summaryrefslogtreecommitdiff
path: root/src/asin.c
blob: 9b09634a2301c1bed5004e6e65e45b6ebcd5d6a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
/* mpc_asin -- arcsine of a complex number.

Copyright (C) 2009-2020 INRIA

This file is part of GNU MPC.

GNU MPC is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.

You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see http://www.gnu.org/licenses/ .
*/

#include <stdio.h>
#include "mpc-impl.h"

/* Special case op = 1 + i*y for tiny y (see algorithms.tex).
   Return 0 if special formula fails, otherwise put in z1 the approximate
   value which needs to be converted to rop.
   z1 is a temporary variable with enough precision.
 */
static int
mpc_asin_special (mpc_ptr rop, mpc_srcptr op, mpc_rnd_t rnd, mpc_ptr z1)
{
  mpfr_exp_t ey = mpfr_get_exp (mpc_imagref (op));
  mpfr_t abs_y;
  mpfr_prec_t p;
  int inex;

  /* |Re(asin(1+i*y)) - pi/2| <= y^(1/2) */
  if (ey >= 0 || ((-ey) / 2 < mpfr_get_prec (mpc_realref (z1))))
    return 0;

  mpfr_const_pi (mpc_realref (z1), MPFR_RNDN);
  mpfr_div_2exp (mpc_realref (z1), mpc_realref (z1), 1, MPFR_RNDN); /* exact */
  p = mpfr_get_prec (mpc_realref (z1));
  /* if z1 has precision p, the error on z1 is 1/2*ulp(z1) = 2^(-p) so far,
     and since ey <= -2p, then y^(1/2) <= 1/2*ulp(z1) too, thus the total
     error is bounded by ulp(z1) */
  if (!mpfr_can_round (mpc_realref(z1), p, MPFR_RNDN, MPFR_RNDZ,
                       mpfr_get_prec (mpc_realref(rop)) +
                       (MPC_RND_RE(rnd) == MPFR_RNDN)))
    return 0;

  /* |Im(asin(1+i*y)) - y^(1/2)| <= (1/12) * y^(3/2) for y >= 0 (err >= 0)
     |Im(asin(1-i*y)) + y^(1/2)| <= (1/12) * y^(3/2) for y >= 0 (err <= 0) */
  abs_y[0] = mpc_imagref (op)[0];
  if (mpfr_signbit (mpc_imagref (op)))
    MPFR_CHANGE_SIGN (abs_y);
  inex = mpfr_sqrt (mpc_imagref (z1), abs_y, MPFR_RNDN); /* error <= 1/2 ulp */
  if (mpfr_signbit (mpc_imagref (op)))
    MPFR_CHANGE_SIGN (mpc_imagref (z1));
  /* If z1 has precision p, the error on z1 is 1/2*ulp(z1) = 2^(-p) so far,
     and (1/12) * y^(3/2) <= (1/8) * y * y^(1/2) <= 2^(ey-3)*2^p*ulp(y^(1/2))
     thus for p+ey-3 <= -1 we have (1/12) * y^(3/2) <= (1/2) * ulp(y^(1/2)),
     and the total error is bounded by ulp(z1).
     Note: if y^(1/2) is exactly representable, and ends with many zeroes,
     then mpfr_can_round below will fail; however in that case we know that
     Im(asin(1+i*y)) is away from +/-y^(1/2) wrt zero. */
  if (inex == 0) /* enlarge im(z1) so that the inexact flag is correct */
    {
      if (mpfr_signbit (mpc_imagref (op)))
        mpfr_nextbelow (mpc_imagref (z1));
      else
        mpfr_nextabove (mpc_imagref (z1));
      return 1;
    }
  p = mpfr_get_prec (mpc_imagref (z1));
  if (!mpfr_can_round (mpc_imagref(z1), p - 1, MPFR_RNDA, MPFR_RNDZ,
                      mpfr_get_prec (mpc_imagref(rop)) +
                      (MPC_RND_IM(rnd) == MPFR_RNDN)))
    return 0;
  return 1;
}

/* Put in s an approximation of asin(z) using:
   asin z = z + 1/2*z^3/3 + (1*3)/(2*4)*z^5/5 + ...
   Assume |Re(z)|, |Im(z)| < 1/2.
   Return non-zero if we can get the correct result by rounding s:
   mpc_set (rop, s, ...) */
static int
mpc_asin_series (mpc_srcptr rop, mpc_ptr s, mpc_srcptr z, mpc_rnd_t rnd)
{
  mpc_t w, t;
  unsigned long k, err, kx, ky;
  mpfr_prec_t p;
  mpfr_exp_t ex, ey, e;

