftarrow \circ(v-1)$ \\
$s \leftarrow \circ(r/w)$
\end{quote}
Now, we have to bound the rounding error for each step of this
algorithm. First, thanks to the parity of hyperbolic tangent
--- $\tanh(-x)=-\tanh(x)$ --- we can consider without loss of generality
that $x \geq 0$.
We use Higham's notation, with $\theta_i$ denoting variables such that
$|\theta_i| \leq 2^{-p}$.
Firstly, $u$ is exact. Then $v = e^{2x} (1+\theta_1)$ and
$w = (e^{2x}+1) (1+\theta_2)^2$.
The error on $r$ is bounded by $\frac{1}{2} \ulp(v) + \frac{1}{2} \ulp(r)$.
Assume $\ulp(v) = 2^e \ulp(r)$, with $e \geq 0$;
then the error on $r$ is bounded by $\frac{1}{2} (2^e+1) \ulp(r)$.
We can thus write $r = (e^{2x}-1) (1+\theta_3)^{2^e+1}$,
and then $s = \tanh(x) (1+\theta_4)^{2^e+4}$.
\begin{lemma}
For $|x| \leq 1/2$, and $|y| \leq |x|^{-1/2}$, we have:
\[ |(1+x)^y-1| \leq 2 |y| x. \]
\end{lemma}
\begin{proof}
We have $(1+x)^y = e^{y \log (1+x)}$,
with $|y \log (1+x)| \leq |x|^{-1/2} |\log (1+x)|$.
The function $|x|^{-1/2} \log (1+x)$ is increasing on $[-1/2,1/2]$, and
takes as values $\approx -0.490$ in $x=-1/2$ and $\approx 0.286$ in $x=1/2$,
thus is bounded in absolute value by $1/2$.
This yields $|y \log (1+x)| \leq 1/2$.
Now it is easy to see that for $|t| \leq 1/2$, we have
$|e^t-1| \leq 1.3 |t|$.
Thus $|(1+x)^y-1| \leq 1.3 |y| |\log (1+x)|$.
The result follows from $|\log (1+x)| \leq 1.4 |x|$ for $|x| \leq 1/2$,
and $1.3 \times 1.4 \leq 2$.
\end{proof}
Applying the above lemma for $x=\theta_4$ and $y=2^e+4$,
assuming $2^e+4 \leq 2^{p/2}$,
we get $s = \tanh(x) [1 + 2(2^e+4)\theta_5]$.
Since $2^e+4 \leq 2^{{\rm max}(3,e+1)}$,
the relative error on $s$ is thus bounded by $2^{{\rm max}(4,e+2)-p}$.
\subsection{The inverse hyperbolic tangent function}
The {\tt mpfr\_atanh} ($\n{atanh}{x}$) function implements the inverse
hyperbolic tangent as :
\[\n{atanh} = \frac{1}{2} \log \frac{1+x}{1-x}.\]
The algorithm used for the calculation of the inverse hyperbolic tangent is
as follows:
\begin{eqnarray}\nonumber
s&\leftarrow&\circ(1+x)\\\nonumber
t&\leftarrow&\circ(1-x)\\\nonumber
u&\leftarrow&\circ(\frac{s}{t})\\\nonumber
v&\leftarrow&\circ(\log u)\\\nonumber
w&\leftarrow&\circ(\frac{1}{2} v)
\end{eqnarray}
Now, we have to bound the rounding error for each step of this
algorithm. First, let consider the parity of hyperbolic arc tangent
($\n{atanh}(-x)=-\n{atanh}(x)$) : the problem is reduced to calculate
$\n{atanh} x$ with $x \geq 0$.
\begin{center}
\begin{tabular}{l l l}
\begin{minipage}{2.5cm}
${\textnormal{error}}(s)$
$s \leftarrow \pinf(1+x) $
$(\bullet)$
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
&&|s-(1+x)| \\\nonumber
& \leq& 2 \ulp(s)\;\;(\star)\\\nonumber
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
see subsection \ref{generic:sous}
\end{minipage}\\%\hline
\begin{minipage}{2.5cm}
${\textnormal{error}}(t)$
$t \leftarrow \minf(1-x) $
$(\bullet\bullet)$
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
&&|t-(1-x)| \\\nonumber
& \leq& (1+2^{\Exp(x)-\Exp(t)}) \ulp(t) \;\;(\star)\\\nonumber
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
($\star$)
see subsection \ref{generic:sous}
\end{minipage}\\%\hline
\begin{minipage}{2.5cm}
${\textnormal{error}}(u)$
$u \leftarrow \circ(\frac{s}{t}) $
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
&&|u-\frac{1+x}{1-x}| \\\nonumber
& \leq& (1+ 2 \times 2 + \\\nonumber
& \cdots& 2 \times (1+2^{\Exp(x)-\Exp(t)}))\ulp{u} \;(\star)\\\nonumber
& \leq& (7+2^{\Exp(x)-\Exp(t)+1})\ulp(u)
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
($\star$)
see subsection \ref{generic:inv}
with ($\bullet$) and ($\bullet\bullet$)
\end{minipage}\\%\hline
\begin{minipage}{2.5cm}
${\textnormal{error}}(v)$
$v \leftarrow \circ(\log(u)) $
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
&&|v-(\log{\frac{1+x}{1-x}})| \\\nonumber
& \leq& (1+(7+2^{\Exp(x)-\Exp(t)+1}) \\\nonumber
& \cdots& \times 2^{2-\Exp(v)}) \ulp(v)\;(\star)\\\nonumber
& \leq& (1+7 \times 2^{2-\Exp(v)} +\\\nonumber
& \cdots& 2^{\Exp(x)-\Exp(t)-\Exp(v)+3}) \ulp(v)
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
($\star$)
see subsection \ref{generic:log}
\end{minipage}\\%\hline
\begin{minipage}{2.5cm}
${\textnormal{error}}(w)$
$w \leftarrow \circ(\frac{1}{2} v) $
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
&&|w-\frac{1}{2}\log{\frac{1+x}{1-x}}| \\\nonumber
& \leq& (1+7 \times 2^{2-\Exp(v)} + \\\nonumber
& \cdots& 2^{\Exp(x)-\Exp(t)-\Exp(v)+3}) \ulp(w) \;\star
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
($\star$) exact
\end{minipage}
\end{tabular}
\end{center}
That shows the rounding error on the calculation of $\n{atanh} x$ can
be bound by $ (1+7 \times 2^{2-\Exp(v)} +
2^{\Exp(x)-\Exp(t)-\Exp(v)+3}) \; \ulp$ on the result. So, to
calculate the size of intermediary variables, we have to add, at
least, $\lceil \log_2 (1+7 \times 2^{2-\Exp(v)} +
2^{\Exp(x)-\Exp(t)-\Exp(v)+3}) \rceil$ bits the wanted precision.
\subsection{The arc-sine function}
\begin{enumerate}
\item We use the formula $\arcsin\,x=\arctan\,\frac{x}{\sqrt{1-x^2}}$
\item When $x$ is near $1$ we will experience uncertainty problems:
\item If $x=a(1+\delta)$ with $\delta$ being the relative error then we will have
\begin{equation*}
1-x=1-a-a\delta=(1-a)[1-\frac{a}{1-a}\delta]
\end{equation*}
So when using the arc tangent programs we need to take into account that decrease in precision.
\end{enumerate}
\subsection{The arc-cosine function} % from Mathieu Dutour
\begin{enumerate}
\item Obviously, we used the formula
\begin{equation*}
\arccos\,x=\frac{\pi}{2}-\arcsin\,x
\end{equation*}
\item The problem of $\arccos$ is that it is $0$ at $1$, so, we have a cancellation problem to treat at $1$.
\item (Suppose $x\geq 0$, this is where the problem happens) The derivative of $\arccos$ is $\frac{-1}{\sqrt{1-x^2}}$ and we will have
\begin{equation*}
\frac{1}{2\sqrt{1-x}} \leq |\frac{-1}{\sqrt{1-x^2}}|=\frac{1}{\sqrt{(1-x)(1+x)}} \leq \frac{1}{\sqrt{1-x}}
\end{equation*}
So, integrating the above inequality on $[x,1]$ we get
\begin{equation*}
\sqrt{1-x}\leq \arccos\,x\leq 2\sqrt{1-x}
\end{equation*}
\item The important part is the lower bound that we get which tell us a upper bound on the cancellation that will occur:\\
The terms that are canceled are $\pi/2$ and $\arcsin\,x$, their order is $2$. The number of canceled terms is so
\begin{verbatim}
1-1/2*MPFR_EXP(1-x)
\end{verbatim}
\end{enumerate}
\subsection{The arc-tangent function} % from Mathieu Dutour
The arc-tangent function admits the following argument reduction:
\[ \arctan x = 2 \arctan \frac{x}{1+\sqrt{1+x^2}}
= 2 \arctan \frac{\sqrt{1+x^2}-1}{x}. \]
If applied once, it reduces the argument to $|x| < 1$, then each successive
application reduces $x$ by a factor of at least $2$.
Assume $|x| \leq 1$.
We approximate $\frac{\sqrt{1+x^2}-1}{x}$ using the following algorithm:
\begin{quote}
$s \leftarrow \circ(x^2)$ [nearest] \\
$t \leftarrow \circ(1+s)$ [nearest] \\
$u \leftarrow \circ(\sqrt{t})$ [nearest] \\
$v \leftarrow \circ(u-1))$ [nearest] \\
$w \leftarrow \circ(\frac{v}{x})$ [nearest]
\end{quote}
Assuming all computations are done with precision $p$, and denoting
$\theta_i$ a value such that $|\theta_i| \leq 2^{-p}$, we have
$s = x^2 (1+\theta_1)$, $t = (1+s) (1+\theta_2) =
(1 + x^2 (1+\theta_1)) (1+\theta_2) = (1+x^2) (1+\theta_3)^2$,
$u = \sqrt{t} (1+\theta_4) = \sqrt{1+x^2} (1+\theta_3) (1 + \theta_4)
= \sqrt{1+x^2} (1 + \theta_5)^2$.
Now let us write $u - 1 = (\sqrt{1+x^2}-1) (1 + \lambda)$; we have
\[ \lambda = \frac{\sqrt{1+x^2}}{\sqrt{1+x^2}-1} (2 \theta_5 + \theta_5^2). \]
For $|x| \leq 1$, we have $2/x^2 \leq \frac{\sqrt{1+x^2}}{\sqrt{1+x^2}-1}
\leq (2+\sqrt{2})/x^2$, and for $p \geq 5$ the expression
$(2+\sqrt{2}) (2 \theta_5 + \theta_5^2)$ is bounded by $7 \theta_5$, thus we
can write $u - 1 = (\sqrt{1+x^2}-1) (1 + 7 \theta_5/x)$.
It follows $v = (u-1) (1 + \theta_6)$ and
$w = \frac{\sqrt{1+x^2}-1}{x} (1 + 7 \theta_5/x) (1 + \theta_7)^2$.
Still for $|x| \leq 1$ and $p \geq 5$, the product
$(1 + 7 \theta_5/x) (1 + \theta_7)^2$ can be written
$(1 + 10 \theta_8/x)$, thus we have
$w = \frac{\sqrt{1+x^2}-1}{x} (1 + 10 \theta_8/x)$, and the relative
error on $w$ is bounded by $10/x \cdot 2^{-p}$.
Now if we want to apply several times this argument reduction, we need to
analyze the error when $x$ is not exact, but say $x = \bar{x} (1 + \varepsilon
\theta)$, with $\varepsilon \geq 0$ a parameter, and $|\theta| \leq 2^{-p}$.
The above analysis remains valid with $x$ replaced by $\bar{x} (1 + \varepsilon
\theta)$, thus we get $w = f(x) (1 + 10 \theta_8/x)$,
with $f(x) = \frac{\sqrt{1+x^2}-1}{x}$, and $x = \bar{x} (1 + \varepsilon
\theta)$. The derivative of $f$ is bounded by $1/2$ for $|x| \leq 1$, thus
$|f(x) - f(\bar{x})| \leq \frac{1}{2} \varepsilon \bar{x}$. Thus we have
\[ w = \frac{\sqrt{1+\bar{x}^2}-1}{\bar{x}} (1 + \frac{\varepsilon\theta_9}{2})
(1 + 10 \theta_8/x). \]
Assuming $\varepsilon \leq 21/x$, we have
$w = \frac{\sqrt{1+\bar{x}^2}-1}{\bar{x}} (1 + \frac{21}{2} \theta_{10}/x)
(1 + 10 \theta_8/x) = \frac{\sqrt{1+\bar{x}^2}-1}{\bar{x}}
(1 + 21 \theta_{11}/x)$, as long as $|x| \geq 210 \cdot 2^{-p}$.
Since initially $\varepsilon=0$, this proves by induction that
$\varepsilon \leq 21/x$, and the relative error on $w$ after several
argument reductions is bounded by $21/x \cdot 2^{-p}$, where $x$ is the last
reduced argument.
Since the arc-tangent function has a derivative less than $1$,
the corresponding absolute error bound for
$\arctan w$ is also $21/x \cdot 2^{-p}$.
Since $\arctan\frac{\sqrt{1+x^2}-1}{x} \geq 5x/16$ for $0 \leq x \leq 1$,
the relative error bound on $\arctan\frac{\sqrt{1+x^2}-1}{x}$ is
$2^{7-p}/x^2 \leq 2^{9-2\Exp(x)-p}$.
\subsubsection{Binary splitting}
\noindent The Taylor series for $\arctan$ is suitable for analysis using Binary splitting.
\par This method is detailed for example in ``Pi and The AGM'' p 334. It is efficient for rational numbers and is non efficient for non rational numbers.
\par The efficiency of this method is then quite limited. One can then wonder how to use it for non rational numbers.
\par Using the formulas
\begin{equation*}
\arctan\,(-x)=-\arctan\,x\;\;\mbox{and}\;\;\arctan\,x+\arctan\,\frac{1}{x}=\frac{\pi}{2}{\rm sign}(x)
\end{equation*}
we can restrict ourselves to $0\leq x\leq 1$.
\par Writing
\begin{equation*}
x=\sum_{i=1}^{\infty} \frac{u_i}{2^i}\;\;\mbox{with}\;\;u_i\in\{0,1\}
\end{equation*}
or
\begin{equation*}
x=\sum_{i=1}^{\infty} \frac{u_i}{2^{2^i}}\;\;\mbox{with}\;\;u_i\in\{0,1,\dots,2^{2^{i-1}}\}\mbox{~if~}i>1\mbox{~and~}u_1\in \{0,1\}
\end{equation*}
we can compute $\cos$, $\sin$ or $\exp$ using the formulas
\begin{equation*}
\begin{array}{c}
\cos\,(a+b)=\cos\,a\cos\,b-\sin\,a\sin\,b\\
\sin\,(a+b)=\sin\,a\cos\,b+\cos\,a\sin\,b\\
\exp(a+b)=(\exp\,a)(\exp\,b)
\end{array}
\end{equation*}
Unfortunately for $\arctan$ there is no similar formulas. The only formula known is
\begin{equation*}
\arctan\,x+\arctan\,y=\arctan\,\frac{x+y}{1-xy}+k\pi\;\;\mbox{with}\;\;k\in\Z
\end{equation*}
we will use
\begin{equation*}
\arctan\,x=\arctan\,y+\arctan\,\frac{x-y}{1+xy}
\end{equation*}
with $x,y>0$ and $y<x$.
\par Summarizing we have the following facts:
\begin{enumerate}
\item We can compute efficiently $\arctan\,\frac{u}{2^{2^k}}$ with $k\geq 0$ and $u\in\{0,1,\dots,2^{2^{k-1}}\}$
\item We have a sort of addition formula for $\arctan$, the term $k\pi$ being zero.
\end{enumerate}
So I propose the following algorithm for $x$ given in $[0,1]$.
\begin{enumerate}
\item Write $v_k=2^{2^k}$
\item Define
\begin{equation*}
s_{k+1}=\frac{s_k-A_k}{1+s_kA_k}\;\;\mbox{and}\;\;s_0=x
\end{equation*}
\item $A_k$ is chosen such that
\begin{equation*}
0\leq s_k-A_k<\frac{1}{v_k}
\end{equation*}
and $A_k$ is of the form $\frac{u_k}{v_k}$ with $u_k\in\N$.
\item We have the formula
\begin{equation*}
\begin{array}{rcl}
\arctan\,x
&=&\arctan\,A_0+\arctan\,s_1\\
&=&\arctan\,A_0+\arctan\,A_1+\arctan\,s_2\\
&=&\arctan\,A_0+\dots+\arctan\,A_N+\arctan\,s_{N+1}
\end{array}
\end{equation*}
the number $s_N$ is decreasing toward $0$ and we then have
\begin{equation*}
\begin{array}{rcl}
\arctan\,x&=&\sum_{i=0}^{i=\infty}\arctan\,A_i
\end{array}
\end{equation*}
\end{enumerate}
The drawbacks of this algorithm are:
\begin{enumerate}
\item Complexity of the process is high, higher than the AGM. Nevertheless there is some hope that this can be more efficient than AGM in the domain where the number of bits is high but not too large.
\item There is the need for division which is computationally expensive.
\item We may have to compute $\arctan\,(1/2)$.
\end{enumerate}
\subsubsection{Estimate of absolute error}
\noindent By that analysis we mean that $a$ and $b$ have absolute error $D$ if $|a-b|\leq D$.\\
I give a remind of the algorithm:
\begin{enumerate}
\item Write $v_k=2^{2^k}$
\item Define
\begin{equation*}
s_{k+1}=\frac{s_k-A_k}{1+s_kA_k}\;\;\mbox{and}\;\;s_0=x
\end{equation*}
\item $A_k$ is chosen such that
\begin{equation*}
0\leq s_k-A_k<\frac{1}{v_k}
\end{equation*}
and $A_k$ is of the form $\frac{u_k}{v_k}$ with $u_k\in\N$.
\item We have the formula
\begin{equation*}
\begin{array}{rcl}
\arctan\,x
&=&\arctan\,A_0+\arctan\,s_1\\
&=&\arctan\,A_0+\arctan\,A_1+\arctan\,s_2\\
&=&\arctan\,A_0+\dots+\arctan\,A_N+\arctan\,s_{N+1}
\end{array}
\end{equation*}
the number $s_N$ is very rapidly decreasing toward $0$ and we then have
\[\arctan\,x = \sum_{i=0}^{i=\infty}\arctan\,A_i\]
\item The approximate arc tangent is then
\[\sum_{i=0}^{i=N_0}\arctan_{m_i}\,A_i\]
with $\arctan_{m_i}$ being the sum of the first $2^{m_i}$ terms of the
Taylor series for $\arctan$.
\end{enumerate}
We need to estimate all the quantities involved in the computation.
\begin{enumerate}
\item We have the upper bound
\begin{equation*}
0\leq s_{k+1}=\frac{s_k-A_k}{1+s_kA_k}\leq s_k-A_k\leq \frac{1}{v_k}
\end{equation*}
\item The remainder of the series giving $\arctan\,x$ is
\begin{eqnarray*}
\sum_{i=N_0+1}^{\infty}\arctan\,A_i
&\leq &\sum_{i=N_0+1}^{\infty}A_i\\
&\leq &\sum_{i=N_0+1}^{\infty}s_i\\
&\leq &\sum_{i=N_0+1}^{\infty}\frac{1}{v_{i-1}}\\
&\leq &\sum_{i=N_0}^{\infty}\frac{1}{v_{i}}\\
&\leq &\sum_{i=N_0}^{\infty}\frac{1}{2^{2^i}}=\frac{c_{N_0}}{2^{2^{N_0}}}
\end{eqnarray*}
With $c_{N_0}\leq 1.64$. If $N_0\geq 1$ then $c_{N_0}\leq 1.27$. If $N_0\geq 2$ then $c_{N_0}\leq 1.07$.\\
It remains to determine the right $N_0$.
\item The partial sum of the Taylor series for $\arctan$ have derivative bounded by $1$ and consequently don't increase error.
