summaryrefslogtreecommitdiff
path: root/storage/innobase/que/que0que.cc
blob: 125c50fbc8bf56c070a366ac1cce30a5c5805717 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
/*****************************************************************************

Copyright (c) 1996, 2016, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2017, 2022, MariaDB Corporation.

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA

*****************************************************************************/

/**************************************************//**
@file que/que0que.cc
Query graph

Created 5/27/1996 Heikki Tuuri
*******************************************************/

#include "que0que.h"
#include "trx0trx.h"
#include "trx0roll.h"
#include "row0undo.h"
#include "row0ins.h"
#include "row0upd.h"
#include "row0sel.h"
#include "row0purge.h"
#include "dict0crea.h"
#include "log0log.h"
#include "eval0proc.h"

#define QUE_MAX_LOOPS_WITHOUT_CHECK	16

/* Short introduction to query graphs
   ==================================

A query graph consists of nodes linked to each other in various ways. The
execution starts at que_run_threads() which takes a que_thr_t parameter.
que_thr_t contains two fields that control query graph execution: run_node
and prev_node. run_node is the next node to execute and prev_node is the
last node executed.

Each node has a pointer to a 'next' statement, i.e., its brother, and a
pointer to its parent node. The next pointer is NULL in the last statement
of a block.

Loop nodes contain a link to the first statement of the enclosed statement
list. While the loop runs, que_thr_step() checks if execution to the loop
node came from its parent or from one of the statement nodes in the loop. If
it came from the parent of the loop node it starts executing the first
statement node in the loop. If it came from one of the statement nodes in
the loop, then it checks if the statement node has another statement node
following it, and runs it if so.

To signify loop ending, the loop statements (see e.g. while_step()) set
que_thr_t->run_node to the loop node's parent node. This is noticed on the
next call of que_thr_step() and execution proceeds to the node pointed to by
the loop node's 'next' pointer.

For example, the code:

X := 1;
WHILE X < 5 LOOP
 X := X + 1;
 X := X + 1;
X := 5

will result in the following node hierarchy, with the X-axis indicating
'next' links and the Y-axis indicating parent/child links:

A - W - A
    |
    |
    A - A

A = assign_node_t, W = while_node_t. */

/* How a stored procedure containing COMMIT or ROLLBACK commands
is executed?

The commit or rollback can be seen as a subprocedure call.

When the transaction starts to handle a rollback or commit.
It builds a query graph which, when executed, will roll back
or commit the incomplete transaction. The transaction
is moved to the TRX_QUE_ROLLING_BACK or TRX_QUE_COMMITTING state.
If specified, the SQL cursors opened by the transaction are closed.
When the execution of the graph completes, it is like returning
from a subprocedure: the query thread which requested the operation
starts running again. */

/***********************************************************************//**
Creates a query graph fork node.
@return own: fork node */
que_fork_t*
que_fork_create(
/*============*/
	que_t*		graph,		/*!< in: graph, if NULL then this
					fork node is assumed to be the
					graph root */
	que_node_t*	parent,		/*!< in: parent node */
	ulint		fork_type,	/*!< in: fork type */
	mem_heap_t*	heap)		/*!< in: memory heap where created */
{
	que_fork_t*	fork;

	ut_ad(heap);

	fork = static_cast<que_fork_t*>(mem_heap_zalloc(heap, sizeof(*fork)));

	fork->heap = heap;

	fork->fork_type = fork_type;

	fork->common.parent = parent;

	fork->common.type = QUE_NODE_FORK;

	fork->state = QUE_FORK_COMMAND_WAIT;

	fork->graph = (graph != NULL) ? graph : fork;

	UT_LIST_INIT(fork->thrs, &que_thr_t::thrs);

	return(fork);
}


/** Creates a query graph thread node.
@param[in]	parent		parent node, i.e., a fork node
@param[in]	heap		memory heap where created
@param[in]	prebuilt	row prebuilt structure
@return own: query thread node */
que_thr_t*
que_thr_create(
	que_fork_t*	parent,
	mem_heap_t*	heap,
	row_prebuilt_t*	prebuilt)
{
	que_thr_t*	thr;

	ut_ad(parent != NULL);
	ut_ad(heap != NULL);

	thr = static_cast<que_thr_t*>(mem_heap_zalloc(heap, sizeof(*thr)));

	thr->graph = parent->graph;

	thr->common.parent = parent;

	thr->common.type = QUE_NODE_THR;

	thr->state = QUE_THR_COMMAND_WAIT;

	thr->lock_state = QUE_THR_LOCK_NOLOCK;

	thr->prebuilt = prebuilt;