  /* assume z = (x,y) with |x|,|y| < 2^(-e) with e >= 1, see the error
     analysis in algorithms.tex */
  ex = mpfr_get_exp (mpc_realref (z));
  MPC_ASSERT(ex <= -1);
  ey = mpfr_get_exp (mpc_imagref (z));
  MPC_ASSERT(ey <= -1);
  e = (ex >= ey) ? ex : ey;
  e = -e;
  /* now e >= 1 */

  p = mpfr_get_prec (mpc_realref (s)); /* working precision */
  MPC_ASSERT(mpfr_get_prec (mpc_imagref (s)) == p);

  mpc_init2 (w, p);
  mpc_init2 (t, p);
  mpc_set (s, z, MPC_RNDNN);
  mpc_sqr (w, z, MPC_RNDNN);
  mpc_set (t, z, MPC_RNDNN);
  for (k = 1; ;k++)
    {
      mpfr_exp_t exp_x, exp_y;
      mpc_mul (t, t, w, MPC_RNDNN);
      mpc_mul_ui (t, t, (2 * k - 1) * (2 * k - 1), MPC_RNDNN);
      mpc_div_ui (t, t, (2 * k) * (2 * k + 1), MPC_RNDNN);
      exp_x = mpfr_get_exp (mpc_realref (s));
      exp_y = mpfr_get_exp (mpc_imagref (s));
      if (mpfr_get_exp (mpc_realref (t)) < exp_x - p &&
          mpfr_get_exp (mpc_imagref (t)) < exp_y - p)
        /* Re(t) < 1/2 ulp(Re(s)) and Im(t) < 1/2 ulp(Im(s)),
           thus adding t to s will not change s */
        break;
      mpc_add (s, s, t, MPC_RNDNN);
    }
  mpc_clear (w);
  mpc_clear (t);
  /* check (2k-1)^2 is exactly representable */
  MPC_ASSERT(2 * k - 1 <= ULONG_MAX / (2 * k - 1));
  /* maximal absolute error on Re(s),Im(s) is:
     (5k-3)k/2*2^(-1-p) for e=1
     5k/2*2^(-e-p) for e >= 2 */
  if (e == 1)
    {
      MPC_ASSERT(5 * k - 3 <= ULONG_MAX / k);
      kx = (5 * k - 3) * k;
    }
  else
    kx = 5 * k;
  kx = (kx + 1) / 2; /* takes into account the 1/2 factor in both cases */
  /* now (5k-3)k/2 <= kx for e=1, and 5k/2 <= kx for e >= 2, thus
     the maximal absolute error on Re(s),Im(s) is bounded by kx*2^(-e-p) */

  e = -e;
  ky = kx;

  /* for the real part, convert the maximal absolute error kx*2^(e-p) into
     relative error */
  ex = mpfr_get_exp (mpc_realref (s));
  /* ulp(Re(s)) = 2^(ex+1-p) */
  if (ex+1 > e) /* divide kx by 2^(ex+1-e) */
    while (ex+1 > e)
      {
        kx = (kx + 1) / 2;
        ex --;
      }
  else /* multiply kx by 2^(e-(ex+1)) */
    kx <<= e - (ex+1);
  /* now the rounding error is bounded by kx*ulp(Re(s)), add the
     mathematical error which is bounded by ulp(Re(s)): the first neglected
     term is less than 1/2*ulp(Re(s)), and each term decreases by at least
     a factor 2, since |z^2| <= 1/2. */
  kx ++;
  for (err = 0; kx > 2; err ++, kx = (kx + 1) / 2);
  /* can we round Re(s) with error less than 2^(EXP(Re(s))-err) ? */
  if (!mpfr_can_round (mpc_realref (s), p - err, MPFR_RNDN, MPFR_RNDZ,
                       mpfr_get_prec (mpc_realref (rop)) +
                       (MPC_RND_RE(rnd) == MPFR_RNDN)))
    return 0;