\item The error created by using the partial sum of the Taylor series of $\arctan$ is bounded by
\begin{equation*}
\frac{(A_i)^{2\times 2^{m_i}+1}}{2*2^{m_i}+1}
\end{equation*}
and is thus bounded by
\begin{eqnarray*}
\frac{1}{2 \times 2^{m_i}+1} [\frac{1}{2^{2^{i-1}}}]^{2\times 2^{m_i}+1}
&=&\frac{1}{2 \times 2^{m_i}+1} [2^{-2^{i-1}}]^{2\times 2^{m_i}+1}\\
&\leq &\frac{1}{2 \times 2^{m_i}+1} [2^{-2^{i-1}}]^{2\times 2^{m_i}}\\
&\leq &\frac{1}{2 \times 2^{m_i}+1} 2^{-2^{i+m_i}}
\end{eqnarray*}
The calculation of $\frac{\arctan\,A_i}{A_i}$ is done by using integer arithmetic and returning a fraction that is converted to mpfr type so there is no error. But to compute $\arctan\,A_i=A_i[\frac{\arctan\,A_i}{A_i}]$ we need to use real arithmetic so there is $1 ulp$ error.\\
In total this is $(N_0) ulp$.
\item Addition give $1 ulp$ There are $(N_0-1)$ addition so we need to take $(N_0 -1) ulp$.
\item The division yields errors:
\begin{enumerate}
\item Having errors in the computation of $A_i$ is of no consequences: It changes the quantity being arc-tangented and that's all. Errors concerning the computation of $s_{N+1}$ in contrary adds to the error.
\item The subtract operation $s_i-A_i$ has the effect of subtracting very near numbers. But $A_i$ has exactly the same first $1$ and $0$ than $s_i$ so we can expect this operation to be nondestructive.
\item Extrapolating from the previous result we can expect that the error of the quantity $\frac{s_i-A_i}{1+s_iA_i}$ is $err(s_i)+1 ulp$
\end{enumerate}
\item The total sum of errors is then (if no errors are done in the counting of errors)
\begin{eqnarray*}
Err(\arctan)
&=&\sum_{i=0}^{i=N_0}\frac{1}{2*2^{m_i}+1}2^{-2^{i+m_i}}+\frac{c_{N_0}}{2^{2^{N_0}}}+(N_0-1)2^{-Prec}\\
&+&(N_0 -1)2^{-Prec}+(N_0)2^{-Prec}\;\;\;[m_i=N_0-i]\\
&=&\sum_{i=0}^{i=N_0}\frac{1}{2*2^{N_0-i}+1}2^{-2^{N_0}}+\frac{c_{N_0}}{2^{2^{N_0}}}+(3*N_0-2)2^{-Prec}\\
&=&\sum_{i=0}^{i=N_0}\frac{1}{2*2^{i}+1}2^{-2^{N_0}}+\frac{c_{N_0}}{2^{2^{N_0}}}+(3*N_0-2)2^{-Prec}\\
&\leq &\{\sum_{i=0}^{i=\infty}\frac{1}{2*2^{i}+1}\}2^{-2^{N_0}}+\frac{c_{N_0}}{2^{2^{N_0}}}+(3*N_0-2)2^{-Prec}\\
&\leq&\{0.77\}2^{-2^{N_0}}+\frac{1.63}{2^{2^{N_0}}}+(3*N_0-2)2^{-Prec}\\
&=&\frac{2.4}{2^{2^{N_0}}}+(3*N_0-2)2^{-Prec}
\end{eqnarray*}
This is what we wish thus $Err(\arctan)< 2^{-prec\_arctan}$ with $prec\_arctan$
is the requested precision on the arc-tangent.
We thus want:
\[\frac{2.4}{2^{2^{N_0}}}\leq 2^{-prec\_arctan-1}\]
and
\[(3 \times N_0-2)2^{-Prec}\leq 2^{-prec\_arctan-1}\]
i.e.
\[N_0\geq \frac{\ln\,(prec\_arctan+1+\frac{\ln\,2.4}{\ln\,2})}{\ln\,2}\]
that we approach by (since the logarithm is expensive):
\begin{equation*}
N_0=ceil(\log(prec\_arctan+2.47)*1.45)
\end{equation*}
and we finally have:
\begin{equation*}
Prec=prec\_arctan+\{1+ceil(\frac{\ln\,(3N_0-2)}{\ln\,2})\}
\end{equation*}
\end{enumerate}
\subsubsection{Estimate of the relative error}
\noindent we say that $a$ and $b$ have relative error $\delta$ if
\begin{equation*}
a=b(1+\Delta)\mbox{~with~}|\Delta|\leq \delta
\end{equation*}
This is the error definition used in mpfr. So we need to redo everything in order to have a consistent analysis.
\begin{enumerate}
\item We can use all previous estimates:
\begin{enumerate}
\item Remainder estimate:
\begin{equation*}
\sum_{i=N_0+1}^{\infty}\arctan\,A_i\leq \frac{c_{N_0}}{2^{2^{N_0}}}
\end{equation*}
so the relative error will be $\frac{1}{\arctan\,x}\frac{c_{N_0}}{2^{2^{N_0}}}$.
\item The relative error created by using a partial sum of Taylor series is
bounded by $\frac{1}{\arctan\,A_i}\frac{1}{2 \times 2^{m_i}+1} 2^{-2^{i+m_i}}$.
\item The multiplication $\arctan\,A_i=A_i[\frac{\arctan\,A_i}{A_i}]$ takes
1 ulp of relative error.
\item Doing the subtraction $s_i-A_i$ is a gradual underflow operation:
it decreases the precision of $s_i-A_i$.
\item The multiplication $a_iA_i$ creates $1$ ulp of error. This is not
much and this relative error is further reduced by adding $1$.
\end{enumerate}
\end{enumerate}
\begin{enumerate}
\item We have
\begin{equation*}
\begin{array}{rcl}
\arctan\,b(1+\Delta)
&=&\arctan(b+b\Delta)\\
&\sim&\arctan\,b+\frac{1}{1+b^2}(b\Delta)\\
&=&[\arctan\,b][1+\{\frac{b}{(1+b^2)\arctan\,b}\}\Delta]
\end{array}
\end{equation*}
A rapid analysis gives $0\leq \frac{b}{(1+b^2)\arctan\,b}\leq 1$ and then we can say that the function $\arctan$ does not increase the relative error.
\item So we have two possible solutions:
\begin{enumerate}
\item Do a relative analysis of our algorithm.
\item Use the previous analysis since the absolute error $D$ is obviously equal to $|b|\delta$ ($\delta$ being the relative error)
\end{enumerate}
it is not hard to see that second solution is certainly better: The formulas are additive. Our analysis will work without problems.
\item It then suffices to replace in the previous section $2^{-prec\_arctan}$ by $2^{-prec\_arctan}\arctan\,x$.
\item If $|x|\leq 1$ then $|\arctan\,x|$ is bounded below by $|x|\frac{4}{\pi}\sim |x|1.27$. So it suffices to have an absolute error bounded above by
\begin{equation*}
2^{-prec\_arctan}\,|x|1.27
\end{equation*}
In this case we will add $2-MPFR\_EXP(x)$ to $prec\_arctan$
\item If $|x|\geq 1$ then $\arctan\,x$ is bounded below by $\frac{\pi}{4}$. So it suffices to have an absolute error bounded above by
\begin{equation*}
2^{-prec\_arctan}\, 1.27
\end{equation*}
we will add $1$ to $prec\_arctan$.\\
In this case we need to take into account the error caused by the subtraction:
\begin{equation*}
\arctan\,x=\pm\frac{\pi}{2}-\arctan\,\frac{1}{x}
\end{equation*}
\end{enumerate}
\subsubsection{Implementation defaults}
\begin{enumerate}
\item The computation is quite slow, this should be improved.
\item The precision should be decreased after the operation $s_i-A_i$. And several other improvement should be done.
\end{enumerate}
\subsection{The Euclidean distance function}
The \texttt{mpfr\_hypot} function implements the Euclidean distance function:
\[
\textnormal{hypot} (x,y) = \sqrt{x^2+y^2}.
\]
If one of the variables is zero, then hypot is computed using the absolute
value of the other variable. Assume that $0 < y \leq x$. Using the first
degree Taylor polynomial, we have:
\[
0 < \sqrt{x^2+y^2}-x < \frac{y^2}{2x}.
\]
Let $p_x$, $p_y$ be the precisions of the input variables $x$ and $y$
respectively, $p_z$ the output precision and $z=\circ_{p_z}(\sqrt{x^2+y^2})$
the expected result. Let us assume, as it is the case in MPFR, that
the minimal and maximal acceptable exponents (respectively $e_{min}$
and $e_{max}$) satisfy $2 < e_{max}$ and $e_{max} = -e_{min}$.
When rounding to nearest, if $p_x \leq p_z$ and $\frac{p_z+1}{2} < \Exp(x) -
\Exp(y)$, we have $\frac{y^2}{2x} < \frac{1}{2}\ulp_{p_z}(x)$; if $p_z <
p_x$, the condition $\frac{p_x+1}{2} < \Exp(x) - \Exp(y)$ ensures that
$\frac{y^2}{2x} < \frac{1}{2} \ulp_{p_x}(x)$. In both cases, these
inequalities show that $z=\N_{p_z}(x)$, except that tie case is rounded
toward plus infinity since hypot($x$,$y$) is strictly greater than $x$.
With the other rounding modes, the conditions $p_z/2 < \Exp(x) - \Exp(y)$
if $p_x \leq p_z$, and $p_x/2 < \Exp(x) - \Exp(y)$ if $p_z < p_x$ mean in
a similar way that $z=\circ_{p_z}(x)$, except that we need to add one ulp
to the result when rounding toward plus infinity and $x$ is exactly
representable with $p_z$ bits of precision.
When none of the above conditions are satisfied, we use the following
algorithm, whose precision is guaranteed when
$\Exp(x) - \Exp(y) \leq e_{max} - 1$:
\begin{quote}
Algorithm {\tt hypot\_1}\\
Input: $x$ and $y$ with $|y| \leq |x|$,
$p$ the working precision with $p \geq p_z$.\\
Output: $\sqrt{x^2+y^2}$ with $\left\{
\begin{array}{l}
p-4 \textnormal{ bits of precision if } p < \max(p_x, p_y),\\
p-2 \textnormal{ bits of precision if } p \geq \max(p_x, p_y).
\end{array}\right.$\\
$s \leftarrow \lfloor (e_{max}-1)/2 \rfloor - \Exp(x)$\\
$x_s \leftarrow \Z(x\times 2^s)$\\
$y_s \leftarrow \Z(y\times 2^s)$\\
$u \leftarrow \Z(x_s^2)$\\
$v \leftarrow \Z(y_s^2)$\\
$w \leftarrow \Z(u+v)$\\
$t \leftarrow \Z(\sqrt{w})$\\
$z \leftarrow \Z(t/2^s)$
\end{quote}
In order to avoid undue overflow during computation, we shift inputs'
exponents by $s = \lfloor\frac{e_{max}-1}{2}\rfloor - \Exp(x)$ before
computing squares and shift back the output's exponent by $-s$ using the fact
that $\sqrt{(x.2^s)^2+(y.2^s)^2}/2^s = \sqrt{x^2+y^2}$. We show below that
overflow cannot occur, and underflow cannot occur either when
$\Exp(x) - \Exp(y) \leq e_{max} - 1$.
We check first that the exponent shift does not cause overflow and, in the
same time, that the squares of the shifted inputs never overflow.
For $x$, we have $\Exp(x) + s = \lfloor (e_{max}-1)/2 \rfloor$, so
$\Exp(x_s^2) \leq e_{max} - 1$ and neither $x_s$ nor $x_s^2$ overflows.
Therefore we have: $\Z(x_s^2) \leq x_s^2 < 2^{e_{max} - 1}$.
For $y$, note that we have $y_s \leq x_s$ because $y \leq x$, thus $y_s$
and $y_s^2$ do not overflow.
Secondly, let us see that the exponent shift does not cause underflow. For
$x$, we know that $0 \leq \Exp(x) + s$, thus neither $x_s$ nor $x_s^2$
underflows. For $y$, the condition $\Exp(x) - \Exp(y) \leq e_{max} - 1$
implies that $\lfloor(e_{max}-1)/2\rfloor - s - \Exp(y) \leq e_{max} - 1$,
and since $e_{max}/2-1 \leq \lfloor(e_{max}-1)/2\rfloor$, we deduce
$e_{min}/2 = -e_{max}/2 \leq \Exp(y) + s$, which shows that $y_s$ and
its square do not underflow (even when taking the rounding into account
since the scaling is exact).
Thirdly, the addition does not overflow because $u + v < 2 x_s^2$ and it was
shown above that $\Z(x_s^2) < 2^{e_{max} - 1}$. It cannot underflow because
both operands are positive.
Fourthly, as $x_s < t$, the square root does not underflow. Due to the
exponent shift, we have $1 \leq x_s$, then $w$ is greater than 1 and thus
greater than its square root $t$, so the square root does overflow.
Finally, let us show that the back shift raises neither underflow nor overflow
unless the exact result is greater than or equal to $2^{e_{max}}$. Because no
underflow has occurred so far $\Exp(x) \leq \Exp(t) - s$ which shows that it
does not underflow. And all roundings being toward zero, we have $z \leq
\sqrt{x^2 + y^2}$, so if $2^{e_{max}} \leq z$, then the exact value is also
greater than or equal to $2^{e_{max}}$.
Let us analyse now the error of the algorithm hypot\_1:\\
\begin{tabular}{l p{2em} l c r | r}
& & & & $p < \min(p_x, p_y)$ & $\max(p_x, p_y) \leq p$\\
$x_s \leftarrow \Z(x\times 2^s)$ & & $\error(x_s)$ & $\leq$ &
1 $\ulp(x_s)$ &
exact\\
$y_s \leftarrow \Z(y\times 2^s)$ & & $\error(y_s)$ & $\leq$ &
1 $\ulp(y_s)$ &
exact\\
$u \leftarrow \Z(x_s^2)$ & & $\error(u)$ & $\leq$ &
6 $\ulp(u)$ &
1 $\ulp(u)$\\
$v \leftarrow \Z(y_s^2)$ & & $\error(v)$ & $\leq$ &
6 $\ulp(v)$ &
1 $\ulp(v)$\\
$w \leftarrow \Z(u+v)$ & & $\error(w)$ & $\leq$ &
13 $\ulp(w)$ &
3 $\ulp(w)$\\
$t \leftarrow \Z(\sqrt{w})$ & & $\error(t)$ & $\leq$ &
14 $\ulp(t)$ &
4 $\ulp(t)$\\
$z \leftarrow \Z(t/2^s)$& & exact.\\
\end{tabular}\\
And in the intermediate case, if $\min(p_x,p_y) \leq p < \max(p_x,p_y)$, we
have\\
\begin{tabular}{l p{2em} l c r l}
$w \leftarrow \Z(u+v)$ & &
$\error(w)$ & $\leq$ & 8 $\ulp(w)$\\
$t \leftarrow \Z(\sqrt{w})$ & &
$\error(t)$ & $\leq$ & 9 $\ulp(t)$.\\
\end{tabular}\\
Thus, 2 bits of precision are lost when $\max(p_x, p_y) \leq p$ and 4 bits
when $p$ does not satisfy this relation.
\subsection{The floating multiply-add function}
The {\tt mpfr\_fma} ($\n{fma}(x,y,z)$) function implements the floating multiply-add function as :
\[
\textnormal{fma} (x,y,z) = z + x \times y.
\]
The algorithm used for this calculation is as follows:
\begin{eqnarray}\nonumber
u&\leftarrow&\circ(x \times y)\\\nonumber
v&\leftarrow&\circ(z + u)\\\nonumber
\end{eqnarray}
Now, we have to bound the rounding error for each step of this
algorithm.
\begin{center}
\begin{tabular}{l l l}
\begin{minipage}{2.5cm}
${\textnormal{error}}(u)$
$u \leftarrow \circ(x \times y)$
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
|u-(xy)| &\leq& ulp(u)\\\nonumber
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
{\hspace{7cm}}
\end{minipage}\\%\hline
\begin{minipage}{2.5cm}
${\textnormal{error}}(v)$
$v \leftarrow \circ(z+u) $
\end{minipage} &
\begin{minipage}{8.5cm}
\begin{eqnarray}\nonumber
|v-(z+xy)| &\leq& \ulp(v) + |(z+u) - (z+xy)|\\\nonumber
&\leq& (1+2^{e_u-e_v})\ulp(v)\;\;(\star)\\\nonumber
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
$(\star)$
see subsection \ref{generic:sous}
\end{minipage}
\end{tabular}
\end{center}
That shows the rounding error on the calculation of $\n{fma}(x,y,z)$ can be
bound by $(1+2^{e_u-e_v}) \ulp$ on the result. So, to calculate the size of
intermediary variables, we have to add, at least, $\lceil \log_2 (1+2^{e_u-e_v})\rceil$ bits the wanted precision.
\subsection{The expm1 function}
The {\tt mpfr\_expm1} ($\n{expm1}(x)$) function implements the expm1 function as :
\[
\textnormal{expm1} (x) = e^x -1.
\]
The algorithm used for this calculation is as follows:
\begin{eqnarray}\nonumber
u&\leftarrow&\circ(e^x)\\\nonumber
v&\leftarrow&\circ(u-1)\\\nonumber
\end{eqnarray}
Now, we have to bound the rounding error for each step of this
algorithm.
\begin{center}
\begin{tabular}{l l l}
\begin{minipage}{2.5cm}
${\textnormal{error}}(u)$
$u \leftarrow \circ(e^x)$
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
|u-e^x| &\leq& ulp(u)\\\nonumber
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
{\hspace{7cm}}
\end{minipage}\\%\hline
\begin{minipage}{2.5cm}
${\textnormal{error}}(v)$
$v \leftarrow \circ(u-1) $
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
|v-(e^x-1)| &\leq& (1+2^{e_u-e_v})\ulp(v)\;\;(\star)
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
($\star$)
see subsection \ref{generic:sous}
\end{minipage}
\end{tabular}
\end{center}
That shows the rounding error on the calculation of $\n{expm1}(x)$ can be
bound by $(1+2^{e_u-e_v}) \ulp$ on the result. So, to calculate the size of
intermediary variables, we have to add, at least, $\lceil \log_2 (1+2^{e_u-e_v})\rceil$ bits the wanted precision.
\subsection{The log1p function}
The {\tt mpfr\_log1p} function implements the log1p function as:
\[
\textnormal{log1p} (x) = \log(1+x).
\]
We could use the argument reduction
\[ \textnormal{log1p}(x) = 2 \textnormal{log1p}\left(\frac{x}{1+\sqrt{1+x}}
\right), \]
which reduces $x$ to about $\sqrt{x}$ when $x \gg 1$, and in any case to
less than $x/2$ when $x > 0$.
However, if $1+x$ can be computed exactly with the target precision,
then it is more efficient to directly call the logarithm,
which has its own argument reduction.
If $1+x$ cannot be computed exactly, this implies that $x$ is either
very small, in which case no argument reduction is needed,
or very large, in which case $\textnormal{log1p}(x) \approx \log x$.
The algorithm used for this calculation is as follows (with rounding to
nearest):
\begin{eqnarray}\nonumber
v&\leftarrow&\circ(1+x)\\\nonumber
w&\leftarrow&\circ(\log v)\\\nonumber
\end{eqnarray}
Now, we have to bound the rounding error for each step of this
algorithm.
\begin{center}
\begin{tabular}{l l l}
\begin{minipage}{2.5cm}
${\textnormal{error}}(v)$
$v \leftarrow \circ(1+x) $
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
|v-(1+x)| &\leq& \frac{1}{2}\ulp(v)
\end{eqnarray}
\end{minipage} & \\%\hline
\begin{minipage}{2.5cm}
${\textnormal{error}}(w)$
$w \leftarrow \circ(\log v) $
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
|w-\log(1+x)| &\leq& (\frac{1}{2}+2^{1-e_w}) \ulp(w)
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
($\star$)
see subsection \ref{generic:log}
\end{minipage}
\end{tabular}
\end{center}
The $2^{1-e_w}$ factor in the error reflects the possible loss of accuracy
in $1+x$ when $x$ is small.
Note that if $v = \circ(1+x)$ is exact, then the error bound simplifies to
$2^{1-e_w} \ulp(w)$, i.e., $2^{1-p}$, where $p$ is the working precision.
