summaryrefslogtreecommitdiff
path: root/storage/innobase/ut/ut0crc32.cc
blob: 386d32f6a60ecb253f33238719b532db91c15e9d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
/*****************************************************************************

Copyright (c) 2009, 2010 Facebook, Inc. All Rights Reserved.
Copyright (c) 2011, 2015, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2016, MariaDB Corporation.

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA

*****************************************************************************/

/***************************************************************//**
@file ut/ut0crc32.cc
CRC32 implementation from Facebook, based on the zlib implementation.

Created Aug 8, 2011, Vasil Dimov, based on mysys/my_crc32.c and
mysys/my_perf.c, contributed by Facebook under the following license.
********************************************************************/

/* Copyright (C) 2009-2010 Facebook, Inc.  All Rights Reserved.

   Dual licensed under BSD license and GPLv2.

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are met:
   1. Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.
   2. Redistributions in binary form must reproduce the above copyright notice,
      this list of conditions and the following disclaimer in the documentation
      and/or other materials provided with the distribution.

   THIS SOFTWARE IS PROVIDED BY FACEBOOK, INC. ``AS IS'' AND ANY EXPRESS OR
   IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
   MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO
   EVENT SHALL FACEBOOK, INC. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
   OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
   WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
   OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
   ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the Free
   Software Foundation; version 2 of the License.

   This program is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
   more details.

   You should have received a copy of the GNU General Public License along with
   this program; if not, write to the Free Software Foundation, Inc.,
   51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA */

/* The below CRC32 implementation is based on the implementation included with
 * zlib with modifications to process 8 bytes at a time and using SSE 4.2
 * extensions when available.  The polynomial constant has been changed to
 * match the one used by SSE 4.2 and does not return the same value as the
 * version used by zlib.  The original zlib copyright notice follows. */

/* crc32.c -- compute the CRC-32 of a buf stream
 * Copyright (C) 1995-2005 Mark Adler
 * For conditions of distribution and use, see copyright notice in zlib.h
 *
 * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
 * CRC methods: exclusive-oring 32 bits of buf at a time, and pre-computing
 * tables for updating the shift register in one step with three exclusive-ors
 * instead of four steps with four exclusive-ors.  This results in about a
 * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
 */

// First include (the generated) my_config.h, to get correct platform defines.
#include "my_config.h"
#include <string.h>

#include "univ.i"
#include "ut0crc32.h"

/** Pointer to CRC32 calculation function. */
ut_crc32_func_t	ut_crc32;

/** Pointer to CRC32 calculation function, which uses big-endian byte order
when converting byte strings to integers internally. */
ut_crc32_func_t	ut_crc32_legacy_big_endian;

/** Pointer to CRC32-byte-by-byte calculation function (byte order agnostic,
but very slow). */
ut_crc32_func_t	ut_crc32_byte_by_byte;

/** Text description of CRC32 implementation */
const char*	ut_crc32_implementation;

/** Swap the byte order of an 8 byte integer.
@param[in]	i	8-byte integer
@return 8-byte integer */
inline
uint64_t
ut_crc32_swap_byteorder(
	uint64_t	i)
{
	return(i << 56
	       | (i & 0x000000000000FF00ULL) << 40
	       | (i & 0x0000000000FF0000ULL) << 24
	       | (i & 0x00000000FF000000ULL) << 8
	       | (i & 0x000000FF00000000ULL) >> 8
	       | (i & 0x0000FF0000000000ULL) >> 24
	       | (i & 0x00FF000000000000ULL) >> 40
	       | i >> 56);
}

/* CRC32 hardware implementation. */

#ifdef HAVE_CRC32_VPMSUM
extern "C" {
unsigned int crc32c_vpmsum(unsigned int crc, const unsigned char *p, unsigned long len);
};
UNIV_INLINE
ib_uint32_t
ut_crc32_power8(
/*===========*/
		const byte*		buf,		/*!< in: data over which to calculate CRC32 */
		ulint			len)		/*!< in: data length */
{
	return crc32c_vpmsum(0, buf, len);
}
#endif