	UT_LIST_ADD_LAST(parent->thrs, thr);

	return(thr);
}

/**********************************************************************//**
Moves a suspended query thread to the QUE_THR_RUNNING state and may release
a worker thread to execute it. This function should be used to end
the wait state of a query thread waiting for a lock or a stored procedure
completion.
@return the query thread that needs to be released. */
que_thr_t*
que_thr_end_lock_wait(
/*==================*/
	trx_t*		trx)	/*!< in: transaction with que_state in
				QUE_THR_LOCK_WAIT */
{
	que_thr_t*	thr;

	ut_ad(lock_mutex_own());
	ut_ad(trx_mutex_own(trx));

	thr = trx->lock.wait_thr;

	ut_ad(thr != NULL);

	ut_ad(trx->lock.que_state == TRX_QUE_LOCK_WAIT);
	/* In MySQL this is the only possible state here */
	ut_a(thr->state == QUE_THR_LOCK_WAIT);

	bool was_active = thr->is_active;

	thr->start_running();

	trx->lock.que_state = TRX_QUE_RUNNING;

	trx->lock.wait_thr = NULL;

	/* In MySQL we let the OS thread (not just the query thread) to wait
	for the lock to be released: */

	return((!was_active && thr != NULL) ? thr : NULL);
}

/**********************************************************************//**
Inits a query thread for a command. */
UNIV_INLINE
void
que_thr_init_command(
/*=================*/
	que_thr_t*	thr)	/*!< in: query thread */
{
	thr->run_node = thr;
	thr->prev_node = thr->common.parent;
	thr->start_running();
}

/**********************************************************************//**
Round robin scheduler.
@return a query thread of the graph moved to QUE_THR_RUNNING state, or
NULL; the query thread should be executed by que_run_threads by the
caller */
que_thr_t*
que_fork_scheduler_round_robin(
/*===========================*/
	que_fork_t*	fork,		/*!< in: a query fork */
	que_thr_t*	thr)		/*!< in: current pos */
{
	trx_mutex_enter(fork->trx);

	/* If no current, start first available. */
	if (thr == NULL) {
		thr = UT_LIST_GET_FIRST(fork->thrs);
	} else {
		thr = UT_LIST_GET_NEXT(thrs, thr);
	}

	if (thr) {

		fork->state = QUE_FORK_ACTIVE;

		fork->last_sel_node = NULL;

		switch (thr->state) {
		case QUE_THR_COMMAND_WAIT:
		case QUE_THR_COMPLETED:
			ut_a(!thr->is_active);
			que_thr_init_command(thr);
			break;

		case QUE_THR_SUSPENDED:
		case QUE_THR_LOCK_WAIT:
		default:
			ut_error;

		}
	}

	trx_mutex_exit(fork->trx);

	return(thr);
}

/**********************************************************************//**
Starts execution of a command in a query fork. Picks a query thread which
is not in the QUE_THR_RUNNING state and moves it to that state. If none
can be chosen, a situation which may arise in parallelized fetches, NULL
is returned.
@return a query thread of the graph moved to QUE_THR_RUNNING state, or
NULL; the query thread should be executed by que_run_threads by the
caller */
que_thr_t*
que_fork_start_command(
/*===================*/
	que_fork_t*	fork)	/*!< in: a query fork */
{
	que_thr_t*	thr;
	que_thr_t*	suspended_thr = NULL;
	que_thr_t*	completed_thr = NULL;

	fork->state = QUE_FORK_ACTIVE;

	fork->last_sel_node = NULL;

	suspended_thr = NULL;
	completed_thr = NULL;

	/* Choose the query thread to run: usually there is just one thread,
	but in a parallelized select, which necessarily is non-scrollable,
	there may be several to choose from */

	/* First we try to find a query thread in the QUE_THR_COMMAND_WAIT
	state. Then we try to find a query thread in the QUE_THR_SUSPENDED
	state, finally we try to find a query thread in the QUE_THR_COMPLETED
	state */