\subsection{The log2 or log10 function}
The {\tt mpfr\_log2} or {\tt mpfr\_log10} function implements the log in base 2 or 10 function as :
\[
\textnormal{log2} (x) = \frac{\log{x}}{\log{2}}
\]
or
\[
\textnormal{log10} (x) = \frac{\log{x}}{\log{10}}.
\]
The algorithm used for this calculation is the same for $\n{log2}$ or
$\n{log10}$ and is described as follows for $t=2 \n{ or } 10$:
\begin{eqnarray}\nonumber
u&\leftarrow&\circ(\log(x))\\\nonumber
v&\leftarrow&\circ(\log(t))\\\nonumber
w&\leftarrow&\circ(\frac{u}{v})\\\nonumber
\end{eqnarray}
Now, we have to bound the rounding error for each step of this
algorithm with $x \geq 0$ and $y$ is a floating number.
\begin{center}
\begin{tabular}{l l l}
\begin{minipage}{2.5cm}
${\textnormal{error}}(u)$
$u \leftarrow \pinf(\log(x))$
$(\bullet)$
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
|u-\log(x)| &\leq& \ulp(u)
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
\end{minipage}\\%\hline
\begin{minipage}{2.5cm}
${\textnormal{error}}(v)$
$v \leftarrow \minf(\log{t}) $
$(\bullet\bullet)$
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
|v-{\log t}| &\leq& \ulp(v)
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
\end{minipage}\\%\hline
\begin{minipage}{2.5cm}
${\textnormal{error}}(w)$
$w \leftarrow \circ(\frac{u}{v}) $
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
|v-(\frac{\log x}{\log t})| &\leq& 5 \ulp(w) \;\;(\star)
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
($\star$)
see subsection \ref{generic:div}
\end{minipage}
\end{tabular}
\end{center}
That shows the rounding error on the calculation of log2 or
log10 can be bound by $5 \ulp$ on the result. So, to calculate the
size of intermediary variables, we have to add, at least, 3 bits the
wanted precision.
\subsection{The power function}
The {\tt mpfr\_pow} function implements the power function as:
\[
\textnormal{pow} (x,y) = e^{y \log(x)}.
\]
The algorithm used for this calculation is as follows:
\begin{eqnarray}\nonumber
u&\leftarrow&\circ(\log(x))\\\nonumber
v&\leftarrow&\circ(y u)\\\nonumber
w&\leftarrow&\circ(e^v)\\\nonumber
\end{eqnarray}
Now, we have to bound the rounding error for each step of this
algorithm with $x \geq 0$ and $y$ is a floating number.
\begin{center}
\begin{tabular}{l l l}
\begin{minipage}{2.5cm}
${\textnormal{error}}(u)$
$u \leftarrow \circ(\log(x))$
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
|u-\log(x)| &\leq& \ulp(u)\;\;\star
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
\end{minipage}\\%\hline
\begin{minipage}{2.5cm}
${\textnormal{error}}(v)$
$v \leftarrow \pinf(y \times u) $
($\bullet$)
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
|v-y\log(x)| &\leq& \ulp(v) + |y u-y \log(x)|\\\nonumber
&\leq& \ulp(v) + y|u-\log(x)|\\\nonumber
&\leq& \ulp(v) + y \ulp(u)\\\nonumber
&\leq& \ulp(v) + 2 \ulp(yu) \;(\star)\\\nonumber
&\leq& 3 \ulp(v) \;(\star\star)
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
($\star$)
with \U{R4}
($\star$)
with \U{R8}
\end{minipage}\\%\hline
\begin{minipage}{2.5cm}
${\textnormal{error}}(w)$
$w \leftarrow \circ(e^v) $
\end{minipage} &
\begin{minipage}{7.5cm}
\begin{eqnarray}\nonumber
|w-e^v| &\leq& (1+3 \cdot 2^{\Exp(v)+1}) \ulp(w)
\end{eqnarray}
\end{minipage} &
\begin{minipage}{6cm}
($\star$)
see subsection \ref{generic:exp}
with $c_u^* = 1$ for $(\bullet)$
\end{minipage}
\end{tabular}
\end{center}
That shows the rounding error on the calculation of $x^y$
can be bound by $1 + 3 \cdot 2^{\Exp(v)+1}$ ulps on the result. So,
to calculate the size of intermediary variables, we have to add, at
least, $\lceil \log_2 (1+3 \cdot 2^{\Exp(v)+1}) \rceil$ bits to the wanted
precision.
\noindent
\textsc{Exact results.}
We have to detect cases where $x^y$ is exact, otherwise the program will
loop forever.
The theorem from Gelfond/Schneider (1934) states that if $\alpha$ and
$\beta$ are algebraic numbers with $\alpha \neq 0$, $\alpha \neq 1$,
and $\beta \notin \Q$, then $\alpha^{\beta}$ is transcendental.
This is of little help for us since $\beta$ will always be a rational
number.
Let $x = a 2^b$, $y = c 2^d$, and assume $x^y = e 2^f$, where
$a, b, c, d, e, f$ are integers.
Without loss of generality, we can assume $a, c, e$ odd integers.
If $x$ is negative: either $y$ is integer, then $x^y$ is exact if and only if
$(-x)^y$ is exact; or $y$ is rational, then $x^y$ is a complex number,
and the answer is NaN (Not a Number).
Thus we can assume $a$ (and therefore $e$) positive.
If $y$ is negative, then $x^y = a^y 2^{b y}$ can be exact only when
$a=1$, and in that case we also need that $b y$ is an integer.
We have $a^{c 2^d} 2^{b c 2^d} = e 2^f$ with $a, c, e$ odd integers,
and $a, e > 0$.
As $a$ is an odd integer, necessarily we have $a^{c 2^d} = e$
and $2^{b c 2^d} = 2^f$, thus $b c 2^d = f$.
If $d \geq 0$, then $a^c$ must be an integer: this is true if $c \geq 0$,
and false for $c < 0$ since $a^{c 2^d} = \frac{1}{a^{-c 2^d}} < 1$ cannot be an
integer. In addition $a^{c 2^d}$ must be representable in the given precision.
Assume now $d < 0$,
then $a^{c 2^d} = {a^c}^{1/2^{d'}}$ with $d'=-d$, thus
we have $a^c = e^{2^{d'}}$, thus $a^c$ must be a $2^{d'}$-th power
of an integer.
Since $c$ is odd, $a$ itself must be a $2^{d'}$-th power.
We therefore propose the following algorithm:
\begin{quote}
Algorithm CheckExactPower. \\
Input: $x=a 2^b$, $y=c 2^d$, $a, c$ odd integers \\
Output: \emph{true} if $x^y$ is an exact power $e 2^f$, \emph{false} otherwise\\
{\bf if} $x < 0$ {\bf then} \\
\q {\bf if} $y$ is an integer {\bf then} return ${\rm CheckExactPower}(-x,y)$\\
\q {\bf else} return \emph{false} \\
{\bf if} $y < 0$ {\bf then} \\
\q {\bf if} $a=1$ {\bf then} return \emph{true} {\bf else} return \emph{false}\\
{\bf if} $d < 0$ {\bf then} \\
\q {\bf if} $a 2^b$ is not a $2^{-d}$ power {\bf then} return \emph{false} \\
return \emph{true}
\end{quote}
Detecting if the result is exactly representable is not enough, since it
may be exact, but with a precision larger than the target precision.
Thus we propose the following: modify Algorithm CheckExactPower so that
it returns an upper bound $p$ for the number of significant bits
of $x^y$ when it is exactly representable, i.e.\ $x^y = m \cdot 2^e$
with $|m| < 2^p$. Then if the relative error on the approximation of
$x^y$ is less than $\frac{1}{2}$ ulp, then rounding it to nearest will give
$x^y$.
\subsection{The integer power}
The integer power \texttt{mpfr\_pow\_ui} is computed as follows.
We compute an approximation of $x^n$ by binary exponentiation.
The error analysis for binary exponentiation is the same as if we did
naive exponentiation, computing $x^2, x^3, ..., x^{n-1}, x^n$ with $n-1$
successive multiplications, and Lemma~\ref{rel_ulp} gives the error bound.
\subsection{The real cube root}
The \texttt{mpfr\_cbrt} function computes the real cube root of $x$.
Since for $x<0$, we have $\sqrt[3]{x} = - \sqrt[3]{-x}$, we can focus
on $x > 0$.
Let $n$ be the number of wanted bits of the result.
We write $x = m \cdot 2^{3e}$ where $m$ is a positive integer
with $m \geq 2^{3n-3}$.
Then we compute the integer cubic root of $m$: let $m=s^3+r$ with
$0 \leq r$ and $m < (s+1)^3$.
Let $k$ be the number of bits of $s$: since $m \geq 2^{3n-3}$,
we have $s \geq 2^{n-1}$ thus $k \geq n$.
If $k > n$, we replace $s$ by $\lfloor s 2^{n-k} \rfloor$,
$e$ by $e+(k-n)$,
and update $r$ accordingly so that $x = (s^3+r) 2^{3e}$ still holds
(be careful that $r$ may no longer be an integer in that case).
Then the correct rounding of $\sqrt[3]{x}$ is:
\begin{eqnarray*}
s 2^e && \mbox{if $r=0$ or round down or round nearest and
$r < \frac{3}{2} s^2 +\frac{3}{4}s+ \frac{1}{8}$,} \\
(s+1) 2^e && \mbox{otherwise}.
\end{eqnarray*}
Note: for rounding to nearest, one may consider $m \geq 2^{3n}$ instead of
$m \geq 2^{3n-3}$, i.e.\ taking $n+1$ instead of $n$.
In that case, there is no need to compare the remainder $r$ to
$\frac{3}{2} s^2 +\frac{3}{4}s+ \frac{1}{8}$: we just need to know
whether $r=0$ or not.
The even rounding rule is needed only when the input $x$ has at least
$3n+1$ bits, since the cube of a odd number of $n+1$ bits has at least
$3n+1$ bits.
\subsection{The $k$-th root}
The $k$-th root \texttt{mpfr\_root}
of $x > 0$ is computed as follows. First write
$x = m \cdot 2^e$ with $m$ and $e$ integers, $e$ multiple of $k$.
If $m < 2^{k(p-1)}$, where $p$ is the target precision --- plus $1$ for
rounding to nearest ---, we multiply
$m$ by $2^{k t}$ for some integer $t > 0$ and subtract $k t$ from $e$ such that
$2^{k(p-1)} \leq m \cdot 2^{k t} < 2^{kp}$, i.e., the integer square root of
$m \cdot 2^{k t}$ has exactly $p$ bits.
We thus now have $x = m \cdot 2^e$ where $2^{k(p-1)} \leq m$ and $e$
multiple of $k$. We then call the \texttt{mpz\_root} function from GMP,
which computes $s$ such that $s^k \leq m < (s+1)^k$, and tells us if the
left equality holds or not (this gives the round bit for directed rounding,
and the sticky bit for rounding to nearest, in which case the round bit is the
least significant bit of $s$). If $s$ has more than $p$ bits, the round and
sticky bits can both be determined from the low bits of $s$.
Note: this algorithm is inefficient since it deals with intermediate values of
$O(k p)$ bits.
\subsection{The exponential integral}
The exponential integral \verb|mpfr_eint| is defined as in
\cite[formula 5.1.10]{AbSt73}: for $x > 0$,
\[ {\rm Ei}(x) = \gamma + \log x + \sum_{k=1}^{\infty} \frac{x^k}{k \, k!}, \]
and for $x < 0$ it gives NaN.
We use the following integer-based algorithm to evaluate
$\sum_{k=1}^{\infty} \frac{x^k}{k \, k!}$, using working precision $w$.
For any real $v$, we denote by ${\rm trunc}(v)$ the nearest integer
toward zero.
\begin{quote}
Decompose $x$ into $m\cdot2^e$ with $m$ integer [exact] \\
If necessary, truncate $m$ to $w$ bits and adjust $e$ \\
$s \leftarrow 0$ \\ % sum
$t \leftarrow 2^w$ \\ % current term x^k/k!
for $k := 1$ do \\
\q $t \leftarrow {\rm trunc}(t m 2^e/k)$ \\
\q $u \leftarrow {\rm trunc}(t/k)$ \\
\q $s \leftarrow s + u$ \\
Return $s \cdot 2^{-w}$.
\end{quote}
Note: in $t \leftarrow {\rm trunc}(t m 2^e/k)$,
we first compute $tm$ exactly, then if $e$ is negative,
we first divide by $2^{-e}$ and
truncate, then divide by $k$ and truncate; this gives the same answer than
dividing once by $k 2^{-e}$, but it is more efficient.
Let $\epsilon_k$ be the absolute difference between $t$ and
$2^w x^k/k!$ at step $k$.
We have $\epsilon_0=0$, and $\epsilon_k \leq 1 + \epsilon_{k-1} m 2^e/k
+ t_{k-1} m 2^{e+1-w}/k$, since the error when approximating $x$ by
$m 2^e$ is less than $m 2^{e+1-w}$.
Similarly, the absolute error on $u$ at step $k$ is at most
$\nu_k \leq 1 + \epsilon_k/k$,
and that on $s$ at most $\tau_k \leq \tau_{k-1} + \nu_k$.
We compute all these errors dynamically (using MPFR with a small precision),
and we stop when $|t|$ is smaller than the bound $\tau_k$
on the error on $s$ made so far.
At that time, the truncation error when neglecting terms of index $k+1$
to $\infty$ can be bounded by $(|t| + \epsilon_k)/k (|x|/k + |x|^2/k^2 +
\cdots) \leq (|t| + \epsilon_k) |x|/k/(k-|x|)$.
\paragraph{Asymptotic Expansion}
For $x \rightarrow \infty$ we have the following non-converging
expansion \cite[formula 5.1.51]{AbSt73}:
\[ {\rm Ei}(x) \sim e^x (\frac{1}{x} + \frac{1}{x^2} + \frac{2}{x^3}
+ \frac{6}{x^4} + \frac{24}{x^5} + \cdots). \]
The $k$th is of the form $k! x^{-k-1}$. The smallest value is obtained for
$k \approx x$, and is of the order of $e^{-x}$. Thus assuming the error
term is bounded by the first neglected term, we can use that expansion
as long as $e^{-x} \leq 2^{-p}$ where $p$ is the target precision,
i.e.~when $x \geq p \log 2$.
\subsection{The gamma function}
% See http://oldmill.uchicago.edu/~wilder/Code/gamma
The gamma function is computed by Spouge's method \cite{Spouge94}:
\[
\Gamma(z+1) \approx (z+a)^{z+1/2} e^{-z-a} \left[ \sqrt{2 \pi} +
\sum_{k=1}^{\lceil a \rceil - 1} \frac{c_k(a)}{z+k} \right], \]
which is valid for $\Re(z+a) > 0$, where
\[ c_k(a) = \frac{(-1)^{k-1}}{(k-1)!} (a-k)^{k-1/2} e^{a-k}. \]
Here, we choose the free parameter $a$ to be an integer.
According to \cite[Section 2.6]{Pugh04}, the relative error is bounded by
$a^{-1/2} (2\pi)^{-a-1/2}$ for $a \ge 3$ and $\Re(z) \ge 0$.
See also \cite{Smith01}.
\subsection{The Riemann Zeta function}
The algorithm for the Riemann Zeta function is due to Jean-Luc R\'emy
and Sapphorain P\'etermann \cite{PeRe06,PeRe07}. For $s < 1/2$ we use the
functional equation
\[ \zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s)
\zeta(1-s). \]
For $s \geq 1/2$ we use the Euler-MacLaurin summation formula, applied
to the real function $f(x) = x^{-s}$ for $s > 1$:
\[ \zeta(s) = \sum_{k=1}^{N-1} \frac{1}{k^s} + \frac{1}{2N^s}
+ \frac{1}{(s-1)N^{s-1}} + \sum_{k=1}^p \frac{B_{2k}}{2k}
{s+2k-2 \choose 2k-1} \frac{1}{N^{s+2k-1}} + R_{N,p}(s), \]
with $|R_{N,p}(s)| < 2^{-d}$, where $B_k$ denotes the $k$th Bernoulli
number,
\[ p = {\rm max}\left( 0, \lceil \frac{d \log 2 + 0.61 + s \log(2\pi/s)}{2}
\rceil \right), \]
and $N = \lceil 2^{(d-1)/s} \rceil$ if $p=0$,
$N = \lceil \frac{s+2p-1}{2\pi} \rceil$ if $p > 0$.
This computation is split into three parts:
\[ A = \sum_{k=1}^{N-1} k^{-s} + \frac{1}{2} N^{-s}, \]
\[ B = \sum_{k=1}^p T_k = N^{-1-s} s \sum_{k=1}^p C_k \Pi_k N^{-2k+2}, \]
\[ C = \frac{N^{-s+1}}{s-1}, \]
where $C_k = \frac{B_{2k}}{(2k)!}$, $\Pi_k = \prod_{j=1}^{2k-2} (s+j)$,
and $T_k = N^{1-2k-s} C_k \Pi_k$.
R\'emy and P\'etermann proved the following result:
\begin{theorem}
Let $d$ be the target precision so that $|R_{N,p}(s)| < 2^{-d}$.
Assume $\Pi = d - 2 \geq 11$, i.e.\ $d \geq 13$. If the internal precisions
for computing $A$, $B$, $C$ satisfy respectively
\[ D_A \geq \Pi + \lceil \frac{3}{2} \frac{\log N}{\log 2} \rceil + 5, \quad
D_B \geq \Pi + 14, \quad
D_C \geq \Pi + \lceil \frac{1}{2} \frac{\log N}{\log 2} \rceil + 7, \]
then the relative round-off error is bounded by $2^{-\Pi}$, i.e.\ if $z$ is
the approximation computed, we have
\[ |\zeta(s) - z| \leq 2^{-\Pi} |\zeta(s)|. \]
\end{theorem}
\subsubsection{The integer argument case.}
In case of an integer argument $s \geq 2$,
the \texttt{mpfr\_zeta\_ui} function computes
$\zeta(s)$ using the following formula from \cite{Borwein95}:
\[ \zeta(s) = \frac{1}{d_n (1-2^{1-s})} \sum_{k=0}^{n-1} \frac{(-1)^k
(d_n - d_k)}{(k+1)^s} + \gamma_n(s), \]
where
\[ |\gamma_n(s)| \leq \frac{3}{(3+\sqrt{8})^n} \frac{1}{1-2^{1-s}}
\quad \mbox{and} \quad
d_k = n \sum_{i=0}^k \frac{(n+i-1)! 4^i}{(n-i)! (2i)!}. \]
It can be checked that the $d_k$ are integers, and we compute them exactly,
\begin{comment}
d(n,k) =
{ n * sum(i=0,k,(n+i-1)!*4^i/(n-i)!/(2*i)!) }
a=log(2)/log(3+sqrt(8))
for (p=2,1000,n=ceil(a*p);if(d(n,n)<2^(p-1),\error(p)))
\end{comment}
like the denominators $(k+1)^s$.
We compute the integer
\[ S =
\sum_{k=0}^{n-1} (-1)^k \lfloor \frac{d_n - d_k}{(k+1)^s}
\rfloor. \]
The absolute error on $S$ is at most $n$. We then perform the following
iteration (still with integers):
\begin{quote}
$T \leftarrow S$ \\
\textbf{do} \\
\q $T \leftarrow \lfloor T 2^{1-s} \rfloor$ \\
\q $S = S + T$ \\
\textbf{while} $T \neq 0$.
\end{quote}
Since $\frac{1}{1-2^{1-s}} = 1 + 2^{1-s} + 2^{2(1-s)} + \cdots$, and
at iteration $i$ we have $T = \lfloor S 2^{i(1-s)} \rfloor$,
the error on $S$ after this loop is bounded by $n+l+1$,
where $l$ is the number of loops.
Finally we compute $q = \lfloor \frac{2^p S}{d_n} \rfloor$,
where $p$ is the working precision,
and we convert $q$ to a $p$-bit floating-point value,
with rounding to nearest, and divide by $2^p$ (this last operation is
exact).
The final error in ulps is bounded by $1 + 2^{\mu} (n+l+2)$.
Since $S/d_n$ approximates $\zeta(s)$, it is larger than one, thus
$q \geq 2^p$, and the error on the division is less that
$\frac{1}{2}\ulp_p(q)$. The error on $S$ itself is bounded by $(n+l+1)/d_n
\leq (n+l+1) 2^{1-p}$ --- see the conjecture below.