#if defined(__GNUC__) && defined(__x86_64__)
/********************************************************************//**
Fetches CPU info */
static
void
ut_cpuid(
/*=====*/
	uint32_t	vend[3],	/*!< out: CPU vendor */
	uint32_t*	model,		/*!< out: CPU model */
	uint32_t*	family,		/*!< out: CPU family */
	uint32_t*	stepping,	/*!< out: CPU stepping */
	uint32_t*	features_ecx,	/*!< out: CPU features ecx */
	uint32_t*	features_edx)	/*!< out: CPU features edx */
{
	uint32_t	sig;
	asm("cpuid" : "=b" (vend[0]), "=c" (vend[2]), "=d" (vend[1]) : "a" (0));
	asm("cpuid" : "=a" (sig), "=c" (*features_ecx), "=d" (*features_edx)
	    : "a" (1)
	    : "ebx");

	*model = ((sig >> 4) & 0xF);
	*family = ((sig >> 8) & 0xF);
	*stepping = (sig & 0xF);

	if (memcmp(vend, "GenuineIntel", 12) == 0
	    || (memcmp(vend, "AuthenticAMD", 12) == 0 && *family == 0xF)) {

		*model += (((sig >> 16) & 0xF) << 4);
		*family += ((sig >> 20) & 0xFF);
	}
}

/** Calculate CRC32 over 8-bit data using a hardware/CPU instruction.
@param[in,out]	crc	crc32 checksum so far when this function is called,
when the function ends it will contain the new checksum
@param[in,out]	data	data to be checksummed, the pointer will be advanced
with 1 byte
@param[in,out]	len	remaining bytes, it will be decremented with 1 */
inline
void
ut_crc32_8_hw(
	uint32_t*	crc,
	const byte**	data,
	ulint*		len)
{
	asm("crc32b %1, %0"
	    /* output operands */
	    : "+r" (*crc)
	    /* input operands */
	    : "rm" ((*data)[0]));

	(*data)++;
	(*len)--;
}

/** Calculate CRC32 over a 64-bit integer using a hardware/CPU instruction.
@param[in]	crc	crc32 checksum so far
@param[in]	data	data to be checksummed
@return resulting checksum of crc + crc(data) */
inline
uint32_t
ut_crc32_64_low_hw(
	uint32_t	crc,
	uint64_t	data)
{
	uint64_t	crc_64bit = crc;

	asm("crc32q %1, %0"
	    /* output operands */
	    : "+r" (crc_64bit)
	    /* input operands */
	    : "rm" (data));

	return(static_cast<uint32_t>(crc_64bit));
}

/** Calculate CRC32 over 64-bit byte string using a hardware/CPU instruction.
@param[in,out]	crc	crc32 checksum so far when this function is called,
when the function ends it will contain the new checksum
@param[in,out]	data	data to be checksummed, the pointer will be advanced
with 8 bytes
@param[in,out]	len	remaining bytes, it will be decremented with 8 */
inline
void
ut_crc32_64_hw(
	uint32_t*	crc,
	const byte**	data,
	ulint*		len)
{
	uint64_t	data_int = *reinterpret_cast<const uint64_t*>(*data);

#ifdef WORDS_BIGENDIAN
	/* Currently we only support x86_64 (little endian) CPUs. In case
	some big endian CPU supports a CRC32 instruction, then maybe we will
	need a byte order swap here. */
#error Dont know how to handle big endian CPUs
	/*
	data_int = ut_crc32_swap_byteorder(data_int);
	*/
#endif /* WORDS_BIGENDIAN */

	*crc = ut_crc32_64_low_hw(*crc, data_int);

	*data += 8;
	*len -= 8;
}

/** Calculate CRC32 over 64-bit byte string using a hardware/CPU instruction.
The byte string is converted to a 64-bit integer using big endian byte order.
@param[in,out]	crc	crc32 checksum so far when this function is called,
when the function ends it will contain the new checksum
@param[in,out]	data	data to be checksummed, the pointer will be advanced
with 8 bytes
@param[in,out]	len	remaining bytes, it will be decremented with 8 */
inline
void
ut_crc32_64_legacy_big_endian_hw(
	uint32_t*	crc,
	const byte**	data,
	ulint*		len)
{
	uint64_t	data_int = *reinterpret_cast<const uint64_t*>(*data);