  /* same for the imaginary part */
  ey = mpfr_get_exp (mpc_imagref (s));
  /* we take for e the exponent of Im(z), which amounts to divide the error by
     2^delta where delta is the exponent difference between Re(z) and Im(z)
     (see algorithms.tex) */
  e = mpfr_get_exp (mpc_imagref (z));
  /* ulp(Im(s)) = 2^(ey+1-p) */
  if (ey+1 > e) /* divide ky by 2^(ey+1-e) */
    while (ey+1 > e)
      {
        ky = (ky + 1) / 2;
        ey --;
      }
  else /* multiply ky by 2^(e-(ey+1)) */
    ky <<= e - (ey+1);
  /* now the rounding error is bounded by ky*ulp(Im(s)), add the
     mathematical error which is bounded by ulp(Im(s)): the first neglected
     term is less than 1/2*ulp(Im(s)), and each term decreases by at least
     a factor 2, since |z^2| <= 1/2. */
  ky ++;
  for (err = 0; ky > 2; err ++, ky = (ky + 1) / 2);
  /* can we round Im(s) with error less than 2^(EXP(Im(s))-err) ? */
  return mpfr_can_round (mpc_imagref (s), p - err, MPFR_RNDN, MPFR_RNDZ,
                         mpfr_get_prec (mpc_imagref (rop)) +
                         (MPC_RND_IM(rnd) == MPFR_RNDN));
}

/* Put in s an approximation of asin(z) for |Re(z)| < 1 and tiny Im(y)
   (see algorithms.tex). Assume z = x + i*y:
   |Re(asin(z)) - asin(x)| <= Pi*beta^2/(1-beta)
   |Im(asin(z)) - y/sqrt(1-x^2)| <= Pi/2*beta^2/(1-beta)
   where beta = |y|/(1-|x|).
   We assume |x| >= 1/2 > |y| here, thus beta < 1, and the bounds
   simplify to 16y^2.
   Assume Re(s) and Im(s) have the same precision.
   Return non-zero if we can get the correct result by rounding s:
   mpc_set (rop, s, ...) */
static int
mpc_asin_tiny (mpc_srcptr rop, mpc_ptr s, mpc_srcptr z, mpc_rnd_t rnd)
{
  mpfr_exp_t ey, e1, e2, es;
  mpfr_prec_t p = mpfr_get_prec (mpc_realref (s)), err;

  ey = mpfr_get_exp (mpc_imagref (z));

  MPC_ASSERT(mpfr_get_exp (mpc_realref (z)) >= 0); /* |x| >= 1/2 */
  MPC_ASSERT(ey < 0);  /* |y| < 1/2 */

  e2 = 2 * ey + 4;
  /* for |x| >= 0.5, |asin x| >= 0.5, thus no need to compute asin(x)
     if 16y^2 >= 1/2 ulp(1) for the target variable */
  if (e2 >= - (mpfr_exp_t) mpfr_get_prec (mpc_realref (rop)))
    return 0;

  /* real part */
  mpfr_asin (mpc_realref (s), mpc_realref (z), MPFR_RNDN);
  /* check that we can round with error < 16y^2 */
  e1 = mpfr_get_exp (mpc_realref (s)) - p;
  err = (e1 >= e2) ? 0 : e2 - e1;
  if (!mpfr_can_round (mpc_realref (s), p - err, MPFR_RNDN, MPFR_RNDZ,
                       mpfr_get_prec (mpc_realref (rop)) +
                       (MPC_RND_RE(rnd) == MPFR_RNDN)))
    return 0;

  /* now compute the approximate imaginary part y/sqrt(1-x^2) */
  mpfr_sqr (mpc_imagref (s), mpc_realref (z), MPFR_RNDN);
  /* now Im(s) approximates x^2, with 1/4 <= Im(s) <= 1 and absolute error
     less than 2^-p */
  mpfr_ui_sub (mpc_imagref (s), 1, mpc_imagref (s), MPFR_RNDN);
  /* now Im(s) approximates 1-x^2, with 0 <= Im(s) <= 3/4, assuming p >= 2,
     and absolute error less than 2^(1-p) */
  mpfr_sqrt (mpc_imagref (s), mpc_imagref (s), MPFR_RNDN); /* sqrt(1-x^2) */
  es = mpfr_get_exp (mpc_imagref (s));
  /* now Im(s) approximates sqrt(1-x^2), with 0 <= Im(s) <= 7/8,
     assuming p >= 3, and absolute error less than 2^-p + 2^(1-p)/s
     <= 3*2^-p/s, thus relative error less than 3*2^-p/s^2.
     Since |s| >= 2^(es-1), the relative error is less than 3*2^(-p+2-2*es) */
  mpfr_div (mpc_imagref (s), mpc_imagref (z), mpc_imagref (s), MPFR_RNDN);
  /* now Im(s) approximates y/sqrt(1-x^2), with relative error less than
     (3*2^(2-2*es)+2)*2^-p. Since es <= 0, 2-2*es >= 2, thus the relative
     error is less than 2^(4-2*es-p) */
  err = 4 - 2 * es;
  return mpfr_can_round (mpc_imagref (s), p - err, MPFR_RNDN, MPFR_RNDZ,
                         mpfr_get_prec (mpc_imagref (rop)) +
                         (MPC_RND_IM(rnd) == MPFR_RNDN));
}