Since $2^{1-p} \leq \ulp_p(q)$, and taking into account the error when
converting the integer $q$ (which may have more than $p$ bits),
and the mathematical error which is bounded by $\frac{3}{(3+\sqrt{8})^n}
\leq \frac{3}{2^p}$, the total error is bounded by $n+l+4$ ulps.
\paragraph{Analysis of the sizes.}
To get an accuracy of around $p$ bits, since $\zeta(s) \geq 1$, it suffices
to have $|\gamma_n(s)| \leq 2^{-p}$, i.e.\ $(3+\sqrt{8})^n \ge 2^p$,
thus $n \ge \alpha p$ with $\alpha = \frac{\log 2}{\log ((3+\sqrt{8})}
\approx 0.393$.
It can be easily seen that $d_n \geq 4^n$, thus when $n \ge \alpha p$,
$d_n$ has at least $0.786 p$ bits.
In fact, we conjecture $d_n \geq 2^{p-1}$ when $n \geq \alpha p$;
this conjecture was experimentally verified up to $p=1000$.
\paragraph{Large argument case.} When $3^{-s} < 2^{-p}$, then $\zeta(s)
\approx 1 + 2^{-s}$ to a precision of $p$ bits. More precisely, let
$r(s) := \zeta(s) - (1 + 2^{-s}) = 3^{-s} + 4^{-s} + \cdots$.
The function $3^s r(s) = 1 + (3/4)^s + (3/5)^s + \cdots$ decreases with $s$,
thus for $s \geq 2$, $3^s r(s) \leq 3^2 \cdot r(2) < 4$. This yields:
\[ |\zeta(s) - (1 + 2^{-s})| < 4 \cdot 3^{-s}. \]
If the upper bound $4 \cdot 3^{-s}$ is less than $\frac{1}{2} \ulp(1)
= 2^{-p}$, the correct rounding of $\zeta(s)$ is either $1 + 2^{-s}$ for
rounding to zero, $-\infty$ or nearest,
and $1 + 2^{-s} + 2^{1-p}$ for rounding to $+\infty$.
\subsection{The arithmetic-geometric mean}
The arithmetic-geometric mean (AGM for short) of two positive numbers
$a \leq b$ is defined to be the common limits of the sequences
$(a_n)$ and $(b_n)$ defined by $a_0 = a$, $b_0 = b$, and for $n \geq 0$:
\[ a_{n+1} = \sqrt{a_n b_n}, \quad b_{n+1} = \frac{a_n + b_n}{2}. \]
We approximate ${\rm AGM}(a,b)$ as follows, with working precision $p$:
\begin{quote}
$s_1 = \circ(a b)$ \\
$u_1 = \circ(\sqrt{s_1})$ \\
$v_1 = \circ(a + b)/2$ [division by $2$ is exact] \\
% mpfr_cmp2(b,c) returns EXP(max(|b|,|c|)) - EXP(|b| - |c|)
{\bf for} $n:=1$ {\bf while} $\Exp(v_n) - \Exp(v_n-u_n) \leq p-2$ {\bf do} \\
\q $v_{n+1} = \circ(u_n + v_n)/2$ [division by $2$ is exact] \\
\q {\bf if} $\Exp(v_n) - \Exp(v_n-u_n) \leq p/4$ {\bf then} \\
\q \q $s = \circ(u_n v_n)$ \\
\q \q $u_{n+1} = \circ(\sqrt{s})$ \\
\q {\bf else} \\
\q \q $s = \circ(v_n - u_n)$ \\
\q \q $t = \circ(s^2)/16$ [division by $16$ is exact] \\
\q \q $w = \circ(t/v_{n+1})$ \\
\q \q return $r = \circ(v_{n+1}-w)$ \\
\q {\bf endif} \\
\end{quote}
The rationale behind the \textbf{if}-test is the following.
When the relative error between $a_n$ and $b_n$ is less than $2^{-p/4}$,
we can write $a_n = b_n (1+\epsilon)$ with $|\epsilon| \leq 2^{-p/4}$.
The next iteration will compute
$a_{n+1} = \sqrt{a_n b_n} = b_n \sqrt{1+\epsilon}$,
and $b_{n+1} = (a_n+b_n)/2 = b_n (1+\epsilon/2)$.
The second iteration will compute $a_{n+2} = \sqrt{a_{n+1} b_{n+1}}
= b_n \sqrt{\sqrt{1+\epsilon} (1+\epsilon/2)}$,
and $b_{n+2} = (a_{n+1}+b_{n+1})/2
= b_n (\sqrt{1+\epsilon}/2 + 1/2 + \epsilon/4)$.
When $\epsilon$ goes to zero, the following expansions hold:
\begin{eqnarray*}
\sqrt{\sqrt{1+\epsilon} (1+\epsilon/2)} & = & 1 + \frac{1}{2} \epsilon
- \frac{1}{16} \epsilon^2 + \frac{1}{32} \epsilon^3 - \frac{11}{512}
\epsilon^4 + O(\epsilon^5) \\
\sqrt{1+\epsilon}/2 + 1/2 + \epsilon/4 & = & 1 + \frac{1}{2} \epsilon
- \frac{1}{16} \epsilon^2 + \frac{1}{32} \epsilon^3 - \frac{5}{256}
\epsilon^4 + O(\epsilon^5),
\end{eqnarray*}
which shows that $a_{n+2}$ and $b_{n+2}$ agree to $p$ bits.
In the algorithm above, we have $v_{n+1} \approx b_n (1+\epsilon/2)$,
$s = -b_n \epsilon$ [exact thanks to Sterbenz theorem],
then $t \approx \epsilon^2 b_n^2/16$,
and $w \approx (b_n/16) \epsilon^2/(1+\epsilon/2) \approx
b_n (\epsilon^2/16 - \epsilon^3/32)$,
thus $v_{n+1}-w$ gives us an approximation to order $\epsilon^4$.
[Note that $w$ --- and therefore $s, t$ ---
need to be computed to precision $p/2$ only.]
\begin{lemma}
Assuming $u \leq v$ are two $p$-bit floating-point numbers,
then $u' = \circ(\sqrt{\circ(uv)})$ and $v' = \circ(u+v)/2$ satisfy:
\[ u \leq u',v' \leq v. \]
\end{lemma}
\begin{proof}
It is clear that $2u \leq u+v \leq 2v$, and since $2u$ and $2v$ are
representable numbers, $2u \leq \circ(u+v) \leq 2v$, thus
$u \leq v' \leq v$.
The result for $u'$ is more difficult to obtain.
We use the following result: if $x$ is a $p$-bit number,
$s = \circ(x^2)$, and $t = \circ(\sqrt{s})$ are computed with precision $p$
and rounding to nearest, then $t = x$.
Apply this result to $x=u$, and let $s' = \circ(u v)$.
Then $s = \circ(u^2) \leq s'$, thus $u = \circ(\sqrt{s}) \leq \circ(\sqrt{s'})
= u'$. We prove similarly that $u' \leq v$.
\end{proof}
\noindent
\textsl{Remark.} We cannot assume that $u' \leq v'$. Take for example
$u = 9$, $v = 12$, with precision $p=4$.
Then $(u+v)/2$ rounds to $10$, whereas $\sqrt{uv}$ rounds to $112$,
and $\sqrt{112}$ rounds to $11$.
\medskip
We use Higham error analysis method, where $\theta$ denotes a generic value
such that $|\theta| \leq 2^{-p}$.
We note $a_n$ and $b_n$ the exact values we would obtain for $u_n$ and $v_n$
respectively, without round-off errors.
We have $s_1 = ab (1+\theta)$, $u_1 = a_1 (1+\theta)^{3/2}$,
$v_1 = b_1 (1+\theta)$.
Assume we can write $u_n = a_n (1+\theta)^{\alpha}$ and
$v_n = b_n(1+\theta)^{\beta}$ with $\alpha, \beta \leq e_n$.
We thus can take $e_1 = 3/2$.
Then as long as the \textbf{if}-condition is not satisfied,
$v_{n+1} = b_{n+1} (1+\theta)^{e_n+1}$,
and $u_{n+1} = a_{n+1} (1+\theta)^{e_n + 3/2}$,
which proves that $e_n \leq 3n/2$.
When the \textbf{if}-condition is satisfied,
we have $\Exp(v_n-u_n) < \Exp(v_n) - p/4$,
and since exponents are integers,
thus $\Exp(v_n-u_n) \leq \Exp(v_n) - (p+1)/4$,
% 2^{Exp(x)-1} <= x < 2^Exp(x) thus x < 2^Exp(x) <= 2*x
i.e.\ $|v_n-u_n|/v_n < 2^{(3-p)/4}$.
Assume $n \leq 2^{p/4}$, which implies
$3n|\theta|/2 \leq 1$, which since $n \geq 1$ implies in turn $|\theta| \leq
2/3$. Under that hypothesis, $(1+\theta)^{3n/2}$ can be written
$1 + 3n\theta$ (possibly with a different $|\theta| \leq 2^{-p}$ as usual).
Then $|b_n-a_n| = |v_n (1+3n\theta) - u_n (1+3n\theta')|
\leq |v_n-u_n| + 3n |\theta| v_n$.
For $p \geq 4$, $3n |\theta| \leq 3/8$, and $1/(1+x)$ for $|x| \leq 3/8$
can be written $1+5x'/3$ for $x'$ in the same interval. This yields:
\begin{eqnarray*}
\frac{|b_n-a_n|}{b_n}
&=& \frac{|v_n-u_n| + 3n |\theta| v_n}{v_n (1+3n\theta)}
\leq \frac{|v_n-u_n|}{v_n} + 5n|\theta| \frac{|v_n-u_n|}{v_n}
+ \frac{8}{5} (6n\theta) \\
&\leq& \frac{13}{8} \cdot 2^{(3-p)/4} + \frac{48}{5} \cdot 2^{-3p/4}
\leq 5.2 \cdot 2^{-p/4}.
\end{eqnarray*}
Write $a_n = b_n (1+\epsilon)$ with $|\epsilon| \leq 5.2 \cdot 2^{-p/4}$.
We have $a_{n+1} = b_n \sqrt{1+\epsilon}$ and $b_{n+1} = b_n (1+\epsilon/2)$.
Since $\sqrt{1+\epsilon} = 1 + \epsilon/2 - \frac{1}{8} \nu^2$ with
$|\nu| \leq |\epsilon|$, we deduce that
$|b_{n+1} - a_{n+1}| \leq \frac{1}{8} \nu^2 |b_n| \leq 3.38 \cdot 2^{-p/2}b_n$.
After one second iteration, we get similarly
$|b_{n+2} - a_{n+2}| \leq \frac{1}{8} (3.38 \cdot 2^{-p/2})^2 b_n
\leq \frac{3}{2} 2^{-p} b_n$.
Let $q$ be the precision used to evaluate $s$, $t$ and $w$ in the
{\bf else} case.
Since $|v_n - u_n| \leq 2^{(3-p)/4} v_n$, it follows
$|s| \leq 1.8 \cdot 2^{-p/4} v_n$ for $q \geq 4$.
Then $t \leq 0.22 \cdot 2^{-p/2} v_n$.
Finally due to the above Lemma, the difference between $v_{n+1}$ and $v_n$
is less than that between $u_n$ and $v_n$,
i.e.\ $\frac{v_n}{v_{n+1}} \leq \frac{1}{1-2^{(3-p)/4}} \leq 2$ for $p \geq 7$.
We deduce $w \leq 0.22 \cdot 2^{-p/2} \frac{v_n^2}{v_{n+1}} (1+2^{-q})
\leq 0.47 \cdot 2^{-p/2} v_n \leq 0.94 \cdot 2^{-p/2} v_{n+1}$.
The total error is bounded by the sum of four terms:
\begin{itemize}
\item the difference between $a_{n+2}$ and $b_{n+2}$, bounded by
$\frac{3}{2} 2^{-p} b_n$;
\item the difference between $b_{n+2}$ and $v_{n+2}$, if $v_{n+2}$
was computed directly without the final optimization;
since $v_{n+2} = b_{n+2} (1+\theta)^{3(n+2)/2}$,
if $n+2 \leq 2^{p/4}$, similarly as above, $(1+\theta)^{3(n+2)/2}$
can be written $1 + 3(n+2)\theta$, thus this difference is bounded
by $3(n+2) \cdot 2^{-p} b_{n+2} \leq 3(n+2) \cdot 2^{-p} b_n$;
\item the difference between $v_{n+2}$ computed directly, and with
the final optimization. We can assume $v_{n+2}$ is computed
directly in infinite precision, since we already took into account
the rounding errors above. Thus we want to compute the difference
between
\[ \frac{\sqrt{u_n v_n} + \frac{u_n+v_n}{2}}{2} \quad \mbox{and} \quad
\frac{u_n+v_n}{2} - \frac{(v_n-u_n)^2}{8 (u_n+v_n)}. \]
Writing $u_n = v_n (1+\epsilon)$, this simplifies to:
\[ \frac{\sqrt{1+\epsilon} + 1 + \epsilon/2}{2} - \left(
\frac{1+\epsilon/2}{2} - \frac{\epsilon^2}{18 + 8 \epsilon}\right)
= \frac{-1}{256} \epsilon^4 + O(\epsilon^5). \]
For $|\epsilon| \leq 1/2$, the difference is bounded by $\frac{1}{100}
\epsilon^4 v_n \leq \frac{1}{100} 2^{3-p} v_n$.
\item the round-off error on $w$, assuming $u_n$ and $v_n$ are exact;
we can write $s = (v_n - u_n) (1+\theta)$, $t = \frac{1}{16}
(v_n - u_n)^2 (1+\theta)^2$, $w = \frac{(v_n - u_n)^2}{16v_{n+1}}
(1+\theta)^4$. For $q \geq 4$, $(1+\theta)^4$ can be written
$1+5\theta$, thus the round-off error on $w$ is bounded by
$5 \theta w \leq 4.7 \cdot 2^{-p/2-q} v_{n+1}$. For $q \geq p/2$,
this gives a bound of $4.7 \cdot 2^{-p} v_{n+1}$.
\end{itemize}
Since $b_n = v_n (1+3n \theta)$, and we assumed $3n|\theta|/2 \leq 1$,
we have $b_n \leq 3v_n$, thus
the first two errors are less than $(9n+45/2) 2^{-p} v_n$;
together with the third one, this gives a bound of $(9n + 23) 2^{-p} v_n$;
finally since we proved above that $v_n \leq 2v_{n+1}$,
this gives a total bound of $(18n+51) 2^{-p} v_{n+1}$, which is less
than $(18n+51) \ulp(r)$, or twice this in the improbable case where there
is an exponent loss in the final subtraction $r = \circ(v_{n+1}-w)$.
\subsection{The Bessel functions}
\subsubsection{Bessel function $J_n(z)$ of first kind}
The Bessel function $J_n(z)$ of first kind and integer order $n$
is defined as follows \cite[Eq.~(9.1.10)]{AbSt73}:
\begin{equation} \label{Jn_0}
J_n(z) = (z/2)^n \sum_{k=0}^{\infty} \frac{(-z^2/4)^k}{k! (k+n)!}.
\end{equation}
It is real for all real $z$, tends to $0$ by oscillating around $0$ when
$z \rightarrow \pm\infty$, and tends to $0$ when $z \rightarrow 0$, except
$J_0$ which tends to $1$.
We use the following algorithm, with working precision $w$, and rounding
to nearest. Warning! This algorithm assumes that no underflows/overflows
occur.
\begin{quote}
$x \leftarrow \circ(z^n)$ \\
$y \leftarrow \circ(z^2)/4$ [division by $4$ is exact] \\
$u \leftarrow \circ(n!)$ \\
$t \leftarrow \circ(x/u)/2^n$ [division by $2^n$ is exact] \\
$s \leftarrow t$ \\
for $k$ from $1$ do \\
\q $t \leftarrow -\circ(ty)$ \\
\q $t \leftarrow \circ(t/k)$ \\
\q $t \leftarrow \circ(t/(k+n))$ \\
\q $s \leftarrow \circ(s+t)$ \\
\q if $|t| < \ulp(s)$ and $z^2 \leq 2k(k+n)$ then return $s$. \\
\end{quote}
The condition $z^2 \leq 2k(k+n)$ ensures that the next term of the
expansion is smaller than $|t|/2$, thus the sum of the remaining terms
is smaller than $|t| < \ulp(s)$.
Using Higham's method, with $\theta$ denoting a random variable of value
$|\theta| \leq 2^{-w}$ --- different instances of $\theta$ denoting
different values --- we can write $x = z^n (1+\theta)$,
$y = z^2/4 (1+\theta)$,
and before the for-loop $s = t = (z/2)^n/n! (1+\theta)^3$.
Now write $t = (z/2)^n (-z^2/4)^k / (k! (k+n)!) (1+\theta)^{e_k}$ at the end of
the for-loop with index $k$; each loop involves a factor $(1+\theta)^4$,
thus we have $e_k = 4k+3$.
Now let $T$ be an upper bound on the values of $|t|$ and $|s|$ during the
for-loop, and assume we exit at $k=K$.
The roundoff error in the additions
$\circ(s+t)$, including the error in the series
truncation, is bounded by $(K/2+1) \ulp(T)$.
The error in the value of $t$ at step $k$ is bounded by $\epsilon_k :=
T |(1+\theta)^{4k+3}
-1|$; if we assume $(4k+3) 2^{-w} \leq 1/2$, Lemma~\ref{lemma_graillat}
yields $\epsilon_k \leq 2 T (4k+3) 2^{-w}$. Summing from $k=0$ to $K$,
this gives an absolute error bound on $s$ at the end of the for-loop of:
\[ (K/2+1) \ulp(T) + 2 (2K^2+5K+3) 2^{-w} T \leq (4K^2+21/2K+7) \ulp(T), \]
where we used $2^{-w} T \leq \ulp(T)$.
\paragraph{Large index $n$.}
For large index $n$, formula 9.1.62 from \cite{AbSt73} gives
$|J_n(z)| \leq |z/2|^n/n!$.
Together with $n! \geq \sqrt{2 \pi n} (n/e)^n$, which follows from example
from \cite[Eq.~6.1.38]{AbSt73}, this gives:
\[ |J_n(z)| \leq \frac{1}{\sqrt{2 \pi n}} \left( \frac{ze}{2n} \right)^n. \]
\paragraph{Large argument.}
For large argument $z$, formula (\ref{Jn_0}) requires at least
$k \approx z/2$ terms before starting to converge. If $k \leq z/2$, it is
better to use formula 9.2.5 from \cite{AbSt73}, which
provides at least $2$ bits per term:
\[ J_n(z) = \sqrt{\frac{2}{\pi z}} [P(n,z) \cos \chi - Q(n,z) \sin \chi], \]
where $\chi = z - (n/2 + 1/4) \pi$, and $P(n,z)$ and $Q(n,z)$ are two
diverging series:
\begin{small}
\[ P(n,z) \approx \sum_{k=0}^{\infty} (-1)^k \frac{\Gamma(1/2+n+2k) (2z)^{-2k}}
{(2k)! \Gamma(1/2+n-2k)}, \quad
Q(n,z) \approx \sum_{k=0}^{\infty} (-1)^k \frac{\Gamma(1/2+n+2k+1) (2z)^{-2k-1}}
{(2k+1)! \Gamma(1/2+n-2k-1)}. \]
\end{small}
% P:=proc(n,z) add((-1)^k*GAMMA(1/2+n+2*k)/(2*k)!/GAMMA(1/2+n-2*k)/
% (2*z)^(2*k),k=0..4) end:
% Q:=proc(n,z) add((-1)^k*GAMMA(1/2+n+2*k+1)/(2*k+1)!/GAMMA(1/2+n-2*k-1)/
% (2*z)^(2*k+1),k=0..4) end:
% J:=proc(n,z) sqrt(2/Pi/z)*(P(n,z)*cos(z-(n/2+1/4)*Pi)-Q(n,z)*
% sin(z-(n/2+1/4)*Pi)) end:
If $n$ is real and nonnegative --- which is the case here ---,
the remainder of $P(n,z)$ after $k$ terms does not exceed the $(k+1)$th term
and is of the same sign, provided $k > n/2 - 1/4$; the same holds for
$Q(n,z)$ as long as $k > n/2 - 3/4$ \cite[9.2.10]{AbSt73}.