#ifndef WORDS_BIGENDIAN
	data_int = ut_crc32_swap_byteorder(data_int);
#else
	/* Currently we only support x86_64 (little endian) CPUs. In case
	some big endian CPU supports a CRC32 instruction, then maybe we will
	NOT need a byte order swap here. */
#error Dont know how to handle big endian CPUs
#endif /* WORDS_BIGENDIAN */

	*crc = ut_crc32_64_low_hw(*crc, data_int);

	*data += 8;
	*len -= 8;
}

/** Calculates CRC32 using hardware/CPU instructions.
@param[in]	buf	data over which to calculate CRC32
@param[in]	len	data length
@return CRC-32C (polynomial 0x11EDC6F41) */
uint32_t
ut_crc32_hw(
	const byte*	buf,
	ulint		len)
{
	uint32_t	crc = 0xFFFFFFFFU;

	/* Calculate byte-by-byte up to an 8-byte aligned address. After
	this consume the input 8-bytes at a time. */
	while (len > 0 && (reinterpret_cast<uintptr_t>(buf) & 7) != 0) {
		ut_crc32_8_hw(&crc, &buf, &len);
	}

	/* Perf testing
	./unittest/gunit/innodb/merge_innodb_tests-t --gtest_filter=ut0crc32.perf
	on CPU "Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz"
	with different N in "while (len >= N) {" shows:
	N=16
	2.867254 sec
	2.866860 sec
	2.867973 sec

	N=32
	2.715725 sec
	2.713008 sec
	2.712520 sec
	(5.36% speedup over N=16)

	N=64
	2.634140 sec
	2.636558 sec
	2.636488 sec
	(2.88% speedup over N=32)

	N=128
	2.599534 sec
	2.599919 sec
	2.598035 sec
	(1.39% speedup over N=64)

	N=256
	2.576993 sec
	2.576748 sec
	2.575700 sec
	(0.87% speedup over N=128)

	N=512
	2.693928 sec
	2.691663 sec
	2.692142 sec
	(4.51% slowdown over N=256)
	*/
	while (len >= 128) {
		/* This call is repeated 16 times. 16 * 8 = 128. */
		ut_crc32_64_hw(&crc, &buf, &len);
		ut_crc32_64_hw(&crc, &buf, &len);
		ut_crc32_64_hw(&crc, &buf, &len);
		ut_crc32_64_hw(&crc, &buf, &len);
		ut_crc32_64_hw(&crc, &buf, &len);
		ut_crc32_64_hw(&crc, &buf, &len);
		ut_crc32_64_hw(&crc, &buf, &len);
		ut_crc32_64_hw(&crc, &buf, &len);
		ut_crc32_64_hw(&crc, &buf, &len);
		ut_crc32_64_hw(&crc, &buf, &len);
		ut_crc32_64_hw(&crc, &buf, &len);
		ut_crc32_64_hw(&crc, &buf, &len);
		ut_crc32_64_hw(&crc, &buf, &len);
		ut_crc32_64_hw(&crc, &buf, &len);
		ut_crc32_64_hw(&crc, &buf, &len);
		ut_crc32_64_hw(&crc, &buf, &len);
	}

	while (len >= 8) {
		ut_crc32_64_hw(&crc, &buf, &len);
	}

	while (len > 0) {
		ut_crc32_8_hw(&crc, &buf, &len);
	}

	return(~crc);
}

/** Calculates CRC32 using hardware/CPU instructions.
This function uses big endian byte ordering when converting byte sequence to
integers.
@param[in]	buf	data over which to calculate CRC32
@param[in]	len	data length
@return CRC-32C (polynomial 0x11EDC6F41) */
uint32_t
ut_crc32_legacy_big_endian_hw(
	const byte*	buf,
	ulint		len)
{
	uint32_t	crc = 0xFFFFFFFFU;