	/* We make a single pass over the thr list within which we note which
	threads are ready to run. */
	for (thr = UT_LIST_GET_FIRST(fork->thrs);
	     thr != NULL;
	     thr = UT_LIST_GET_NEXT(thrs, thr)) {

		switch (thr->state) {
		case QUE_THR_COMMAND_WAIT:

			/* We have to send the initial message to query thread
			to start it */

			que_thr_init_command(thr);

			return(thr);

		case QUE_THR_SUSPENDED:
			/* In this case the execution of the thread was
			suspended: no initial message is needed because
			execution can continue from where it was left */
			if (!suspended_thr) {
				suspended_thr = thr;
			}

			break;

		case QUE_THR_COMPLETED:
			if (!completed_thr) {
				completed_thr = thr;
			}

			break;

		case QUE_THR_RUNNING:
		case QUE_THR_LOCK_WAIT:
			ut_error;
		}
	}

	if (suspended_thr) {
		thr = suspended_thr;
		thr->start_running();
	} else if (completed_thr) {
		thr = completed_thr;
		que_thr_init_command(thr);
	} else {
		ut_error;
	}

	return(thr);
}

/**********************************************************************//**
Calls que_graph_free_recursive for statements in a statement list. */
static
void
que_graph_free_stat_list(
/*=====================*/
	que_node_t*	node)	/*!< in: first query graph node in the list */
{
	while (node) {
		que_graph_free_recursive(node);

		node = que_node_get_next(node);
	}
}

/**********************************************************************//**
Frees a query graph, but not the heap where it was created. Does not free
explicit cursor declarations, they are freed in que_graph_free. */
void
que_graph_free_recursive(
/*=====================*/
	que_node_t*	node)	/*!< in: query graph node */
{
	que_fork_t*	fork;
	que_thr_t*	thr;
	undo_node_t*	undo;
	sel_node_t*	sel;
	ins_node_t*	ins;
	upd_node_t*	upd;
	tab_node_t*	cre_tab;
	ind_node_t*	cre_ind;
	purge_node_t*	purge;

	if (node == NULL) {
		return;
	}

	switch (que_node_get_type(node)) {

	case QUE_NODE_FORK:
		fork = static_cast<que_fork_t*>(node);

		thr = UT_LIST_GET_FIRST(fork->thrs);

		while (thr) {
			que_graph_free_recursive(thr);

			thr = UT_LIST_GET_NEXT(thrs, thr);
		}

		break;
	case QUE_NODE_THR:
		thr = static_cast<que_thr_t*>(node);
		que_graph_free_recursive(thr->child);
		break;
	case QUE_NODE_UNDO:

		undo = static_cast<undo_node_t*>(node);

		mem_heap_free(undo->heap);

		break;
	case QUE_NODE_SELECT:

		sel = static_cast<sel_node_t*>(node);

		sel_node_free_private(sel);

		break;
	case QUE_NODE_INSERT:

		ins = static_cast<ins_node_t*>(node);

		que_graph_free_recursive(ins->select);
		ins->select = NULL;

		ins->~ins_node_t();

		if (ins->entry_sys_heap != NULL) {
			mem_heap_free(ins->entry_sys_heap);
			ins->entry_sys_heap = NULL;
		}

		break;
	case QUE_NODE_PURGE:
		purge = static_cast<purge_node_t*>(node);

		mem_heap_free(purge->heap);

		purge->~purge_node_t();
		break;

	case QUE_NODE_UPDATE:
		upd = static_cast<upd_node_t*>(node);

		if (upd->in_mysql_interface) {

			btr_pcur_free_for_mysql(upd->pcur);
			upd->in_mysql_interface = false;
		}

		que_graph_free_recursive(upd->cascade_node);

		if (upd->cascade_heap) {
			mem_heap_free(upd->cascade_heap);
			upd->cascade_heap = NULL;
		}

		que_graph_free_recursive(upd->select);
		upd->select = NULL;

		if (upd->heap != NULL) {
			mem_heap_free(upd->heap);
			upd->heap = NULL;
		}

		break;
	case QUE_NODE_CREATE_TABLE:
		cre_tab = static_cast<tab_node_t*>(node);