If we first approximate $\chi = z - (n/2 + 1/4) \pi$ with working precision
$w$, and then approximate $\cos \chi$ and $\sin \chi$, there will be a huge
relative error if $z > 2^w$. Instead, we use the fact that for $n$ even,
\[ P(n,z) \cos \chi - Q(n,z) \sin \chi = \frac{1}{\sqrt{2}} (-1)^{n/2}
[P (\sin z + \cos z) + Q (\cos z - \sin z)], \]
and for $n$ odd,
\[ P(n,z) \cos \chi - Q(n,z) \sin \chi = \frac{1}{\sqrt{2}} (-1)^{(n-1)/2}
[P (\sin z - \cos z) + Q (\cos z + \sin z)], \]
where $\cos z$ and $\sin z$ are computed accurately with
\texttt{mpfr\_sin\_cos}, which uses in turn \texttt{mpfr\_remainder}.
If we consider $P(n,z)$ and $Q(n,z)$ together as one single series,
its term of index $k$
behaves like $\Gamma(1/2+n+k)/k!/\Gamma(1/2+n-k)/(2z)^k$.
The ratio between the
term of index $k+1$ and that of index $k$ is about $k/(2z)$, thus starts
to diverge when $k \approx 2z$. At that point, the $k$th term is
$\approx e^{-2z}$, thus if $z > p/2 \log 2$, we can use the asymptotic
expansion.
\subsubsection{Bessel function $Y_n(z)$ of second kind}
Like $J_n(z)$, $Y_n(z)$ is a solution of the linear differential equation:
\[ z^2 y'' + z y' + (z^2-n^2) y = 0. \]
We have $Y_{-n}(z) = (-1)^n Y_n(z)$ according to \cite[Eq.~(9.1.5)]{AbSt73};
we now assume $n \geq 0$.
When $z \rightarrow 0^+$, $Y_n(z)$ tends to $-\infty$; when $z \rightarrow
+\infty$, $Y_n(z)$ tends to $0$ by oscillating around $0$ like $J_n(z)$.
We deduce from \cite[Eq.~(9.23)]{Temme96}:
\[ Y_n(-z) = (-1)^n [Y_n(z) + 2 i J_n(z)], \]
which shows that for $z > 0$, $Y_n(-z)$ is real only when $z$ is a zero of
$J_n(z)$; assuming those zeroes are irrational, $Y_n(z)$ is thus NaN for
$z$ negative.
Formula 9.1.11 from \cite{AbSt73} gives:
\begin{eqnarray*}
Y_n(z) &=& -\frac{(z/2)^{-n}}{\pi} \sum_{k=0}^{n-1} \frac{(n-k-1)!}{k!}
(z^2/4)^k + \frac{2}{\pi} \log(z/2) J_n(z) \\ &-& \frac{(z/2)^n}{\pi}
\sum_{k=0}^{\infty} (\psi(k+1) + \psi(n+k+1)) \frac{(-z^2/4)^k}{k! (n+k)!},
\end{eqnarray*}
where $\psi(1)=-\gamma$, $\gamma$ being Euler's constant (see
\textsection\ref{gamma}), and $\psi(n+1) = \psi(n) + 1/n$ for $n \geq 1$.
Rewriting the above equation, we get
\[ \pi Y_n(z) = -(z/2)^{-n} S_1 + S_2 - (z/2)^n S_3, \]
where $S_1 = \sum_{k=0}^{n-1} \frac{(n-k-1)!}{k!} (z^2/4)^k$ is
a finite sum,
$S_2 = 2 (\log(z/2) + \gamma) J_n(z)$, and
$S_3 = \sum_{k=0}^{\infty} (h_k + h_{n+k}) \frac{(-z^2/4)^k}{k! (n+k)!}$,
where $h_k = 1 + 1/2 + \cdots + 1/k$ is the $k$th harmonic number.
Once we have estimated $-(z/2)^{-n} S_1 + S_2$, we know to which relative
precision we need to estimate the infinite sum $S_3$. For example, if
$(z/2)^n$ is small, typically a small relative precision on $S_3$ will be
enough.
We use the following algorithm to estimate $S_1$, with working precision $w$
and rounding to nearest:
\begin{quote}
$y \leftarrow \circ(z^2)/4$ [division by $4$ is exact] \\
$f \leftarrow 1$ [as an exact integer] \\
$s \leftarrow 1$ \\
for $k$ from $n-1$ downto $0$ do \\
\q $s \leftarrow \circ(y s)$ \\ % \epsilon_{j-1}+2
\q $f \leftarrow (n-k) (k+1) f$ [$n! (n-k)! k!$ as exact integer] \\
\q $s \leftarrow \circ(s + f)$ \\
$f \leftarrow \sqrt{f}$ [integer, exact] \\
$s \leftarrow \circ(s / f)$
\end{quote}
Let $(1+\theta)^{\epsilon_j}-1$ be the maximum relative error on $s$ after
the look for $k=n-j$, $1 \leq j \leq n$, i.e., the computed value is
$s_k (1+\theta)^{\epsilon_j}$ where $s_k$ would be the value computed with
no roundoff error, and $|\theta| \leq 2^{-w}$.
Before the loop we have $\epsilon_0 = 0$. After the instruction
$s \leftarrow \circ(y s)$ the relative error can be written
$(1+\theta)^{\epsilon_{j-1}+2}-1$, since $y = z^2/4 (1+\theta')$ with
$|\theta'| \leq 2^{-w}$, and the product involves another
rounding error. Since $f$ is exact, the absolute error after
$s \leftarrow \circ(s + f)$ can be written $|s_{\rm max}|
|(1+\theta)^{\epsilon_{j-1}+3}-1|$, where $|s_{\rm max}|$ is a bound for all
computed values of $s$ during the loop.
The absolute error at the end of the for-loop can thus be written
$|s_{\rm max}| |(1+\theta)^{3n}-1|$, and $|s_{\rm max}| |(1+\theta)^{3n+1}-1|$
after the instruction $s \leftarrow \circ(s / f)$.
If $(3n+1)2^{-w} \leq 1/2$, then using Lemma~\ref{lemma_graillat},
$|(1+\theta)^{3n+1}-1| \leq 2(3n+1)2^{-w}$.
Let $e$ be the exponent difference between the maximum value of $|s|$ during
the for-loop and the final value of $s$, then the relative error on the final
$s$ is bounded by
\[ (3n+1) 2^{e+1-w}. \]
Assuming we compute $(z/2)^n$ with correct rounding --- using for example the
\texttt{mpfr\_pow\_ui} function --- and divide $S_1$ by this approximation,
the relative error on $(z/2)^{-n} S_1$ will be at most
$(3n+3) 2^{e+1-w}$.
The computation of $S_2$ is easier, still with working precision $w$ and
rounding to nearest:
\begin{quote}
$t \leftarrow \circ(\log(z/2))$ \\
$u \leftarrow \circ(\gamma)$ \\
$v \leftarrow 2 \circ(t + u)$ \qquad [multiplication by $2$ is exact] \\
$x \leftarrow \circ(J_n(z))$ \\
$s \leftarrow \circ(v x)$
\end{quote}
Since $z/2$ is exact, the error on $t$ and $u$ is at most one ulp,
thus from \textsection\ref{generic:sous} the ulp-error on $v$ is at most
$1/2 + 2^{\Exp(t)-\Exp(v)} + 2^{\Exp(u)-\Exp(v)} \leq 1/2 + 2^{e+1}$, where
$e = {\rm max}(\Exp(t), \Exp(u)) - \Exp(v)$. Assuming $e+2 < w$, then
$1/2 + 2^{e+1} \leq 2^{w-1}$, thus the total error on $v$ is bounded by $|v|$,
thus we can take $c^+ = 2$ for $v$ in the product $s \leftarrow \circ(v x)$
(cf \textsection\ref{generic:mul}); similarly $c^+ = 2$ applies to
$x \leftarrow \circ(J_n(z))$, thus \textsection\ref{generic:mul} yields the
following bound for the ulp-error on $s$:
\[ 1/2 + 3 (1/2 + 2^{e+1}) + 3 (1/2) = 7/2 + 3 \cdot 2^{e+1} \leq 2^{e+4}. \]
(Indeed, the smallest possible value of $e$ is $-1$.)
The computation of $S_3$ mimics that of $J_n(z)$. The only difference is that
we have to compute the extra term $h_k + h_{n+k}$, that we maintain as an
exact rational $p/q$, $p$ and $q$ being integers:
\begin{quote}
$x \leftarrow \circ(z^n)$ \\
$y \leftarrow \circ(z^2)/4$ [division by $4$ is exact] \\
$u \leftarrow \circ(n!)$ \\
$t \leftarrow \circ(x/u)/2^n$ [division by $2^n$ is exact] \\
$p/q \leftarrow h_n$ \qquad [exact rational] \\
$u \leftarrow \circ(p t)$ \\
$s \leftarrow \circ(u/q)$ \\
for $k$ from $1$ do \\
\q $t \leftarrow -\circ(ty)$ \\
\q $t \leftarrow \circ(t/k)$ \\
\q $t \leftarrow \circ(t/(k+n))$ \\
\q $p/q \leftarrow p/q + 1/k + 1/(n+k)$ \qquad [exact] \\
\q $u \leftarrow \circ(p t)$ \\
\q $u \leftarrow \circ(u / q)$ \\
\q $s \leftarrow \circ(s+u)$ \\
\q if $|u| < \ulp(s)$ and $z^2 \leq 2k(k+n)$ then return $s$. \\
\end{quote}
Using $(h_{k+1} + h_{n+k+1}) k \leq (h_k + h_{n+k}) (k+1)$, which is true
for $k \geq 1$ and $n \geq 0$,
the condition $z^2 \leq 2k(k+n)$ ensures that the next term
of the expansion is smaller than $|t|/2$, thus the sum of the remaining terms
is smaller than $|t| < \ulp(s)$.
The difference with the error analysis of $J_n$ is that here
$e_k = 6k+5$ instead of $e_k = 4k+3$.
Denote $U$ an upper bound on the
values of $u, s$ during the for-loop --- note that $|u| \geq |t|$ by
construction --- and assume we exit at $k=K$.
The error in the value of $u$ at step $k$ is bounded by
$\epsilon_k := U |(1+\theta)^{6k+5}-1|$;
Assuming $(6k+5) 2^{-w} \leq 1/2$,
Lemma~\ref{lemma_graillat}
yields $\epsilon_k \leq 2 U (6k+5) 2^{-w}$, and the sum from $k=0$ to $K$
gives an absolute error bound on $s$ at the end of the for-loop bounded by:
\[ (K/2+1) \ulp(U) + 2 (3K^2+8K+5) 2^{-w} U \leq (6K^2+33/2K+11) \ulp(U), \]
where we used $2^{-w} U \leq \ulp(U)$.
\subsection{The Dilogarithm function}
The \texttt{mpfr\_li2} function computes the real part of the dilogarithm
function defined by:
\[
\Li2(x) = - \int_0^x \frac{\log(1-t)}{t} dt.
\]
The above relation defines a multivalued function in the complex plane, we
choose a branch so that $\Li2(x)$ is real for $x$ real, $x < 1$ and we compute
only the real part for $x$ real, $x \geq 1$.
When $x \in ]0, \frac{1}{2}]$, we use the series
(see \cite[Eq. (5)]{VoWe05}):
\[
\Li2(x) = \sum_{n=0}^\infty \frac{B_n}{(n+1)!} (-\log(1-x))^{n+1}
\]
where $B_n$ is the $n$-th Bernoulli number.
Otherwise, we perform an argument reduction using the following identities
(see \cite{GiZa75}):
\begin{tabular}{l r c l}
$x \in [2, +\infty[ $&$ \Re(\Li2(x)) $&$=$&$ \frac{\pi^2}{3}
- \frac{1}{2}\log^2(x) - \Li2\left(\frac{1}{x}\right) $\\
$x \in ]1, 2[ $&$ \Re(\Li2(x)) $&$=$&$ \frac{\pi^2}{6}-\log(x)\left[\log(x-1)
- \frac{1}{2} \log(x)\right] + \Li2\left(1 - \frac{1}{x}\right) $\\
&$ \Li2(1) $&$=$&$ \frac{\pi^2}{6} $\\
$x \in \left]\frac{1}{2}, 1\right[ $&$ \Li2(x) $&$=$&$ \frac{\pi^2}{6}
- \log(x) \log(1 - x) - \Li2(1 - x) $\\
&$ \Li2(0) $&$=$&$ 0 $\\
$x \in [-1, 0[ $&$
\Li2(x) $&$=$&$ -\frac{1}{2} \log^2(1-x) - \Li2\left(\frac{x}{x - 1}\right)$\\
$x \in ]-\infty, -1[ $&$ \Li2(x) $&$=$&$ -\frac{\pi^2}{6}
- \frac{1}{2} \log(1 -x) [2 \log(-x) - \log(1 - x)]
+ \Li2\left(\frac{1}{1 - x}\right).$
\end{tabular}
Assume first $0 < x \leq \frac{1}{2}$, the odd Bernoulli numbers being zero
(except $B_1 = -\frac{1}{2}$), we can rewrite $\Li2(x)$ in the form:
\[
\Li2(x) = - \frac{\log^2(1-x)}{4} + S(-\log(1-x))
\]
where
\[
S(z) = \sum_{k=0}^\infty \frac{B_{2k}}{(2k+1)!} z^{2k+1}.
\]
Let $S_N(z) = \sum_{k \leq N} \frac{B_{2k}}{(2k+1)!} z^{2k+1}$ the $N$-th
partial sum, and $R_N(z)$ the truncation error.
The even Bernoulli numbers verify the following inequality
for all $n \geq 1$ (\cite[Inequalities 23.1.15]{AbSt73}):
\[
\frac{2(2n)!}{(2\pi)^{2n}} < \left|B_{2n}\right|
< \frac{2(2n)!}{(2\pi)^{2n}} \left(\frac{1}{1 - 2^{1-2n}}\right),
\]
so we have for all $N \geq 0$
\[
\frac{|B_{2N+2}|}{(2N+3)!}|z|^{2N+3} <
\frac{2|z|}{(1-2^{-2N-1})(2N+3)} \left|\frac{z}{2 \pi}\right|^{2N+2},
\]
showing that $S(z)$ converges for $|z| < 2 \pi$.
As the series is alternating, we then have an upper bound for the truncation
error $|R_N(z)|$ when $0 < z \leq \log 2$:
\[
|R_N(z)| < 2^{\Exp(z)-6N-5}.
\]
The partial sum $S_N(z)$ computation is implemented as follows:
\begin{quote}
Algorithm {\tt li2\_series}\\
Input: $z$ with $z \in ]0, \log2]$\\
Output: $\circ(S(z))$\\
$u \leftarrow \pinf(z^2)$ \\
$v \leftarrow \pinf(z)$ \\
$s \leftarrow \pinf(z)$ \\
\for\ $k$ {\bf from} $1$ {\bf do}\\
\q $v \leftarrow \pinf(u v)$ \\
\q $v \leftarrow \pinf(v / (2k))$\\
\q $v \leftarrow \pinf(v / (2k))$\\
\q $v \leftarrow \pinf(v / (2k+1))$\\
\q $v \leftarrow \pinf(v / (2k+1))$\\
\q $w \leftarrow \N(v B'_k)$\\
\q $s \leftarrow \N(s + w)$\\
\q \If\ $|w| < \ulp(s)$ \then\ return $s$.\\
\end{quote}
where $B'_k = B_{2k} (2k+1)!$ is an exact representation in \texttt{mpn}
integers.
Let $p$ the working precision. Using Higham's method, before entering the loop
we have $u = z^2(1+\theta)$, $v = s = z(1+\theta)$ where different instances
of $\theta$ denote different variables and $|\theta| \leq 2^{-p}$. After the
$k$-th loop, $v = z^{2k+1}/((2k+1)!2k(2k+1)) (1+\theta)^{6k}$,
$w = B_{2k}z^{2k+1}/(2k+1)! (1+\theta)^{6k+1}$.