	/* Calculate byte-by-byte up to an 8-byte aligned address. After
	this consume the input 8-bytes at a time. */
	while (len > 0 && (reinterpret_cast<uintptr_t>(buf) & 7) != 0) {
		ut_crc32_8_hw(&crc, &buf, &len);
	}

	while (len >= 128) {
		/* This call is repeated 16 times. 16 * 8 = 128. */
		ut_crc32_64_legacy_big_endian_hw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_hw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_hw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_hw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_hw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_hw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_hw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_hw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_hw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_hw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_hw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_hw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_hw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_hw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_hw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_hw(&crc, &buf, &len);
	}

	while (len >= 8) {
		ut_crc32_64_legacy_big_endian_hw(&crc, &buf, &len);
	}

	while (len > 0) {
		ut_crc32_8_hw(&crc, &buf, &len);
	}

	return(~crc);
}

/** Calculates CRC32 using hardware/CPU instructions.
This function processes one byte at a time (very slow) and thus it does
not depend on the byte order of the machine.
@param[in]	buf	data over which to calculate CRC32
@param[in]	len	data length
@return CRC-32C (polynomial 0x11EDC6F41) */
uint32_t
ut_crc32_byte_by_byte_hw(
	const byte*	buf,
	ulint		len)
{
	uint32_t	crc = 0xFFFFFFFFU;

	while (len > 0) {
		ut_crc32_8_hw(&crc, &buf, &len);
	}

	return(~crc);
}
#endif /* defined(__GNUC__) && defined(__x86_64__) */

/* CRC32 software implementation. */

/* Precalculated table used to generate the CRC32 if the CPU does not
have support for it */
static uint32_t	ut_crc32_slice8_table[8][256];
static bool	ut_crc32_slice8_table_initialized = false;

/********************************************************************//**
Initializes the table that is used to generate the CRC32 if the CPU does
not have support for it. */
static
void
ut_crc32_slice8_table_init()
/*========================*/
{
	/* bit-reversed poly 0x1EDC6F41 (from SSE42 crc32 instruction) */
	static const uint32_t	poly = 0x82f63b78;
	uint32_t		n;
	uint32_t		k;
	uint32_t		c;

	for (n = 0; n < 256; n++) {
		c = n;
		for (k = 0; k < 8; k++) {
			c = (c & 1) ? (poly ^ (c >> 1)) : (c >> 1);
		}
		ut_crc32_slice8_table[0][n] = c;
	}

	for (n = 0; n < 256; n++) {
		c = ut_crc32_slice8_table[0][n];
		for (k = 1; k < 8; k++) {
			c = ut_crc32_slice8_table[0][c & 0xFF] ^ (c >> 8);
			ut_crc32_slice8_table[k][n] = c;
		}
	}

	ut_crc32_slice8_table_initialized = true;
}

/** Calculate CRC32 over 8-bit data using a software implementation.
@param[in,out]	crc	crc32 checksum so far when this function is called,
when the function ends it will contain the new checksum
@param[in,out]	data	data to be checksummed, the pointer will be advanced
with 1 byte
@param[in,out]	len	remaining bytes, it will be decremented with 1 */
inline
void
ut_crc32_8_sw(
	uint32_t*	crc,
	const byte**	data,
	ulint*		len)
{
	const uint8_t	i = (*crc ^ (*data)[0]) & 0xFF;

	*crc = (*crc >> 8) ^ ut_crc32_slice8_table[0][i];

	(*data)++;
	(*len)--;
}

/** Calculate CRC32 over a 64-bit integer using a software implementation.
@param[in]	crc	crc32 checksum so far
@param[in]	data	data to be checksummed
@return resulting checksum of crc + crc(data) */
inline
uint32_t
ut_crc32_64_low_sw(
	uint32_t	crc,
	uint64_t	data)
{
	const uint64_t	i = crc ^ data;

	return(
		ut_crc32_slice8_table[7][(i      ) & 0xFF] ^
		ut_crc32_slice8_table[6][(i >>  8) & 0xFF] ^
		ut_crc32_slice8_table[5][(i >> 16) & 0xFF] ^
		ut_crc32_slice8_table[4][(i >> 24) & 0xFF] ^
		ut_crc32_slice8_table[3][(i >> 32) & 0xFF] ^
		ut_crc32_slice8_table[2][(i >> 40) & 0xFF] ^
		ut_crc32_slice8_table[1][(i >> 48) & 0xFF] ^
		ut_crc32_slice8_table[0][(i >> 56)]
	);
}