		que_graph_free_recursive(cre_tab->tab_def);
		que_graph_free_recursive(cre_tab->col_def);
		que_graph_free_recursive(cre_tab->v_col_def);

		mem_heap_free(cre_tab->heap);

		break;
	case QUE_NODE_CREATE_INDEX:
		cre_ind = static_cast<ind_node_t*>(node);

		que_graph_free_recursive(cre_ind->ind_def);
		que_graph_free_recursive(cre_ind->field_def);

		mem_heap_free(cre_ind->heap);

		break;
	case QUE_NODE_PROC:
		que_graph_free_stat_list(((proc_node_t*) node)->stat_list);

		break;
	case QUE_NODE_IF:
		que_graph_free_stat_list(((if_node_t*) node)->stat_list);
		que_graph_free_stat_list(((if_node_t*) node)->else_part);
		que_graph_free_stat_list(((if_node_t*) node)->elsif_list);

		break;
	case QUE_NODE_ELSIF:
		que_graph_free_stat_list(((elsif_node_t*) node)->stat_list);

		break;
	case QUE_NODE_WHILE:
		que_graph_free_stat_list(((while_node_t*) node)->stat_list);

		break;
	case QUE_NODE_FOR:
		que_graph_free_stat_list(((for_node_t*) node)->stat_list);

		break;

	case QUE_NODE_ASSIGNMENT:
	case QUE_NODE_EXIT:
	case QUE_NODE_RETURN:
	case QUE_NODE_COMMIT:
	case QUE_NODE_ROLLBACK:
	case QUE_NODE_LOCK:
	case QUE_NODE_FUNC:
	case QUE_NODE_ORDER:
	case QUE_NODE_ROW_PRINTF:
	case QUE_NODE_OPEN:
	case QUE_NODE_FETCH:
		/* No need to do anything */

		break;
	default:
		ut_error;
	}
}

/**********************************************************************//**
Frees a query graph. */
void
que_graph_free(
/*===========*/
	que_t*	graph)	/*!< in: query graph; we assume that the memory
			heap where this graph was created is private
			to this graph: if not, then use
			que_graph_free_recursive and free the heap
			afterwards! */
{
	ut_ad(graph);

	if (graph->sym_tab) {
		/* The following call frees dynamic memory allocated
		for variables etc. during execution. Frees also explicit
		cursor definitions. */

		sym_tab_free_private(graph->sym_tab);
	}

	if (graph->info && graph->info->graph_owns_us) {
		pars_info_free(graph->info);
	}

	que_graph_free_recursive(graph);

	mem_heap_free(graph->heap);
}

/****************************************************************//**
Performs an execution step on a thr node.
@return query thread to run next, or NULL if none */
static
que_thr_t*
que_thr_node_step(
/*==============*/
	que_thr_t*	thr)	/*!< in: query thread where run_node must
				be the thread node itself */
{
	ut_ad(thr->run_node == thr);

	if (thr->prev_node == thr->common.parent) {
		/* If control to the node came from above, it is just passed
		on */

		thr->run_node = thr->child;

		return(thr);
	}

	trx_mutex_enter(thr_get_trx(thr));

	if (que_thr_peek_stop(thr)) {

		trx_mutex_exit(thr_get_trx(thr));

		return(thr);
	}

	/* Thread execution completed */

	thr->state = QUE_THR_COMPLETED;

	trx_mutex_exit(thr_get_trx(thr));

	return(NULL);
}

/**********************************************************************//**
Stops a query thread if graph or trx is in a state requiring it. The
conditions are tested in the order (1) graph, (2) trx.
@return TRUE if stopped */
ibool
que_thr_stop(
/*=========*/
	que_thr_t*	thr)	/*!< in: query thread */
{
	que_t*		graph;
	trx_t*		trx = thr_get_trx(thr);

	graph = thr->graph;

	ut_ad(trx_mutex_own(trx));

	if (graph->state == QUE_FORK_COMMAND_WAIT) {

		thr->state = QUE_THR_SUSPENDED;

	} else if (trx->lock.que_state == TRX_QUE_LOCK_WAIT) {

		trx->lock.wait_thr = thr;
		thr->state = QUE_THR_LOCK_WAIT;

	} else if (trx->error_state != DB_SUCCESS
		   && trx->error_state != DB_LOCK_WAIT) {