When $x \in ]0, \frac{1}{2}]$, $\Li2(x)$ calculation is implemented as follows
\begin{quote}
Algorithm {\tt li2\_0..+$\frac{1}{2}$}\\
Input: $x$ with $x \in \left]0, \frac{1}{2}\right]$, the output precision
$n$, and a rounding mode $\circ_n$ \\
Output: $\circ_n(\Li2(x))$ \\
\begin{tabular}{l c r c l}
$u \leftarrow \N(1-x)$ & &
$\n{error}(u) $ & $ \leq $ & $ \frac{1}{2} \ulp(u)$\\
$u \leftarrow \pinf(-\log(u))$ & &
$\n{error}(u) $ & $ \leq $ & $ (1 + 2^{-\Exp(u)}) \ulp(u)$\\
$t \leftarrow \pinf(S(u))$ & &
$\n{error}(t) $ & $ \leq $ & $ (k+1) 2^{1-\Exp(t)} \ulp(t)$\\
$v \leftarrow \pinf(u^2)$\\
$v \leftarrow \pinf(v / 4)$ & &
$\n{error}(v) $ & $ \leq $ & $ (5 + 2^{2-\Exp(u)}) \ulp(v)$\\
$s \leftarrow \N(t - v)$ & & $error(s) \leq 2^{\kappa_s} \ulp(s)$\\
\end{tabular}\\
\If\ $s$ cannot be exactly rounded according to the given mode $\circ_n$\\
\then\ increase the working precision and restart calculation\\
\Else\ return $\circ_n(s)$
\end{quote}
where $\kappa_s ={\rm max}(-1, \lceil\log_2(k+1)\rceil + 1 - \Exp(s),
{\rm max}(1, -\Exp(u)) -1 - \Exp(s))$
When $x$ is large and positive, we can use an asymptotic expansion near
$+\infty$ using the fact that
$\Li2\left(\frac{1}{x}\right) = \frac{1}{x} + O\left(\frac{1}{x^2}\right)$
(see below):
\[
\left|\Li2(x) + \frac{\log^2x}{2} - \frac{\pi^2}{3}\right| \leq \frac{2}{x}
\]
which gives the following algorithm:
\begin{quote}
Algorithm {\tt li2\_asympt\_pos}\\
Input: $x$ with $x \geq 38$, the output precision $n$, and a rounding mode
$\circ_n$ \\
Output: $\circ_n(\Re(\Li2(x)))$ if it can round exactly, a failure indicator
if not\\
$u \leftarrow \N(\log x)$\\
$v \leftarrow \N(u^2)$\\
$g \leftarrow \N(v/2)$\\
$p \leftarrow \N(\pi)$\\
$q \leftarrow \N(p^2)$\\
$h \leftarrow \N(q/3)$\\
$s \leftarrow \N(g-h)$\\
\If\ $s$ cannot be exactly rounded according to the given mode $\circ_n$\\
\then\ return {\em failed}\\
\Else\ return $\circ_p(n)$
\end{quote}
Else, if $x \in [2, 38[$ or if $x \geq 38$ but the above calculation cannot
give exact rounding, we use the relation
\[
\Li2(x) = -S\left(-\log(1-\frac{1}{x})\right)
+ \frac{\log^2\left(1-\frac{1}{x}\right)}{4}
- \frac{\log^2x}{2} + \frac{\pi^2}{3},
\]
which is computed as follows:
\begin{quote}
Algorithm {\tt li2\_2..+$\infty$}\\
Input: $x$ with $x \in \left[2, +\infty\right[$, the output precision $n$,
and a rounding mode $\circ_n$ \\
Output: $\circ_n(\Re(\Li2(x)))$ \\
\begin{tabular}{l c r c l}
$y \leftarrow \N(-1/x)$ & &
$\n{error}(y) $ & $ \leq $ & $\frac{1}{2} \ulp(y)$\\
$u \leftarrow \pinf(-\log(1+y))$ &&
$\n{error}(u) $ & $ \leq $ & $(1 + 2^{1-\Exp(u)}) \ulp(u)$\\
$q \leftarrow \N(-S(u))$ &&
$\n{error}(q) $ & $ \leq $ & $2 (k+1) 2^{-\Exp(q)} \ulp(q)$\\
$v \leftarrow \pinf(u^2)$ \\
$v \leftarrow \pinf(v / 4)$ & &
$\n{error}(v) $ & $ \leq $ & $(5 + 2^{3-\Exp(u)}) \ulp(v)$\\
$r \leftarrow \N(q + v)$ & &
$\n{error}(r) $ & $ \leq $ & $2^{\kappa_r} \ulp(r)$\\
$w \leftarrow \pinf(\log x)$\\
$w \leftarrow \N(w^2)$\\
$w \leftarrow \N(w/2)$ & & $\n{error}(w) $ & $ \leq $ & $\frac{9}{2} \ulp(w)$\\
$s \leftarrow \N(r - w)$ & &
$\n{error}(s) $ & $ \leq $ & $2^{\kappa_s} \ulp(s)$\\
$p \leftarrow \pinf(\pi)$ \\
$p \leftarrow \N(p^2)$ \\
$p \leftarrow \N(p/3)$ & &
$\n{error}(p) $ & $ \leq $ & $\frac{19}{2}\ulp(p) \leq 2^{2-\Exp(p)}\ulp(p)$\\
$t \leftarrow \N(s + p)$ & &
$\n{error}(t) $ & $ \leq $ & $2^{\kappa_t} \ulp(t)$
\end{tabular}\\
\If\ $t$ can be exactly rounded according to $\circ_n$\\
\then\ return $\circ_n(t)$\\
\Else\ increase working precision and restart calculation
\end{quote}
with
\begin{eqnarray*}
\kappa_r & = & 2 + {\rm max}(-1, \lceil\log_2(k+1)\rceil + 1 - \Exp(r),
3 + {\rm max}(1, -\Exp(u)) + \Exp(v) - \Exp(r))\\
\kappa_s & = & 2 + {\rm max}(-1, \kappa_r + \Exp(r) - \Exp(s),
3 + \Exp(w) - \Exp(s))\\
\kappa_t & = & 2 + {\rm max}(-1, \kappa_s + \Exp(s) - \Exp(t),
2 - \Exp(t))
\end{eqnarray*}
When $x \in ]1, 2[$, we use the relation
\[
\Li2(x) = S(\log x) + \frac{\log^2 x}{4} - \log x \log(x - 1) + \frac{\pi^2}{6}
\]
which is implemented as follows
\begin{quote}
Algorithm {\tt li2\_1..2}\\
Input: $x$ with $x \in ]1, 2[$, the output precision $n$, and a rounding mode
$\circ_n$ \\
Output: $\circ_n(\Re(\Li2(x)))$ \\
\begin{tabular}{l c r c l}
$l \leftarrow \pinf(\log x)$ & & $\n{error}(l) $ & $ \leq $ & $ \ulp(l)$\\
$q \leftarrow \N(S(l))$ & &
$\n{error}(q) $ & $ \leq $ & $ (k+1)2^{1-\Exp(q)} \ulp(q)$\\
$u \leftarrow \N(l^2)$\\
$u \leftarrow \N(u/4)$ & &
$\n{error}(u) $ & $ \leq $ & $ \frac{5}{2} \ulp(u)$\\
$r \leftarrow \N(q + u)$ & &
$\n{error}(r) $ & $ \leq $ & $ (3+(k+1)2^{1-\Exp(q)})\ulp(r)$\\
$y \leftarrow \N(x - 1)$ & &
$\n{error}(y) $ & $ \leq $ & $ \frac{1}{2}\ulp(y)$ \\
$v \leftarrow \pinf(\log y)$ & &
$\n{error}(v) $ & $ \leq $ & $(1 + 2^{-\Exp(v)}) \ulp(v)$\\
$w \leftarrow \N(ul)$ & &
$\n{error}(w) $ & $ \leq $ & $(\frac{15}{2} + 2^{1-\Exp(v)}) \ulp(w)$\\
$s \leftarrow \N(r - w)$ & &
$\n{error}(s) $ & $ \leq $ &
$ (11 + (k+1) 2^{1-\Exp(q)} + 2^{1-\Exp(v)})\ulp(s)$ \\
$p \leftarrow \pinf(\pi)$ \\
$p \leftarrow \N(p^2)$ \\
$p \leftarrow \N(p/6)$ & &
$\n{error}(p) $ & $ \leq $ & $ \frac{19}{2}\ulp(p)$\\
$t \leftarrow \N(s + p)$ & &
$\n{error}(t) $ & $ \leq $ &
$ (31 + (k+1) 2^{1-\Exp(q)} + 2^{1-\Exp(v)}) \ulp(t)$
\end{tabular}\\
\If\ $t$ can be exactly rounded according to $\circ_n$\\
\then\ return $\circ_n(t)$\\
\Else\ increase working precision and restart calculation
\end{quote}
we use the fact that $S(\log x) \geq 0$ and $u \geq 0$ for error($r$),
that $r \geq 0$ and $-\log x \log(x-1) \geq 0$ for error($s$),
and that $s \geq 0$ for error($t$).
When $x=1$, we have a simpler value $\Li2(1) = \frac{\pi^2}{6}$ whose
computation is implemented as follows
\begin{quote}
Algorithm {\tt li2\_1}\\
Input: the output precision $p$, and a rounding mode $\circ_p$ \\
Output: $\circ_p(\frac{\pi^2}{6})$ \\
\begin{tabular}{l c r c l}
$u \leftarrow \pinf(\pi)$ \\
$u \leftarrow \N(u^2)$ \\
$u \leftarrow \N(u/6)$ & &
$\n{error}(u) $ & $ \leq $ & $ \frac{19}{2}\ulp(u)$\\
\end{tabular}\\
\If\ $u$ can be exactly rounded according to $\circ_p$\\
\then\ return $\circ_p(u)$\\
\Else\ increase working precision and restart calculation
\end{quote}
When $x \in \left]\frac{1}{2}, 1\right[$, we use the relation
\[
\Li2(x) = - S(-\log x) - \log x \log(1 - x) + \frac{\log^2 x}{4}
+ \frac{\pi^2}{6}
\]
which is implemented as follows
\begin{quote}
Algorithm {\tt li2\_0.5..1}\\
Input: $x$ with $x \in \left]\frac{1}{2}, 1\right[$, the output precision $n$,
and a rounding mode $\circ_n$ \\
Output: $\circ_n(Li2(x))$ \\
\begin{tabular}{l c r c l}
$l \leftarrow \pinf(-\log x)$ & & $\n{error}(l) $ & $ \leq $ & $ \ulp(l)$\\
$q \leftarrow \N(-S(l))$ & &
$\n{error}(q) $ & $ \leq $ & $ (k+1)2^{1-\Exp(q)} \ulp(q)$\\
$y \leftarrow \N(1 - x)$ & &
$\n{error}(y) $ & $ \leq $ & $ \frac{1}{2}\ulp(y)$ \\
$u \leftarrow \pinf(\log y)$ & &
$\n{error}(u) $ & $ \leq $ & $(1 + 2^{-\Exp(v)}) \ulp(u)$\\
$v \leftarrow \N(ul)$ & &
$\n{error}(v) $ & $ \leq $ & $(\frac{9}{2} + 2^{1-\Exp(v)}) \ulp(v)$\\
$r \leftarrow \N(q + v)$ & &
$\n{error}(r) $ & $ \leq $ & $2^{\kappa_r}\ulp(r)$\\
$w \leftarrow \N(l^2)$\\
$w \leftarrow \N(u/4)$ & &
$\n{error}(w) $ & $ \leq $ & $ \frac{5}{2} \ulp(w)$\\
$s \leftarrow \N(r + w)$ & &
$\n{error}(s) $ & $ \leq $ & $2^{\kappa_s} \ulp(s)$ \\
$p \leftarrow \pinf(\pi)$ \\
$p \leftarrow \N(p^2)$ \\
$p \leftarrow \N(p/6)$ & &
$\n{error}(p) $ & $ \leq $ & $\frac{19}{2}\ulp(p) \leq 2^{3-\Exp(p)}\ulp(p)$\\
$t \leftarrow \N(s + p)$ & &
$\n{error}(t) $ & $ \leq $ & $2^{\kappa_t} \ulp(t)$
\end{tabular}\\
\If\ $t$ can be exactly rounded according to $\circ_n$\\
\then\ return $\circ_n(t)$\\
\Else\ increase working precision and restart calculation
\end{quote}
where
\begin{eqnarray*}
\kappa_r & = & 2 + {\rm max}(3, \lceil\log_2(k+1)\rceil + 1 - \Exp(q),
1 - \Exp(u))\\
\kappa_s & = & 2 + {\rm max}(-1, \kappa_r + \Exp(r) - \Exp(s),
2 + \Exp(w) - \Exp(s))\\
\kappa_t & = & 2 + {\rm max}(-1, \kappa_s + \Exp(s) - \Exp(t),
3 - \Exp(t))
\end{eqnarray*}
Near 0, we can use the relation
\[
\Li2(x) = \sum_{n=0}^{\infty}\frac{x^k}{k^2}
\]
which is true for $|x| \leq 1$ [FIXME: ref].
If $x \leq 0$, we have $0 \leq \Li2(x) - x \leq \frac{x^2}{4}$
and if $x$ is positive,
$0 \leq \Li2(x) - x \leq (\frac{\pi^2}{6}-1)x^2 \leq x^2
\leq 2^{2\Exp(x)+1}\ulp(x)$.
When $x \in [-1, 0[$, we use the relation
\[
\Li2(x) = - S(-\log(1-x)) - \frac{\log^2(1-x)}{4}
\]
which is implemented as follows
\begin{quote}
Algorithm {\tt li2\_-1..0}\\
Input: $x$ with $x \in ]-1, 0[$, the output precision $n$, and a rounding mode
$\circ_n$ \\
Output: $\circ_n(Li2(x))$ \\
\begin{tabular}{l c r c l}
$y \leftarrow \N(1 - x)$ & &
$\n{error}(y) $ & $ \leq $ & $ \frac{1}{2}\ulp(y)$ \\
$l \leftarrow \pinf(\log y)$ & &
$\n{error}(l) $ & $ \leq $ & $ (1+2^{-\Exp(l)})\ulp(l)$\\
$r \leftarrow \N(-S(l))$ & &
$\n{error}(r) $ & $ \leq $ & $ (k+1)2^{1-\Exp(r)} \ulp(r)$\\
$u \leftarrow \N(-l^2)$ \\
$u \leftarrow \N(u/4)$ & &
$\n{error}(u) $ & $ \leq $ & $(\frac{9}{2} + 2^{-\Exp(l)}) \ulp(u)$\\
$s \leftarrow \N(r + u)$ & &
$\n{error}(s) $ & $ \leq $ & $2^{\kappa_s}\ulp(s)$\\
\end{tabular}\\
\If\ $s$ can be exactly rounded according to $\circ_n$\\
\then\ return $\circ_n(s)$\\
\Else\ increase working precision and restart calculation
\end{quote}
with
\[
\kappa_s = 2 + {\rm max}(3, \lceil\log_2(k+1)\rceil + 1 - \Exp(r), - \Exp(l))
\]
When $x$ is large and negative, we can use an asymptotic expansion near
$-\infty$:
\[
\left|\Li2(x) + \frac{\log^2(-x)}{2} + \frac{\pi^2}{3}\right| \leq
\frac{1}{|x|}
\]
which gives the following algorithm:
\begin{quote}
Algorithm {\tt li2\_asympt\_neg}\\
Input: $x$ with $x \leq -7$, the output precision $n$, and a rounding mode
$\circ_n$ \\
Output: $\circ_n(\Li2(x))$ if it can round exactly, a failure indicator
if not\\
$l \leftarrow \N(\log(-x))$ \\
$f \leftarrow \N(l^2)$\\
$g \leftarrow \N(f/2)$\\
$p \leftarrow \N(\pi)$\\
$q \leftarrow \N(p^2)$\\
$h \leftarrow \N(q/3)$\\
$s \leftarrow \N(g-h)$\\
\If\ $s$ cannot be exactly rounded according to the given mode $\circ_n$\\
\then\ return {\em failed}\\
\Else\ return $\circ_n(s)$
\end{quote}
When $x \in ]-7, -1[$ or if the above computation cannot give exact rounding,
we use the relation
\[
\Li2(x) = S\left(\log\left(1-\frac{1}{x}\right)\right) - \frac{\log^2(-x)}{4}
- \frac{\log(-x) \log(1 - x)}{2} + \frac{\log^2(1-x)}{4} + \frac{\pi^2}{6}
\]
which is implemented as follows
\begin{quote}
Algorithm {\tt li2\_-$\infty$..-1}\\
Input: $x$ with $x \in ]-\infty, -1[$, the output precision $n$,
and a rounding mode $\circ_n$ \\
Output: $\circ_n(\Li2(x))$ \\
\begin{tabular}{l c r c l}
$y \leftarrow \N(-1/x)$\\
$z \leftarrow \N(1+y)$\\
$z \leftarrow \N(\log z)$\\
$o \leftarrow \N(S(z))$ & &
$\n{error}(o)$ & $\leq$ & $(k+1)2^{1-\Exp(o)}\ulp(o)$\\
$y \leftarrow \N(1-x)$\\
$u \leftarrow \pinf(\log y)$ & &
$\n{error}(u)$ & $\leq$ & $(1+2^{-\Exp(u)})\ulp(u)$\\
$v \leftarrow \pinf(\log(-x))$ & & $\n{error}(v)$ & $\leq$ & $\ulp(v)$\\
$w \leftarrow \N(uv)$\\
$w \leftarrow \N(w/2)$ & &
$\n{error}(w)$ & $\leq$ & $(\frac{9}{2}+1)\ulp(w)$\\
$q \leftarrow \N(o-w)$ & & $\n{error}(q)$ & $\leq$ & $2^{\kappa_q}\ulp(q)$\\
$v \leftarrow \N(v^2)$\\
$v \leftarrow \N(v/4)$ & & $\n{error}(v)$ & $\leq$ & $\frac{9}{2}\ulp(v)$\\
$r \leftarrow \N(q-v)$ & & $\n{error}(r)$ & $\leq$ & $2^{\kappa_r}\ulp(r)$\\
$w \leftarrow \N(u^2)$\\
$w \leftarrow \N(w/4)$ & &
$\n{error}(w)$ & $\leq$ & $\frac{17}{2}\ulp(w)$\\
$s \leftarrow \N(r+w)$ & &
$\n{error}(s)$ & $\leq$ & $2^{\kappa_s}\ulp(s)$\\
$p \leftarrow \pinf(\pi)$ \\
$p \leftarrow \N(p^2)$ \\
$p \leftarrow \N(p/6)$ & &
$\n{error}(p) $ & $ \leq $ & $\frac{19}{2}\ulp(p) \leq 2^{3-\Exp(p)}\ulp(p)$\\
$t \leftarrow \N(s - p)$ & &
$\n{error}(t) $ & $ \leq $ & $2^{\kappa_t} \ulp(t)$
\end{tabular}\\
\If\ $t$ can be exactly rounded according to $\circ_n$\\
\then\ return $\circ_n(t)$\\
\Else\ increase working precision and restart calculation
\end{quote}
where
\begin{eqnarray*}
\kappa_q & = & 1 + {\rm max}(3, \lceil\log_2(k+1)\rceil + 1 - \Exp(q))\\
\kappa_r & = & 2 + {\rm max}(-1, \kappa_q + \Exp(q) - \Exp(r),
3 + \Exp(v) - \Exp(r))\\
\kappa_s & = & 2 + {\rm max}(-1, \kappa_r + \Exp(r) - \Exp(s),
3 + \Exp(w) - \Exp(s))\\
\kappa_t & = & 2 + {\rm max}(-1, \kappa_s + \Exp(s) - \Exp(t),
3 - \Exp(t))
\end{eqnarray*}
\subsection{The Digamma Function}
The Digamma function \texttt{mpfr\_digamma} is defined by:
\[ \psi(x) = \frac{d}{dx} \log\Gamma(x), \]
and is computed from the asymptotic series \cite{Smith01}
\[ \psi(x) \sim \log x - \frac{1}{2x} - \sum_{n=1}^{\infty}
\frac{B_{2n}}{2n x^{2n}}. \]
(We assume the error in the sum is bounded by the first neglected term.)
Since $B_{2n} \approx 2 (2n)!/(2\pi)^{-2n}$, the terms of the sum decrease
until $n \approx \pi x$, and then the error term is $\approx e^{-2\pi x}$.
If $x$ is too small with respect to the target precision, we use the formula
\cite{Smith01}:
\[ \psi(x+j) = \frac{1}{x+j-1} + \frac{1}{x+j-2} + \cdots + \frac{1}{x} +
\psi(x), \]
and compute $\psi(x+j)$ instead with the asymptotic formula.
\subsection{The Airy Function}
~\newline
\textbf{Warning:} the current implementation is not made for large arguments. It works fine typically for $|x| \le 500$. For larger inputs, other methods will be implemented in a close future.
\subsubsection{Definitions}
The $\Ai$ function is a solution of the differential equation $y''(x) = x\,y(x)$. It has a power series developed at $0$ that is defined for each $x \in \C$ (we will consider only the case $x \in \R$ in the following):
\begin{equation}
\label{defAi}
\Ai(x) = \sum_{i=0}^{+\infty} a_i\,x^i,
\end{equation}
where the sequence $a_i$ satisfies the following recurrence:
$$\left\{ \begin{array}{ccccl}
a_0 & = & \Ai(0) & = & 1/ ( \Gamma(2/3)\,\sqrt[3]{9} )\\
a_1 & = & \Ai'(0)& = &-1/ (\Gamma(1/3)\,\sqrt[3]{3})\\
\multicolumn{3}{r}{a_2} & = & 0\\
\multicolumn{3}{r}{\forall n\ge0, a_{i+3}}& = & a_i / ((i+2)\,(i+3)).
\end{array}
\right.
$$
For each $i$, we define $t_i = a_i\,x^i$. The sequence $(t_i)_i$ satisfies a similar recurrence.
We denote by $C$ the function defined by
$$ C(x) = \sum_{i=0}^{+\infty} |a_i| \cdot |x|^i.$$
This function is involved in the condition number of the series~\eqref{defAi}.
\subsubsection{Notations}
For the error analysis, we refer to classical techniques and lemmas (see e.g.~\cite{Higham02}). In particular, we use Stewart's error counter: $x\rnd{k}$ represents any value $\widehat{x}$ of the form $$\widehat{x} = x\,\prod_{i=1}^k (1+\theta_i)^{\pm 1}$$ where $|\theta_i| \le u = 2^{1-p}$ with $p$ the current precision.
It is known that $x\rnd{k} =x(1+\mu)$ where $|\mu| \le \gamma_k$ with $\gamma_k \le 2ku$ when $2ku \le 1$ (see~\cite{Higham02}).
As usual, we denote by $\Exp(x)$ the exponent of $x$ (the smallest~$E \in \mathbb{Z}$ such that~$|x| < 2^E$).
\subsubsection{Technical results}
\begin{fact}
\label{conditionNumberOfAi}
The function $C$ satisfies the following inequalities:
\begin{equation}
\label{majoreCond}
\left\{\begin{array}{ccl}
C(x) \le 1 & \text{ if } & 0 \le x < 1\\
C(x) \le \frac{1}{2}\,x^{-1/4}\,\exp\left(\frac{2}{3}\,x^{3/2}\right) & \text{ if } & x \ge 1
\end{array}
\right.
\end{equation}
\end{fact}
\begin{fact}
For $x \in [1/4,\,1]$, the following holds:
$$\left\{\begin{array}{rcl}
x/\Gamma(x) &\in& [1/16,\,1]\\
\Gamma'(x) &\in& [-16,\,-1/2].
\end{array}
\right.
$$
So, if $a = \circ(1/3)$ computed in precision $\wprec+4$, then we can write $\Gamma(a) = \Gamma(1/3)\rnd{1}$ in precision $\wprec$ (the same holds for $a = \circ(2/3)$).