/** Calculate CRC32 over 64-bit byte string using a software implementation.
@param[in,out]	crc	crc32 checksum so far when this function is called,
when the function ends it will contain the new checksum
@param[in,out]	data	data to be checksummed, the pointer will be advanced
with 8 bytes
@param[in,out]	len	remaining bytes, it will be decremented with 8 */
inline
void
ut_crc32_64_sw(
	uint32_t*	crc,
	const byte**	data,
	ulint*		len)
{
	uint64_t	data_int = *reinterpret_cast<const uint64_t*>(*data);

#ifdef WORDS_BIGENDIAN
	data_int = ut_crc32_swap_byteorder(data_int);
#endif /* WORDS_BIGENDIAN */

	*crc = ut_crc32_64_low_sw(*crc, data_int);

	*data += 8;
	*len -= 8;
}

/** Calculate CRC32 over 64-bit byte string using a software implementation.
The byte string is converted to a 64-bit integer using big endian byte order.
@param[in,out]	crc	crc32 checksum so far when this function is called,
when the function ends it will contain the new checksum
@param[in,out]	data	data to be checksummed, the pointer will be advanced
with 8 bytes
@param[in,out]	len	remaining bytes, it will be decremented with 8 */
inline
void
ut_crc32_64_legacy_big_endian_sw(
	uint32_t*	crc,
	const byte**	data,
	ulint*		len)
{
	uint64_t	data_int = *reinterpret_cast<const uint64_t*>(*data);

#ifndef WORDS_BIGENDIAN
	data_int = ut_crc32_swap_byteorder(data_int);
#endif /* WORDS_BIGENDIAN */

	*crc = ut_crc32_64_low_sw(*crc, data_int);

	*data += 8;
	*len -= 8;
}

/** Calculates CRC32 in software, without using CPU instructions.
@param[in]	buf	data over which to calculate CRC32
@param[in]	len	data length
@return CRC-32C (polynomial 0x11EDC6F41) */
uint32_t
ut_crc32_sw(
	const byte*	buf,
	ulint		len)
{
	uint32_t	crc = 0xFFFFFFFFU;

	ut_a(ut_crc32_slice8_table_initialized);

	/* Calculate byte-by-byte up to an 8-byte aligned address. After
	this consume the input 8-bytes at a time. */
	while (len > 0 && (reinterpret_cast<uintptr_t>(buf) & 7) != 0) {
		ut_crc32_8_sw(&crc, &buf, &len);
	}

	while (len >= 128) {
		/* This call is repeated 16 times. 16 * 8 = 128. */
		ut_crc32_64_sw(&crc, &buf, &len);
		ut_crc32_64_sw(&crc, &buf, &len);
		ut_crc32_64_sw(&crc, &buf, &len);
		ut_crc32_64_sw(&crc, &buf, &len);
		ut_crc32_64_sw(&crc, &buf, &len);
		ut_crc32_64_sw(&crc, &buf, &len);
		ut_crc32_64_sw(&crc, &buf, &len);
		ut_crc32_64_sw(&crc, &buf, &len);
		ut_crc32_64_sw(&crc, &buf, &len);
		ut_crc32_64_sw(&crc, &buf, &len);
		ut_crc32_64_sw(&crc, &buf, &len);
		ut_crc32_64_sw(&crc, &buf, &len);
		ut_crc32_64_sw(&crc, &buf, &len);
		ut_crc32_64_sw(&crc, &buf, &len);
		ut_crc32_64_sw(&crc, &buf, &len);
		ut_crc32_64_sw(&crc, &buf, &len);
	}

	while (len >= 8) {
		ut_crc32_64_sw(&crc, &buf, &len);
	}

	while (len > 0) {
		ut_crc32_8_sw(&crc, &buf, &len);
	}

	return(~crc);
}

/** Calculates CRC32 in software, without using CPU instructions.
This function uses big endian byte ordering when converting byte sequence to
integers.
@param[in]	buf	data over which to calculate CRC32
@param[in]	len	data length
@return CRC-32C (polynomial 0x11EDC6F41) */
uint32_t
ut_crc32_legacy_big_endian_sw(
	const byte*	buf,
	ulint		len)
{
	uint32_t	crc = 0xFFFFFFFFU;

	ut_a(ut_crc32_slice8_table_initialized);