		/* Error handling built for the MySQL interface */
		thr->state = QUE_THR_COMPLETED;

	} else if (graph->fork_type == QUE_FORK_ROLLBACK) {

		thr->state = QUE_THR_SUSPENDED;
	} else {
		ut_ad(graph->state == QUE_FORK_ACTIVE);

		return(FALSE);
	}

	return(TRUE);
}

/**********************************************************************//**
Decrements the query thread reference counts in the query graph and the
transaction.
*** NOTE ***:
This and que_thr_stop_for_mysql are the only functions where the reference
count can be decremented and this function may only be called from inside
que_run_threads! These restrictions exist to make the rollback code easier
to maintain. */
static
void
que_thr_dec_refer_count(
/*====================*/
	que_thr_t*	thr,		/*!< in: query thread */
	que_thr_t**	next_thr)	/*!< in/out: next query thread to run;
					if the value which is passed in is
					a pointer to a NULL pointer, then the
					calling function can start running
					a new query thread */
{
	trx_t*		trx;

	trx = thr_get_trx(thr);

	ut_a(thr->is_active);
	ut_ad(trx_mutex_own(trx));

	if (thr->state == QUE_THR_RUNNING) {

		if (!que_thr_stop(thr)) {

			ut_a(next_thr != NULL && *next_thr == NULL);

			/* The reason for the thr suspension or wait was
			already canceled before we came here: continue
			running the thread.

			This is also possible because in trx_commit_step() we
			assume a single query thread. We set the query thread
			state to QUE_THR_RUNNING. */

			/* fprintf(stderr,
		       		"Wait already ended: trx: %p\n", trx); */

			/* Normally srv_suspend_mysql_thread resets
			the state to DB_SUCCESS before waiting, but
			in this case we have to do it here,
			otherwise nobody does it. */

			trx->error_state = DB_SUCCESS;

			*next_thr = thr;

			return;
		}
	}

	ut_d(static_cast<que_fork_t*>(thr->common.parent)->set_active(false));
	thr->is_active = false;
}

/**********************************************************************//**
A patch for MySQL used to 'stop' a dummy query thread used in MySQL. The
query thread is stopped and made inactive, except in the case where
it was put to the lock wait state in lock0lock.cc, but the lock has already
been granted or the transaction chosen as a victim in deadlock resolution. */
void
que_thr_stop_for_mysql(
/*===================*/
	que_thr_t*	thr)	/*!< in: query thread */
{
	trx_t*	trx;

	trx = thr_get_trx(thr);

	trx_mutex_enter(trx);

	if (thr->state == QUE_THR_RUNNING) {

		if (trx->error_state != DB_SUCCESS
		    && trx->error_state != DB_LOCK_WAIT) {

			/* Error handling built for the MySQL interface */
			thr->state = QUE_THR_COMPLETED;
		} else {
			/* It must have been a lock wait but the lock was
			already released, or this transaction was chosen
			as a victim in selective deadlock resolution */

			trx_mutex_exit(trx);

			return;
		}
	}

	ut_ad(thr->is_active);
	ut_d(thr->set_active(false));
	thr->is_active= false;

	trx_mutex_exit(trx);
}

#ifdef UNIV_DEBUG
/** Change the 'active' status */
void que_fork_t::set_active(bool active)
{
  if (active)
  {
    n_active_thrs++;
    trx->lock.n_active_thrs++;
  }
  else
  {
    ut_ad(n_active_thrs);
    ut_ad(trx->lock.n_active_thrs);
    n_active_thrs--;
    trx->lock.n_active_thrs--;
  }
}
#endif

/****************************************************************//**
Get the first containing loop node (e.g. while_node_t or for_node_t) for the
given node, or NULL if the node is not within a loop.
@return containing loop node, or NULL. */
que_node_t*
que_node_get_containing_loop_node(
/*==============================*/
	que_node_t*	node)	/*!< in: node */
{
	ut_ad(node);

	for (;;) {
		ulint	type;

		node = que_node_get_parent(node);

		if (!node) {
			break;
		}

		type = que_node_get_type(node);