\end{fact}
\begin{proof}
Let $\alpha = 1/3$ or $\alpha = 2/3$. We suppose that $a = \circ(\alpha)$. So we can write $a = (1+\theta)\,\alpha$ where $|\theta|\le 2^{-3-\wprec}$, so we have
$$ \Gamma(a) = \Gamma(\alpha + \alpha\,\theta) = \Gamma(\alpha) + \alpha\,\theta\Gamma'(\xi),$$% \Gamma(1/3)\,\left(1+\theta\,\frac{a\,\Gamma'(\xi)}{\Gamma(a)}\right),$$
where $\xi$ lies between $\alpha$ and $a$. In particular, $\xi \in [1/4,\,1]$. Thus $$\Gamma(a) = \Gamma(\alpha)\,\left(1 + \theta\frac{\alpha}{\Gamma(\alpha)}\,\Gamma'(\xi)\right) = \Gamma(\alpha)\,(1+\theta')$$ with $|\theta'| \le 16|\theta| \le 2^{1-\wprec}.$
\end{proof}
\subsubsection{Algorithm}
\begin{algorithm}[htp]
\TitleOfAlgo{ \texttt{mpfr\_ai}}
\label{algoAi1}
\SetKw{true}{true}
\SetKw{KwAnd}{and}
\tcc{except when mentioned, the precision used is $\wprec$}
$\tempv \gets \circ(2/3)$ \tcc*{with precision $\wprec+4$}
$\tempv \gets \Gamma(\tempv)$\;
$\tzero \gets \sqrt[3]{9}$\;
$\tzero \gets \tzero \cdot \tempv$\;
$\tzero \gets 1/\tzero$\;
\BlankLine
$\tempv \gets \circ(1/3)$ \tcc*{with precision $\wprec+4$}
$\tempv \gets \Gamma(\tempv)$\;
$\tone \gets \sqrt[3]{3}$\;
$\tone \gets \tone \cdot \tempv$\;
$\tone \gets -x/\tone$\;
\BlankLine
$\svar \gets \tzero+\tone $\;
$\kvar \gets 2$\;
\While{\true}{
$\tzero \gets \tzero\cdot x^3/(\kvar\cdot(\kvar+1))$\;
$\tone \gets \tone\cdot x^3/((\kvar+1)\cdot(\kvar+2))$\;
$\kvar \gets \kvar+3$\;
$\svar \gets \svar + \tzero + \tone$\;
\BlankLine
\If{~~~$(\Exp(\tzero) \le \Exp(\svar)-\precc-3)$\\ \KwAnd $(\Exp(\tone) \le \Exp(\svar)-\precc-3)$\\ \KwAnd $|x|^3 \le \kvar\cdot(\kvar+1)/2$}{break\;}
}\nllabel{endOfLoop}
$\evalErr \gets 4 + \log_2(k) - \Exp(\svar)$\;
\lIf{$|x| \ge 1$}{$\evalErr \gets \evalErr + (2/3)\log_2(e)x^{3/2} - \log_2(x)/4 - 1$\;}
$\correctBits \gets \min(\precc+1,\,\wprec-\evalErr) - 1$\;
\end{algorithm}
Algorithm~\ref{algoAi1} is run to obtain an approximate value of $\Ai(x)$ with a relative error bounded by $2^{-\precc}$. Except if this is explicitly mentioned, the operations are performed with correct rounding and with precision $\wprec$. The link between $\precc$ and $\wprec$ will be expressed in Section~\ref{linkBetweenPrec}.
Analysis : it is clear that, while entering in the loop for the $j$-th time, $k = 3j-1$, $\tzero \simeq t_{3j-3}$, $\tone \simeq t_{3j-2}$ and $\svar \simeq \sum_{i=0}^{k} t_i$.
Let $K$ be the value of $k$ when exiting the loop. Hence $K =3j+2$ where $j$ denotes the number of times that the loop has been performed. Moreover $\svar \simeq \sum_{i=0}^{K} t_i$, $\tzero \simeq t_{3j}$, and $\tone \simeq t_{3j+1}$
\begin{assumption}
\label{assumptionPrecLargeEnough}
In the following, we suppose that $2 \cdot (4K) \cdot 2^{1-\wprec} \le 1$.
\end{assumption}
\noindent\textbf{Roundoff errors.}
Before entering the loop, $\tzero = t_0\rnd{4}$ and $\tone = t_1\rnd{4}$. A trivial recurrence shows that, at the end of the $j$-th execution of the loop, we have $\tzero = t_{3j}\rnd{4+5j}$ and $\tone = t_{3j+1}\rnd{4+5j}$. At the end of the $j$-th execution of the loop, $\svar$ has been obtained by the accumulation of $2j+1$ additions. So, when exiting the loop, all the terms of the sum have accumulated at most $4+5j+2j+1 = 7j+5$ errors, which we conveniently bound by $4K$ (remember that $K=3j+2$). So we can write
$$ \svar = \sum_{k=0}^{K} t_{k}\rnd{4K}. $$
For each $k$, we know that $t_k\rnd{4K} = t_k(1+\mu^{(k)})$ where $$|\mu^{(k)}| \le \gamma_{4K} \le 2\cdot(4K)\cdot 2^{1-\wprec} \quad \text{(here we use the hypothesis~\ref{assumptionPrecLargeEnough}).}$$ Hence
$$ \svar = \left(\sum_{k=0}^{K} t_{k}\right) + \left(\sum_{k=0}^{K} t_{k}\,\mu^{(k)}\right),$$
and we can bound the roundoff errors by
$$ \left|\svar - \sum_{i=0}^K t_i \right| \le \sum_{i=0}^K |t_i|\,\gamma_{4K} \le \gamma_{4K}\,\underbrace{\sum_{i=0}^{+\infty} |t_k|}_{C(x)} \le C(x)\cdot(8K\,2^{1-\wprec}). $$
We remark that, by definition of $\evalErr$ and by Fact~\ref{conditionNumberOfAi}, we have $$C(x) \le 2^{\Exp(\svar) + \evalErr - 4 - \log_2(K)}.$$ So, finally
$$\boxed{\left|\svar - \sum_{i=0}^K t_i \right| \le 2^{\Exp(\svar)+\evalErr-\wprec}.}$$
Remark: during the algorithm $\tzero = t_{3j}\rnd{4+5j}$, so in particular $|t_{3j}| \le 2|\tzero|$. The same remark holds for $\tone$ and $t_{3j+1}$.
\noindent \textbf{Approximation error.}
The stopping criterion ensures that, for $n \ge K$, $|t_{n+1}| \le |t_{n-2}|/2$. Besides, we recall that $K = 3j+2$. Thus
$$ \left|\sum_{k=j+1}^{+\infty} t_{3k}\right| \le \frac{t_{3j}}{2} + \frac{t_{3j}}{4} + \frac{t_{3j}}{8} + \cdots \le |t_{3j}|.$$
Using the remark above, we can bound $|t_{3j}|$ by $2 |\tzero| \le 2^{1+\Exp(\tzero)}$. The stopping criterion of the loop ensures that $\Exp(\tzero) \le \Exp(\svar) - \precc - 3$ so we conclude that $$ \left|\sum_{k=j+1}^{+\infty} t_{3k}\right| \le 2^{\Exp(\svar)-\precc-2} .$$
Likewise, $$ \left|\sum_{k=j+1}^{+\infty} t_{3k+1}\right| \le 2^{\Exp(\svar)-\precc-2}.$$
From this, we deduce the following upper bound on the approximation error:
$$\boxed{\left|\Ai(x)-\sum_{i=0}^K t_i\right| \le 2^{\Exp(\svar)-\precc-1}.}$$
\noindent\textbf{Overall error.}
By definition of $\correctBits$, we finally get
$$\boxed{\left|\Ai(x)-\svar\right| \le 2^{\Exp(\svar)-\correctBits}.}$$
\noindent\textbf{Determination of $\mathsf{wprec}$.}
\label{linkBetweenPrec}
The variable $\precc$ must be chosen slightly larger than the final target precision, in order to bypass the TMD. In practice we keep a few guard bits, which ensures that we do not encounter bad cases too often. The Ziv' loop is performed over $\precc$.
We would like the roundoff errors and the approximation error to be approximately of the same order of magnitude, i.e.
$$ \wprec = \precc + 1 + \evalErr.$$
The value $\evalErr$ depends on $\Exp(\svar)$ (that we do not know, \emph{a priori}) and on $K$ (idem). We may estimate $K \simeq \precc$ (anyway, only the logarithm of this value is used, so we do not care too much of this value)
Concerning $\Exp(\svar)$, when $x \ge 0$, it is possible to rigorously estimate it with the following inequalities. When $x<0$, it is more obfuscated since $\Ai(x)$ can be arbitrarily close to zero. I do not have any estimation yet.
\begin{fact}
\label{orderOfMagnitudeAi}
The following inequalities hold:
$$
\left\{
\begin{array}{ccl}
\Ai(x) \ge 1/8 & \text{ if } &0\le x\le 1\\
\Ai(x) \ge \frac{1}{4}\,x^{-1/4}\,\exp\left(-\frac{2}{3} \, x^{3/2}\right) & \text{ if } &x\ge 1.
\end{array}
\right.
$$
\end{fact}
These estimates are used to set the initial value of $\wprec$. When $x \le 0$, we initially suppose that $\Exp(\Ai(x)) \ge -10$. More precisely, we use a variable $\assumedExp$ to remember this assumption (initially $\assumedExp=10$).
Representing the condition number by a variable $\cond$, and using Fact~\ref{conditionNumberOfAi} we can set
$$
\left\{
\begin{array}{lcl}
\cond = 0 & \text{ if } & |x| \le 1\\
\cond = \lceil\frac{2}{3}\log_2(e)x^{3/2}\rceil - \lfloor\frac{\log_2(x)}{4}\rfloor - 1 & \text{ if } & |x|\ge 1.
\end{array}
\right.
$$
Using Fact~\ref{orderOfMagnitudeAi}, we can set the initial value of $\wprec$ the following way:
$$
\boxed{
\begin{array}{ll}
\wprec = \precc + 1 + 4 + \lceil \log_2(\precc)\rceil + \cond + \assumedExp & \text{ if }\quad x \le 0\\
\wprec = \precc + 1 + 4 + \lceil \log_2(\precc)\rceil + \cond + 3 & \text{ if }\quad 0 \le x \le 1\\
\wprec = \precc + 1 + 4 + \lceil \log_2(\precc)\rceil + \cond + 2 + \lceil\frac{2}{3}\log_2(e)x^{3/2}\rceil + \lceil\frac{\log_2(x)}{4}\rceil & \text{ if }\quad x > 1.
\end{array}
}
$$
When the algorithm exits the loop (line~\ref{endOfLoop} of the algorithm), several cases are possible:
\begin{itemize}
\item $\correctBits$ can be negative: this typically happens when $x \ge 0$ and the $\Ai(x)$ is almost zero. In this case, the initial assumption that $\Exp(\Ai(x)) \ge -\mathsf{presumedExp}$ is false and $\wprec$ was badly chosen. This is \textbf{not} due to a bad case in Ziv' strategy. We choose to double $\assumedExp$ and set the new value of $\wprec$ as
$$ \wprec = \precc + 1 + 4 + \lceil \log_2(\kvar)\rceil + \cond + \assumedExp;$$
\item $\correctBits$ can be positive but smaller than $\precc$. The cause of this phenomenon is the same as in the previous case. However, since we have at least one correct bit, we get an important information: $\svar$ is a first approximation of $\Ai(x)$. Hence we do not rely on $\assumedExp$ for choosing the new value of $\wprec$:
$$ \wprec = \precc + 1 + 4 + \lceil \log_2(\kvar)\rceil + \cond - \Exp(\svar);$$
\item finally, if $\correctBits \ge \precc$ but if we cannot round, it means that we really are in a bad case of Ziv' strategy. In this case, we update $\precc$ (according to the usual MPFR strategy) and we recompute a new working precision from it: as in the previous case, we can rely on $\Exp(\svar)$. The only unknown is the new truncation rank. We assume that it will not be multiplied by more than~$4$ and we set:
$$ \wprec = \precc + 1 + 4 + \lceil \log_2(4\kvar)\rceil + \cond - \Exp(\svar).$$
\end{itemize}
\subsection{Radix Conversion}
The \texttt{mpfr\_get\_str} function with size $0$ and base $b$ chooses an
output precision of $1 + \lceil e \log(2)/\log(b) \rceil$ for a precision
of $e$ bits if $b$ is not a power of two \cite{Mat68}.
However the code uses instead $1 + \lceil e y \rceil$, where $y$ is
an upper $76$-bit approximation of $\log(2)/\log(b)$. When do both values
differ?
In the case $b=2^k$, the worst case is when the first output digit contains
only one significant bit, thus
$1 + \lceil (e-1) \log(2)/\log(b) \rceil$ digits are necessary, and also
sufficient.
Let $y$ be the $76$-bit upper approximation of $x=\log(2)/\log(b)$.
Both values differ when there is an integer $n$ such that
$x e\leq n < y e$, i.e., $x < n/e < y$. This means that $n/e$ is a better
approximation of $x$ than $y$.
Let $p/q$ be the first convergent of $x$ such that $|x-p/q| < |x-y|$,
then necessarily $e \geq q$.
Example: for $b=10$ we have
\[ y = \frac{45490366779583341627641}{2^{77}}, \]
with $|x-y| \approx 0.3 \cdot 2^{-23}$.
The first convergent such that $|x-p/q| < |x-y|$ is
$p/q=174131244785/578451474249$, and thus for $e<578451474249$ the formula
$1 + \lceil e x \rceil$ is correct.
In fact for $e=578451474249$ it is exact too, since $p/q < x$.
To improve the bound we can consider semi-convergents $(p_{k-1} + a p_k)/
(q_{k-1} + a q_k)$ with $a=1, 2, \ldots$, where $p_k/q_k = p/q$ here.
In this example this gives the bound $e < 1074541795081$ for $a=1$.
\begin{comment}
doit := proc(b) local x, y, l, i, e, amax, a, f;
Digits:=100;
x:=evalf(log(2)/log(b));
y:=approx(x,76,2);
convert(x,confrac,'l');
for i to nops(l) do
e:=l[i];
if abs(x-e)<abs(x-y) then break fi;
od;
lprint("p/q=", e);
if e<x then # p/q = l[i] < x < l[i+1]
lprint("case p/q smaller than x");
amax := (denom(l[i+1])-denom(l[i-1]))/denom(e);
# p[i+1]/q[i+1] = (p[i-1]+amax*p[i])/(q[i-1]+amax*q[i])
for a to amax do
f := (numer(l[i-1])+a*numer(e))/(denom(l[i-1])+a*denom(e));
if f>x and f<y then lprint('f'=f,">= x, bound is", denom(f));
RETURN(denom(f))
fi
od;
else # l[i-1] < x <= p/q = l[i]
lprint("case p/q greater than x");
if i < 3 then ERROR("i < 3") fi;
amax := (denom(l[i])-denom(l[i-2]))/denom(l[i-1]);
# p[i]/q[i] = (p[i-2]+amax*p[i-1])/(q[i-2]+amax*q[i-1])
for a to amax do
f := (numer(l[i-2])+a*numer(l[i-1]))/(denom(l[i-2])+a*denom(l[i-1]));
if f>x and f<y then lprint('f'=f,">= x, bound is", denom(f));
RETURN(denom(f))
fi
od;
fi
end:
\end{comment}
We get the following bounds (for powers of two there is no error), checked
independently by Mark Dickinson:
\begin{center}
\begin{tabular}{cccc}
3, 975675645481 & 21, 500866275153 & 37, 1412595553751 & 52, 4234025992181\\
5, 751072483167 & 22, 1148143737877 & 38, 2296403499681 & 53, 1114714558973\\
6, 880248760192 & 23, 2963487537029 & 39, 227010038198 & 54, 653230957562 \\
7, 186564318007 & 24, 930741237529 & 40, 3574908346547 & 55, 1113846215983\\
9, 1951351290962 & 25, 751072483167 & 41, 458909109357 & 56, 385930970803 \\
10, 1074541795081 & 26, 1973399062219 & 42, 1385773590791 & 57, 676124411642 \\
11, 890679595344 & 27, 1193652440098 & 43, 945885487008 & 58, 330079387370 \\
12, 727742578896 & 28, 319475419871 & 44, 1405607880410 & 59, 276902299279 \\
13, 1553566199646 & 29, 1645653531910 & 45, 421759749499 & 60, 2304608467893\\
14, 253019868939 & 30, 1190119072066 & 46, 376795094250 & 61, 1364503143363\\
15, 947578699731 & 31, 2605117443408 & 47, 1352868311988 & 62, 414481628603 \\
17, 628204683310 & 33, 1138749817330 & 48, 1133739896162 \\
18, 2280193268258 & 34, 1611724268329 & 49, 186564318007 \\
19, 2290706306707 & 35, 820222240621 & 50, 842842574535 \\
20, 645428387961 & 36, 1760497520384 & 51, 1435927298893 \\
\end{tabular}
\end{center}
The smallest bound is $e=186564318007$ for $b=7$ and $b=49$.
\subsection{Summary}
Table ~\ref{table:genericError} presents the generic error for several operations, assuming all variables have a
mantissa of $p$ bits, and no overflow/underflow occurs.
The inputs $u$ and $v$ are
approximations of $x$ and $y$ with $|u-x| \le k_u \ulp(u)$ and
$|v-y| \le k_v \ulp(v)$. The additional rounding error $c_w$ is $1/2$ for
rounding to nearest, and $1$ otherwise.
The value $c^{\pm}_u$ equals $1 \pm k_u 2^{1-p}$.
\begin{table}[ht]
\begin{center}
\begin{tabular}{|c|c|c|} \hline
$w$ & $\err(w)/\ulp(w) \le c_w + \ldots$ &special case\\ \hline\hline
$\circ(u+v)$ & $k_u 2^{e_u-e_w} + k_v 2^{e_v-e_w}$ & $k_u + k_v$ if $u v \ge 0$\\
$\circ(u \cdot v)$ & $(1+c^{+}_u)k_u + (1+c^{+}_v)k_v$ & $2k_u + 2k_v$ if $u \ge x$, $v \ge y$\\
$\circ(1/v)$ & $4 k_v$ & $2 k_v$ if $v \le y$ \\
$\circ(u/v)$ & $4 k_u + 4 k_v$ & $2 k_u + 2 k_v$ if $v \le y$ \\
$\circ(\sqrt{u})$ & $2 k_u/(1+\sqrt{c^{-}_u})$ & $k_u$ if $u \le x$ \\
$\circ(e^u)$ & $e^{k_u 2^{e_u-p}} 2^{e_u+1} k_u$ & $2^{e_u+1} k_u$ if $u \ge x$ \\
$\circ(\log u)$ & $k_u 2^{1-e_w}$ & \\
\hline
\end{tabular}
\end{center}
\caption{Generic error}
\label{table:genericError}
\end{table}
Remark : in the addition case, when $u v > 0$,
necessarily one of $2^{e_u-e_w}$ and $2^{e_v-e_w}$ is less than $1/2$,
thus $\err(w)/\ulp(w) \le c_w + {\rm max}(k_u + k_v/2, k_u/2 + k_v)
\le c_w + \frac{3}{2} {\rm max}(k_u, k_v)$.
\section{Mathematical constants}
\subsection{The constant $\pi$}
The computation of $\pi$ uses the AGM formula
\[ \pi = \frac{\mu^2}{D}, \]
where $\mu = {\rm AGM}(\frac{1}{\sqrt{2}}, 1)$ is the common limit
of the sequences $a_0=1, b_0 = \frac{1}{\sqrt{2}},
a_{k+1} = (a_k+b_k)/2, b_{k+1} = \sqrt{a_k b_k}$,
$D=\frac{1}{4} - \sum_{k=1}^{\infty} 2^{k-1} (a_k^2-b_k^2)$.
This formula can be evaluated efficiently as shown in \cite{ScGrVe94},
starting from $a_0 = A_0 = 1, B_0 = 1/2, D_0 = 1/4$, where $A_k$ and
$B_k$ represent respectively $a_k^2$ and $b_k^2$:
\begin{quote}
$S_{k+1} \leftarrow (A_k + B_k)/4$ \\
$b_k \leftarrow \sqrt{B_k}$ \\
$a_{k+1} \leftarrow (a_k + b_k)/2$ \\
$A_{k+1} \leftarrow a_k^2$ \\
$B_{k+1} \leftarrow 2 (A_{k+1} - S_{k+1})$ \\
$D_{k+1} \leftarrow D_k - 2^k (A_{k+1} - B_{k+1})$
\end{quote}
For each variable $x$ approximation a true value $\tilde{x}$,
denote by $\epsilon(x)$ the exponent of the maximal error,
i.e.\ $x = \tilde{x} (1\pm\delta)^e$ with $|e| \leq \epsilon(x)$,
and $\delta = 2^{-p}$ for precision $p$ (we assume all roundings to
nearest).