int
mpc_asin (mpc_ptr rop, mpc_srcptr op, mpc_rnd_t rnd)
{
  mpfr_prec_t p, p_re, p_im;
  mpfr_rnd_t rnd_re, rnd_im;
  mpc_t z1;
  int inex, inex_re, inex_im, loop = 0;
  mpfr_exp_t saved_emin, saved_emax, err, olderr;

  /* special values */
  if (mpfr_nan_p (mpc_realref (op)) || mpfr_nan_p (mpc_imagref (op)))
    {
      if (mpfr_inf_p (mpc_realref (op)) || mpfr_inf_p (mpc_imagref (op)))
        {
          mpfr_set_nan (mpc_realref (rop));
          mpfr_set_inf (mpc_imagref (rop), mpfr_signbit (mpc_imagref (op)) ? -1 : +1);
        }
      else if (mpfr_zero_p (mpc_realref (op)))
        {
          mpfr_set (mpc_realref (rop), mpc_realref (op), MPFR_RNDN);
          mpfr_set_nan (mpc_imagref (rop));
        }
      else
        {
          mpfr_set_nan (mpc_realref (rop));
          mpfr_set_nan (mpc_imagref (rop));
        }

      return 0;
    }

  if (mpfr_inf_p (mpc_realref (op)) || mpfr_inf_p (mpc_imagref (op)))
    {
      if (mpfr_inf_p (mpc_realref (op)))
        {
          int inf_im = mpfr_inf_p (mpc_imagref (op));

          inex_re = set_pi_over_2 (mpc_realref (rop),
             (mpfr_signbit (mpc_realref (op)) ? -1 : 1), MPC_RND_RE (rnd));
          mpfr_set_inf (mpc_imagref (rop), (mpfr_signbit (mpc_imagref (op)) ? -1 : 1));

          if (inf_im)
            mpfr_div_2ui (mpc_realref (rop), mpc_realref (rop), 1, MPFR_RNDN);
        }
      else
        {
          mpfr_set_zero (mpc_realref (rop), (mpfr_signbit (mpc_realref (op)) ? -1 : 1));
          inex_re = 0;
          mpfr_set_inf (mpc_imagref (rop), (mpfr_signbit (mpc_imagref (op)) ? -1 : 1));
        }

      return MPC_INEX (inex_re, 0);
    }

  /* pure real argument */
  if (mpfr_zero_p (mpc_imagref (op)))
    {
      int s_im;
      s_im = mpfr_signbit (mpc_imagref (op));

      if (mpfr_cmp_ui (mpc_realref (op), 1) > 0)
        {
          if (s_im)
            inex_im = -mpfr_acosh (mpc_imagref (rop), mpc_realref (op),
                                   INV_RND (MPC_RND_IM (rnd)));
          else
            inex_im = mpfr_acosh (mpc_imagref (rop), mpc_realref (op),
                                  MPC_RND_IM (rnd));
          inex_re = set_pi_over_2 (mpc_realref (rop),
             (mpfr_signbit (mpc_realref (op)) ? -1 : 1), MPC_RND_RE (rnd));
          if (s_im)
            mpc_conj (rop, rop, MPC_RNDNN);
        }
      else if (mpfr_cmp_si (mpc_realref (op), -1) < 0)
        {
          mpfr_t minus_op_re;
          minus_op_re[0] = mpc_realref (op)[0];
          MPFR_CHANGE_SIGN (minus_op_re);