	/* Calculate byte-by-byte up to an 8-byte aligned address. After
	this consume the input 8-bytes at a time. */
	while (len > 0 && (reinterpret_cast<uintptr_t>(buf) & 7) != 0) {
		ut_crc32_8_sw(&crc, &buf, &len);
	}

	while (len >= 128) {
		/* This call is repeated 16 times. 16 * 8 = 128. */
		ut_crc32_64_legacy_big_endian_sw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_sw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_sw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_sw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_sw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_sw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_sw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_sw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_sw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_sw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_sw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_sw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_sw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_sw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_sw(&crc, &buf, &len);
		ut_crc32_64_legacy_big_endian_sw(&crc, &buf, &len);
	}

	while (len >= 8) {
		ut_crc32_64_legacy_big_endian_sw(&crc, &buf, &len);
	}

	while (len > 0) {
		ut_crc32_8_sw(&crc, &buf, &len);
	}

	return(~crc);
}

/** Calculates CRC32 in software, without using CPU instructions.
This function processes one byte at a time (very slow) and thus it does
not depend on the byte order of the machine.
@param[in]	buf	data over which to calculate CRC32
@param[in]	len	data length
@return CRC-32C (polynomial 0x11EDC6F41) */
uint32_t
ut_crc32_byte_by_byte_sw(
	const byte*	buf,
	ulint		len)
{
	uint32_t	crc = 0xFFFFFFFFU;

	ut_a(ut_crc32_slice8_table_initialized);

	while (len > 0) {
		ut_crc32_8_sw(&crc, &buf, &len);
	}

	return(~crc);
}

/********************************************************************//**
Initializes the data structures used by ut_crc32*(). Does not do any
allocations, would not hurt if called twice, but would be pointless. */
void
ut_crc32_init()
/*===========*/
{
	ut_crc32_slice8_table_init();
	ut_crc32 = ut_crc32_sw;
	ut_crc32_legacy_big_endian = ut_crc32_legacy_big_endian_sw;
	ut_crc32_byte_by_byte = ut_crc32_byte_by_byte_sw;
	ut_crc32_implementation = "Using generic crc32 instructions";

#if defined(__GNUC__) && defined(__x86_64__)
	uint32_t	vend[3];
	uint32_t	model;
	uint32_t	family;
	uint32_t	stepping;
	uint32_t	features_ecx;
	uint32_t	features_edx;

	ut_cpuid(vend, &model, &family, &stepping,
		 &features_ecx, &features_edx);

	/* Valgrind does not understand the CRC32 instructions:

	vex amd64->IR: unhandled instruction bytes: 0xF2 0x48 0xF 0x38 0xF0 0xA
	valgrind: Unrecognised instruction at address 0xad3db5.
	Your program just tried to execute an instruction that Valgrind
	did not recognise.  There are two possible reasons for this.
	1. Your program has a bug and erroneously jumped to a non-code
	   location.  If you are running Memcheck and you just saw a
	   warning about a bad jump, it's probably your program's fault.
	2. The instruction is legitimate but Valgrind doesn't handle it,
	   i.e. it's Valgrind's fault.  If you think this is the case or
	   you are not sure, please let us know and we'll try to fix it.
	Either way, Valgrind will now raise a SIGILL signal which will
	probably kill your program.

	*/

	if (features_ecx & 1 << 20) {
		ut_crc32 = ut_crc32_hw;
		ut_crc32_legacy_big_endian = ut_crc32_legacy_big_endian_hw;
		ut_crc32_byte_by_byte = ut_crc32_byte_by_byte_hw;
		ut_crc32_implementation = "Using SSE2 crc32 instructions";
	}

#elif defined(HAVE_CRC32_VPMSUM)
	ut_crc32 = ut_crc32_power8;
	ut_crc32_implementation = "Using POWER8 crc32 instructions";
#endif

}