We can prove by an easy induction that $\epsilon(a_k) = 3 \cdot 2^{k-1} - 1$,
for $k \geq 1$, $\epsilon(A_k) = 3 \cdot 2^k - 1$,
$\epsilon(B_k) = 6 \cdot 2^k - 6$.
Thus the relative error on $B_k$ is at most $12 \cdot 2^{k-p}$,
--- assuming $12 \cdot 2^{k-p} \leq 1$ ---
which is at most $12 \cdot 2^k \ulp(B_k)$, since $1/2 \leq B_k$.
If we stop when $|A_k-B_k| \leq 2^{k-p}$ where $p$ is the working precision,
then $|\mu^2 - B_k| \leq 13 \cdot 2^{k-p}$.
The error on $D$ is bounded by $\sum_{j=0}^k 2^{j} (6 \cdot 2^{k-p} +
12 \cdot 2^{k-p}) \leq 6 \cdot 2^{2k-p+2}$, which gives a relative error less
than $2^{2k-p+7}$ since $D_k \geq 3/16$.
Thus we have $\pi = \frac{B_k (1+\epsilon)}{D (1+\epsilon')}$
with $|\epsilon| \leq 13 \cdot 2^{k-p}$ and $|\epsilon'| \leq 2^{2k-p+7}$.
This gives $\pi = \frac{B_k}{D} (1+\epsilon'')$ with
$|\epsilon''| \leq 2 \epsilon + \epsilon' \leq (26 + 2^{k+7}) 2^{k-p}
\leq 2^{2k-p+8}$, assuming $|\epsilon'| \leq 1$.
\subsection{Euler's constant} \label{gamma}
% see the talk "Ramanujan and Euler's constant" by Richard Brent on July 8,
% 2010 at http://maths-people.anu.edu.au/~brent/talks.html
Euler's constant is computed using the formula $\gamma = S(n) - R(n) - \log n$
where:
\[ S(n) = \sum_{k=1}^{\infty} \frac{n^k (-1)^{k-1}}{k! k}, \quad
R(n) = \int_n^{\infty} \frac{\exp(-u)}{u} du \sim \frac{\exp(-n)}{n}
\sum_{k=0}^{\infty} \frac{k!}{(-n)^k}. \]
This identity is attributed to Sweeney by Brent \cite{Brent78}.
(See also \cite{Smith01}.)
We have $S(n) = _2 F_2(1,1;2,2;-n)$ and $R(n) = {\rm Ei}(1, n)$.
\medskip
\Paragraph{Evaluation of $S(n)$.}
As in \cite{Brent78}, let $\alpha \sim 4.319136566$ the positive root
of $\alpha + 2 = \alpha \log \alpha$, and $N = \lceil \alpha n \rceil$.
We approximate $S(n)$ by
\[ S'(n) = \sum_{k=1}^{N} \frac{n^k (-1)^{k-1}}{k! k}. \]
% = \frac{1}{N!} \sum_{k=1}^N \frac{a_k}{k},
% where $a_k = n^k (-1)^{k-1} N!/k!$ is an integer.
% Therefore $a_k$ is exactly computed, and when dividing it by $k$
% (integer division)
% the error is at most $1$, and thus the absolute error on $S'(n)$ is
% at most $N/N! = 1/(N-1)!$.
The remainder term $S(n) - S'(n)$ is bounded by:
\[ |S(n) - S'(n)| \le \sum_{k=N+1}^{\infty} \frac{n^k}{k!}. \]
Since $k! \ge (k/e)^k$, and $k \ge N+1 \ge \alpha n$, we have:
\[ |S(n) - S'(n)| \le \sum_{k=N+1}^{\infty} \left( \frac{n e}{k} \right)^k
\le \sum_{k=N+1}^{\infty} \left( \frac{e}{\alpha} \right)^k
\le 2 \left( \frac{e}{\alpha} \right)^N
\le 2 e^{-2n} \]
since $(e/\alpha)^{\alpha} = e^{-2}$.
To approximate $S'(n)$, we use the binary splitting method,
which computes
integers $T$ and $Q$ such that $S'(n) = \frac{T}{Q}$ exactly, then we
compute $t = \circ(T)$, and $s = \circ(t/Q)$, both with rounding to nearest.
If the working precision is $w$,
we have $t = T (1+\theta_1)$ and $s = t/Q(1+\theta_2)$ where
$|\theta_i| \leq 2^{-w}$.
If follows $s = T/Q (1+\theta_1)(1+\theta_2)$, thus the error on $s$
is less than $3$ ulps, since $(1+2^{-w})^2 \leq 1 + 3 \cdot 2^{-w}$.
\begin{comment}
To approximate $S'(n)$, we use the following algorithm, where $m$ is the
working precision, and $a, s, t$ are integer variables:
\begin{quote}
$a \leftarrow 2^m$ \\
$s \leftarrow 0$ \\
{\bf for} $k$ {\bf from} $1$ {\bf to} $N$ {\bf do} \\
\q $a \leftarrow \lfloor \frac{n a}{k} \rfloor$ \\
\q $t \leftarrow \lfloor \frac{a}{k} \rfloor$ \\
\q $s \leftarrow s + (-1)^{k-1} t$ \\
return $x = s/2^m$
\end{quote}
The absolute error $\epsilon_k$ on $a$ at step $k$ satisfies
$\epsilon_k \le 1 + n/k \epsilon_{k-1}$ with $\epsilon_0=0$.
The maximum error is $\epsilon_n \le \frac{n^n}{n!} \le e^n$.
Thus the error on $t$ at step $k$ is less than $1 + e^n/k$,
and the total error on $s$ is bounded by $N (e^n + 1)$.
Hence to get a precision of $n$ bits, we need to use
$m \ge n (1 + \frac{1}{\log 2})$.
In such a case, the value $s/2^m$ converted to a floating-point number
will have an error of at most $\ulp(x)$.
\end{comment}
\medskip
\Paragraph{Evaluation of $R(n)$.}
We estimate $R(n)$ using the terms up to $k=n-2$, again
as in \cite{Brent78}:
\[ R'(n) = \frac{e^{-n}}{n} \sum_{k=0}^{n-2} \frac{k!}{(-n)^k}. \]
% = \frac{\exp(-n)}{n^{n-1}} \sum_{k=0}^{n-2} (-1)^k \frac{k!} {n^{n-2-k}}.
% Here again, the integer sum is computed exactly, converting it to a
% floating-point number introduces at most one ulp of error,
% $\exp(-n)$ is computed within one ulp,
% and $n^{n-1}$ within at most $n-2$ ulps.
% The division by $n^{n-1}$ and the multiplication introduce one more ulp of
% error, thus the total error on $R'(n)$ is at most $n+2$ ulps.
Let us introduce $I_k = \int_n^{\infty} \frac{e^{-u}}{u^k} du$.
We have $R(n) = I_1$ and the recurrence $I_k = \frac{e^{-n}}{n^k} - k I_{k+1}$,
which gives
\[ R(n) = \frac{e^{-n}}{n} \sum_{k=0}^{n-2} \frac{k!}{(-n)^k}
+ (-1)^{n-1} (n-1)! I_n. \]
Bounding $n!$ by $(n/e)^n \sqrt{2 \pi (n+1)}$ which holds\footnote{
Formula 6.1.38 from \cite{AbSt73} gives
$x! = \sqrt{2\pi} x^{x+1/2} e^{-x+\frac{\theta}{12x}}$ for $x>0$ and
$0 < \theta < 1$.
Using it for $x \ge 1$, we have $0 < \frac{\theta}{6x} < 1$, and
$e^t < 1+2t$ for $0 < t < 1$, thus
$(x!)^2 \le 2\pi x^{2x} e^{-2x} (x+\frac{1}{3})$.}
for $n \ge 1$, we have:
\[ |R(n) - R'(n)| = (n-1)! I_n
\le \frac{n!}{n} \int_n^{\infty} \frac{e^{-n}}{u^n} du
\le \frac{n^{n-1}}{e^n} \sqrt{2 \pi (n+1)} \frac{e^{-n}}{(n-1)
n^{n-1}} \]
and since $\sqrt{2 \pi (n+1)}/(n-1) \le 1$ for $n \ge 9$:
\[ |R(n) - R'(n)| \le e^{-2n} \quad \mbox{for $n \ge 9$}. \]
Thus we have:
\[ |\gamma - S'(n) - R'(n) - \log n| \le 3 e^{-2n} \quad \mbox{for $n\ge 9$}.\]
% If the working precision is $p$, then choose $n \ge \frac{\log 2}{2} (p+2)$
% such that $3 e^{-2n}$ represents at most one ulp.
To approximate $R'(n)$, we use the following:
\begin{quote}
$m \leftarrow {\rm prec}(x) - \lfloor \frac{n}{\log 2} \rfloor$ \\
$a \leftarrow 2^m$ \\
$s \leftarrow 1$ \\
{\bf for} $k$ {\bf from} $1$ {\bf to} $n$ {\bf do} \\
\q $a \leftarrow \lfloor \frac{k a}{n} \rfloor$ \\
\q $s \leftarrow s + (-1)^{k} a$ \\
$t \leftarrow \lfloor s/n \rfloor$ \\
$x \leftarrow t/2^m$ \\
return $r = e^{-n} x$
\end{quote}
The absolute error $\epsilon_k$ on $a$ at step $k$ satisfies
$\epsilon_k \le 1 + k/n \epsilon_{k-1}$ with $\epsilon_0=0$.
As $k/n \le 1$, we have $\epsilon_k \le k$, whence the error
on $s$ is bounded by $n(n+1)/2$, and that on $t$ by
$1 + (n+1)/2 \le n+1$ since $n \ge 1$.
The operation $x \leftarrow t/2^m$ is exact as soon as ${\rm prec}(x)$ is large
enough, thus the error on $x$ is at most $(n+1) \frac{e^n}{2^{{\rm prec}(x)}}$.
If $e^{-n}$ is computed with $m$ bits, then
the error on it is at most $e^{-n} 2^{1-m}$.
The error on $r$ is then $(n + 1 + 2/n) 2^{-{\rm prec}(x)} +
\ulp(r)$.
Since $x \ge \frac{2}{3} n$ for $n \ge 2$, and $x 2^{-{\rm prec}(x)}
< \ulp(x)$, this gives an error bounded by
$\ulp(r) + (n + 1 + 2/n) \frac{3}{2n} \ulp(r)
\le 4 \ulp(r)$ for $n \ge 2$ --- if ${\rm prec}(x) = {\rm prec}(r)$.
Now since $r \le \frac{e^{-n}}{n} \le \frac{1}{8}$, that error
is less than $\ulp(1/2)$.
\medskip
\Paragraph{Final computation.} We use the formula
$\gamma = S(n) - R(n) - \log n$ with $n$ such that $e^{-2n} \le
\ulp(1/2) = 2^{-{\rm prec}}$, i.e.\ $n \ge {\rm prec} \frac{\log 2}{2}$:
\begin{quote}
$s \leftarrow S'(n)$ \\
$l \leftarrow \log(n)$ \\
$r \leftarrow R'(n)$ \\
return $(s - l) - r$
\end{quote}
Since the final result is in $[\frac{1}{2}, 1]$, and $R'(n) \le
\frac{e^{-n}}{n}$, then $S'(n)$ approximates $\log n$.
If the target precision is $m$, and
we use $m + \lceil \log_2({\rm prec}) \rceil$ bits to evaluate $s$ and $l$,
then the error on $s-l$ will be at most $3 \ulp(1/2)$,
so the error on $(s - l) - r$ is at most $5 \ulp(1/2)$,
and adding the $3 e^{-2n}$ truncation error, we get a bound of
$8 \ulp(1/2)$.
[\textbf{FIXME: check with new method to compute S}]
\subsubsection{A faster formula}
Brent and McMillan give in \cite{BrMc80} a faster algorithm (B2) using the
modified Bessel functions, which was
used by Gourdon and Demichel to compute 108,000,000 digits of $\gamma$ in
October 1999:
\[ \gamma = \frac{S_0 - K_0}{I_0} - \log n, \]
where $S_0 = \sum_{k=1}^{\infty} \frac{n^{2k}}{(k!)^2} H_k$,
$H_k = 1 + \frac{1}{2} + \cdots + \frac{1}{k}$ being the $k$-th harmonic
number,
$K_0 = \sqrt{\frac{\pi}{4n}} e^{-2n} \sum_{k=0}^{\infty}
(-1)^k \frac{[(2k)!]^2}{(k!)^3 (64n)^k}$,
and $I_0 = \sum_{k=0}^{\infty} \frac{n^{2k}}{(k!)^2}$.
We have $I_0 \ge \frac{e^{2n}}{\sqrt{4 \pi n}}$ (see \cite{BrMc80} page 306).
From the remark following formula 9.7.2 of \cite{AbSt73},
the remainder in the truncated expansion for $K_0$ up to $k$ does not
exceed the $(k+1)$-th term, whence
$K_0 \le \sqrt{\frac{\pi}{4n}} e^{-2n}$ and
$\frac{K_0}{I_0} \le \pi e^{-4n}$ as in formula (5) of \cite{BrMc80}.
Let $I'_0 = \sum_{k=0}^{K-1} \frac{n^{2k}}{(k!)^2}$ with
$K = \lceil \beta n \rceil$, and $\beta$ is the root of
$\beta (\log \beta - 1) = 3$
($\beta \sim 4.971\ldots$) then
\[ |I_0 - I'_0| \le \frac{\beta}{2 \pi (\beta^2-1)} \frac{e^{-6n}}{n}. \]
Let $K'_0 = \sqrt{\frac{\pi}{4n}} e^{-2n} \sum_{k=0}^{4n-1} (-1)^k
\frac{[(2k)!]^2}{(k!)^3 (64n)^k}$, then bounding by the next term:
\[ |K_0 - K'_0| \le \frac{(8n+1)}{16 \sqrt{2} n} \frac{e^{-6n}}{n}
\le \frac{1}{2} \frac{e^{-6n}}{n}. \]
We get from this
\[ \left| \frac{K_0}{I_0} - \frac{K'_0}{I'_0} \right|
\le \frac{1}{2 I_0} \frac{e^{-6n}}{n} \le \sqrt{\frac{\pi}{n}}
e^{-8n}. \]
Let $S'_0 = \sum_{k=1}^{K-1} \frac{n^{2k}}{(k!)^2} H_k$,
then using $\frac{H_{k+1}}{H_k} \le \frac{k+1}{k}$ and the same bound $K$
than for $I'_0$ ($4n \le K \le 5n$), we get:
\[ |S_0 - S'_0| \le \frac{\beta}{2 \pi (\beta^2-1)} H_k \frac{e^{-6n}}{n}. \]
We deduce:
\[ \left| \frac{S_0}{I_0} - \frac{S'_0}{I'_0} \right|
\le e^{-8n} H_K \frac{\sqrt{4 \pi n}}{\pi (\beta^2-1)}
\frac{\beta}{n} \le e^{-8n}. \]
Hence we have
\[ \left| \gamma - \left( \frac{S'_0 - K'_0}{I'_0} - \log n \right) \right|
\le (1 + \sqrt{\frac{\pi}{n}}) e^{-8n}
\le 3 e^{-8n}. \]
\subsection{The $\log 2$ constant}
This constant is used in the exponential function,
and in the base $2$ exponential and logarithm.
We use the following formula (formula (30) from \cite{GoSe04}):
\[ \log 2 = \frac{3}{4} \sum_{n \geq 0} (-1)^n \frac{{n!}^2}{2^n (2n+1)!}. \]
Let $w$ be the working precision. We take $N = \lfloor w/3 \rfloor + 1$,
and evaluate exactly using binary spitting:
\[ \frac{T}{Q}
= \frac{3}{4} \sum_{n \geq 0}^{N-1} (-1)^n \frac{{n!}^2}{2^n (2n+1)!}, \]
where $T$ and $Q$ are integers.
Since the series has alternating signs with decreasing absolute values,
the truncating error is bounded by the first neglected term,
which is less than $2^{-3N-1}$ for $N \geq 2$;
since $N \geq (w+1)/3$, this error is bounded by $2^{-w-2}$.
We then use the following algorithm:
\begin{quote}
$t \leftarrow \circ(T)$ [rounded to nearest] \\
$q \leftarrow \circ(Q)$ [rounded to nearest] \\
$x \leftarrow \circ(t/q)$ [rounded to nearest]
\end{quote}
Using Higham's notation, we write $t = T (1+\theta_1)$,
$q = Q (1+\theta_2)$, $x = t/q (1+\theta_3)$ with $|\theta_i| \leq 2^{-w}$.
We thus have $x = T/Q (1+\theta)^3$ with $|\theta| \leq 2^{-w}$.
Since $T/Q \leq 1$, the total absolute error on $x$ is thus bounded by
$3 |\theta| + 3 \theta^2 + |\theta|^3 + 2^{-w-2} < 2^{-w+2}$ as long
as $w \geq 3$.
\subsection{Catalan's constant}
Catalan's constant is defined by
\[ G = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2}. \]
We compute it using formula (31) of Victor Adamchik's document
``33 representations for Catalan's constant''\footnote{
\url{http://www-2.cs.cmu.edu/~adamchik/articles/catalan/catalan.htm}}:
\[ G = \frac{\pi}{8} \log(2 + \sqrt{3}) + \frac{3}{8}
\sum_{k=0}^{\infty} \frac{(k!)^2}{(2k)! (2k+1)^2}. \]
Let $f(k) = \frac{(k!)^2}{(2k)! (2k+1)^2}$, and
$S(0,K) = \sum_{k=0}^{K-1} f(k)$, and $S = S(0, \infty)$.
We compute $S(0,K)$
exactly by binary splitting.
Since $f(k)/f(k-1) = \frac{k (2k-1)}{2 (2k+1)^2} \leq 1/4$,
the truncation error on $S$ is bounded by $4/3 f(K) \leq 4/3 \cdot 4^{-K}$.
Since $S$ is multiplied by $3/8$, the corresponding contribution to the
absolute error on $G$ is $2^{-2K-1}$.
As long as $2K + 1$ is greater or equal to the working precision $w$, this
truncation error is less than one ulp of the final result.
\begin{quote}
$K \leftarrow \lceil \frac{w-1}{2} \rceil$ \\
$T/Q \leftarrow S(0,K)$ [exact, rational] \\
$T \leftarrow 3T$ [exact, integer] \\
$t \leftarrow \circ(T)$ [up] \\
$q \leftarrow \circ(Q)$ [down] \\
$s \leftarrow \circ(t/q)$ [nearest] \\
$x \leftarrow \circ(\sqrt{3})$ [up] \\
$y \leftarrow \circ(2 + x)$ [up] \\
$z \leftarrow \circ(\log y)$ [up] \\
$u \leftarrow \circ(\pi)$ [up] \\
$v \leftarrow \circ(u z)$ [nearest] \\
$g \leftarrow \circ(v + s)$ [nearest] \\
Return $g/8$ [exact].
\end{quote}
The error on $t$ and $q$ is less than one ulp;
using the generic error on the division, since $t \geq T$ and $q \leq Q$,
the error on $s$ is at most $9/2$ ulps.
The error on $x$ is at most $1$ ulp; since $1 < x < 2$ --- assuming
$w \geq 2$ ---, $\ulp(x) = 1/2 \ulp(y)$, thus the error on $y$ is at most
$3/2 \ulp(y)$.
The generic error on the logarithm (\textsection\ref{generic:log})
gives an error bound of $1 + \frac{3}{2} \cdot 2^{2-\Exp(z)} = 4$ ulps for $z$
(since $3 \leq y < 4$, we have $1 \leq z < 2$, so $\Exp(z) = 1$).
The error on $u$ is at most $1$ ulp; thus using the generic error on the
multiplication, since both $u$ and $z$ are upper approximations,
the error on $v$ is at most $11$ ulps.
Finally that on $g$ is at most $11 + 9/2 = 31/2$ ulps.
Taking into account the truncation error, this gives $33/2$ ulps.
\nocite{BoBo98,DeHi02,HuAb86,Jones84}
\bibliographystyle{acm}
\bibliography{algorithms}
\end{document}
|