          if (s_im)
            inex_im = -mpfr_acosh (mpc_imagref (rop), minus_op_re,
                                   INV_RND (MPC_RND_IM (rnd)));
          else
            inex_im = mpfr_acosh (mpc_imagref (rop), minus_op_re,
                                  MPC_RND_IM (rnd));
          inex_re = set_pi_over_2 (mpc_realref (rop),
             (mpfr_signbit (mpc_realref (op)) ? -1 : 1), MPC_RND_RE (rnd));
          if (s_im)
            mpc_conj (rop, rop, MPC_RNDNN);
        }
      else
        {
          inex_im = mpfr_set_ui (mpc_imagref (rop), 0, MPC_RND_IM (rnd));
          if (s_im)
            mpfr_neg (mpc_imagref (rop), mpc_imagref (rop), MPFR_RNDN);
          inex_re = mpfr_asin (mpc_realref (rop), mpc_realref (op), MPC_RND_RE (rnd));
        }

      return MPC_INEX (inex_re, inex_im);
    }

  /* pure imaginary argument */
  if (mpfr_zero_p (mpc_realref (op)))
    {
      int s;
      s = mpfr_signbit (mpc_realref (op));
      mpfr_set_ui (mpc_realref (rop), 0, MPFR_RNDN);
      if (s)
        mpfr_neg (mpc_realref (rop), mpc_realref (rop), MPFR_RNDN);
      inex_im = mpfr_asinh (mpc_imagref (rop), mpc_imagref (op), MPC_RND_IM (rnd));

      return MPC_INEX (0, inex_im);
    }

  saved_emin = mpfr_get_emin ();
  saved_emax = mpfr_get_emax ();
  mpfr_set_emin (mpfr_get_emin_min ());
  mpfr_set_emax (mpfr_get_emax_max ());

  /* regular complex: asin(z) = -i*log(i*z+sqrt(1-z^2)) */
  p_re = mpfr_get_prec (mpc_realref(rop));
  p_im = mpfr_get_prec (mpc_imagref(rop));
  rnd_re = MPC_RND_RE(rnd);
  rnd_im = MPC_RND_IM(rnd);
  p = p_re >= p_im ? p_re : p_im;
  mpc_init2 (z1, p);
  olderr = err = 0; /* number of lost bits */
  while (1)
  {
    mpfr_exp_t ex, ey;

    loop ++;
    p += err - olderr; /* add extra number of lost bits in previous loop */
    olderr = err;
    p += (loop <= 2) ? mpc_ceil_log2 (p) + 3 : p / 2;
    mpfr_set_prec (mpc_realref(z1), p);
    mpfr_set_prec (mpc_imagref(z1), p);

    /* try special code for 1+i*y with tiny y */
    if (loop == 1 && mpfr_cmp_ui (mpc_realref(op), 1) == 0 &&
        mpc_asin_special (rop, op, rnd, z1))
      break;

    /* try special code for small z */
    if (mpfr_get_exp (mpc_realref (op)) <= -1 &&
        mpfr_get_exp (mpc_imagref (op)) <= -1 &&
        mpc_asin_series (rop, z1, op, rnd))
      break;

    /* try special code for 1/2 <= |x| < 1 and |y| < 1/2 */
    if (mpfr_get_exp (mpc_realref (op)) == 0 &&
        mpfr_get_exp (mpc_imagref (op)) <= -1 &&
        mpc_asin_tiny (rop, z1, op, rnd))
      break;

    /* z1 <- z^2 */
    mpc_sqr (z1, op, MPC_RNDNN);
    /* err(x) <= 1/2 ulp(x), err(y) <= 1/2 ulp(y) */
    /* z1 <- 1-z1 */
    ex = mpfr_get_exp (mpc_realref(z1));
    mpfr_ui_sub (mpc_realref(z1), 1, mpc_realref(z1), MPFR_RNDN);
    mpfr_neg (mpc_imagref(z1), mpc_imagref(z1), MPFR_RNDN);
    ex = ex - mpfr_get_exp (mpc_realref(z1));
    ex = (ex <= 0) ? 0 : ex;
    /* err(x) <= 2^ex * ulp(x) */
    ex = ex + mpfr_get_exp (mpc_realref(z1)) - p;
    /* err(x) <= 2^ex */
    ey = mpfr_get_exp (mpc_imagref(z1)) - p - 1;
    /* err(y) <= 2^ey */
    ex = (ex >= ey) ? ex : ey; /* err(x), err(y) <= 2^ex, i.e., the norm
                                  of the error is bounded by |h|<=2^(ex+1/2) */
    /* z1 <- sqrt(z1): if z1 = z + h, then sqrt(z1) = sqrt(z) + h/2/sqrt(t) */
    ey = mpfr_get_exp (mpc_realref(z1)) >= mpfr_get_exp (mpc_imagref(z1))
      ? mpfr_get_exp (mpc_realref(z1)) : mpfr_get_exp (mpc_imagref(z1));
    /* we have |z1| >= 2^(ey-1) thus 1/|z1| <= 2^(1-ey) */
    mpc_sqrt (z1, z1, MPC_RNDNN);
    ex = (2 * ex + 1) - 2 - (ey - 1); /* |h^2/4/|t| <= 2^ex */
    ex = (ex + 1) / 2; /* ceil(ex/2) */
    /* express ex in terms of ulp(z1) */
    ey = mpfr_get_exp (mpc_realref(z1)) <= mpfr_get_exp (mpc_imagref(z1))
      ? mpfr_get_exp (mpc_realref(z1)) : mpfr_get_exp (mpc_imagref(z1));
    ex = ex - ey + p;
    /* take into account the rounding error in the mpc_sqrt call */
    err = (ex <= 0) ? 1 : ex + 1;
    /* err(x) <= 2^err * ulp(x), err(y) <= 2^err * ulp(y) */
    /* z1 <- i*z + z1 */
    ex = mpfr_get_exp (mpc_realref(z1));
    ey = mpfr_get_exp (mpc_imagref(z1));
    mpfr_sub (mpc_realref(z1), mpc_realref(z1), mpc_imagref(op), MPFR_RNDN);
    mpfr_add (mpc_imagref(z1), mpc_imagref(z1), mpc_realref(op), MPFR_RNDN);
    if (mpfr_cmp_ui (mpc_realref(z1), 0) == 0 || mpfr_cmp_ui (mpc_imagref(z1), 0) == 0)
      continue;
    ex -= mpfr_get_exp (mpc_realref(z1)); /* cancellation in x */
    ey -= mpfr_get_exp (mpc_imagref(z1)); /* cancellation in y */
    ex = (ex >= ey) ? ex : ey; /* maximum cancellation */
    err += ex;
    err = (err <= 0) ? 1 : err + 1; /* rounding error in sub/add */
    /* z1 <- log(z1): if z1 = z + h, then log(z1) = log(z) + h/t with
       |t| >= min(|z1|,|z|) */
    ex = mpfr_get_exp (mpc_realref(z1));
    ey = mpfr_get_exp (mpc_imagref(z1));
    ex = (ex >= ey) ? ex : ey;
    err += ex - p; /* revert to absolute error <= 2^err */
    mpc_log (z1, z1, MPFR_RNDN);
    err -= ex - 1; /* 1/|t| <= 1/|z| <= 2^(1-ex) */
    /* express err in terms of ulp(z1) */
    ey = mpfr_get_exp (mpc_realref(z1)) <= mpfr_get_exp (mpc_imagref(z1))
      ? mpfr_get_exp (mpc_realref(z1)) : mpfr_get_exp (mpc_imagref(z1));
    err = err - ey + p;
    /* take into account the rounding error in the mpc_log call */
    err = (err <= 0) ? 1 : err + 1;
    /* z1 <- -i*z1 */
    mpfr_swap (mpc_realref(z1), mpc_imagref(z1));
    mpfr_neg (mpc_imagref(z1), mpc_imagref(z1), MPFR_RNDN);
    if (mpfr_can_round (mpc_realref(z1), p - err, MPFR_RNDN, MPFR_RNDZ,
                        p_re + (rnd_re == MPFR_RNDN)) &&
        mpfr_can_round (mpc_imagref(z1), p - err, MPFR_RNDN, MPFR_RNDZ,
                        p_im + (rnd_im == MPFR_RNDN)))
      break;
  }

  inex = mpc_set (rop, z1, rnd);
  mpc_clear (z1);

  /* restore the exponent range, and check the range of results */
  mpfr_set_emin (saved_emin);
  mpfr_set_emax (saved_emax);
  inex_re = mpfr_check_range (mpc_realref (rop), MPC_INEX_RE (inex),
                              MPC_RND_RE (rnd));
  inex_im = mpfr_check_range (mpc_imagref (rop), MPC_INEX_IM (inex),
                              MPC_RND_IM (rnd));

  return MPC_INEX (inex_re, inex_im);
}