		if ((type == QUE_NODE_FOR) || (type == QUE_NODE_WHILE)) {
			break;
		}
	}

	return(node);
}

/**********************************************************************//**
Performs an execution step on a query thread.
@return query thread to run next: it may differ from the input
parameter if, e.g., a subprocedure call is made */
UNIV_INLINE
que_thr_t*
que_thr_step(
/*=========*/
	que_thr_t*	thr)	/*!< in: query thread */
{
	que_node_t*	node;
	que_thr_t*	old_thr;
	trx_t*		trx;
	ulint		type;

	trx = thr_get_trx(thr);

	ut_ad(thr->state == QUE_THR_RUNNING);
	ut_a(trx->error_state == DB_SUCCESS);

	thr->resource++;

	node = thr->run_node;
	type = que_node_get_type(node);

	old_thr = thr;

	if (type & QUE_NODE_CONTROL_STAT) {
		if ((thr->prev_node != que_node_get_parent(node))
		    && que_node_get_next(thr->prev_node)) {

			/* The control statements, like WHILE, always pass the
			control to the next child statement if there is any
			child left */

			thr->run_node = que_node_get_next(thr->prev_node);

		} else if (type == QUE_NODE_IF) {
			if_step(thr);
		} else if (type == QUE_NODE_FOR) {
			for_step(thr);
		} else if (type == QUE_NODE_PROC) {
			if (thr->prev_node == que_node_get_parent(node)) {
				trx->last_sql_stat_start.least_undo_no
					= trx->undo_no;
			}

			proc_step(thr);
		} else if (type == QUE_NODE_WHILE) {
			while_step(thr);
		} else {
			ut_error;
		}
	} else if (type == QUE_NODE_ASSIGNMENT) {
		assign_step(thr);
	} else if (type == QUE_NODE_SELECT) {
		thr = row_sel_step(thr);
	} else if (type == QUE_NODE_INSERT) {
		trx_start_if_not_started_xa(thr_get_trx(thr), true);
		thr = row_ins_step(thr);
	} else if (type == QUE_NODE_UPDATE) {
		trx_start_if_not_started_xa(thr_get_trx(thr), true);
		thr = row_upd_step(thr);
	} else if (type == QUE_NODE_FETCH) {
		thr = fetch_step(thr);
	} else if (type == QUE_NODE_OPEN) {
		thr = open_step(thr);
	} else if (type == QUE_NODE_FUNC) {
		proc_eval_step(thr);

	} else if (type == QUE_NODE_LOCK) {

		ut_error;
	} else if (type == QUE_NODE_THR) {
		thr = que_thr_node_step(thr);
	} else if (type == QUE_NODE_COMMIT) {
		thr = trx_commit_step(thr);
	} else if (type == QUE_NODE_UNDO) {
		thr = row_undo_step(thr);
	} else if (type == QUE_NODE_PURGE) {
		thr = row_purge_step(thr);
	} else if (type == QUE_NODE_RETURN) {
		thr = return_step(thr);
	} else if (type == QUE_NODE_EXIT) {
		thr = exit_step(thr);
	} else if (type == QUE_NODE_ROLLBACK) {
		thr = trx_rollback_step(thr);
	} else if (type == QUE_NODE_CREATE_TABLE) {
		thr = dict_create_table_step(thr);
	} else if (type == QUE_NODE_CREATE_INDEX) {
		thr = dict_create_index_step(thr);
	} else if (type == QUE_NODE_ROW_PRINTF) {
		thr = row_printf_step(thr);
	} else {
		ut_error;
	}

	if (type == QUE_NODE_EXIT) {
		old_thr->prev_node = que_node_get_containing_loop_node(node);
	} else {
		old_thr->prev_node = node;
	}

	if (thr) {
		ut_a(thr_get_trx(thr)->error_state == DB_SUCCESS);
	}

	return(thr);
}

/**********************************************************************//**
Run a query thread until it finishes or encounters e.g. a lock wait. */
static
void
que_run_threads_low(
/*================*/
	que_thr_t*	thr)	/*!< in: query thread */
{
	trx_t*		trx;
	que_thr_t*	next_thr;

	ut_ad(thr->state == QUE_THR_RUNNING);
	ut_a(thr_get_trx(thr)->error_state == DB_SUCCESS);
	ut_ad(!trx_mutex_own(thr_get_trx(thr)));

	/* cumul_resource counts how much resources the OS thread (NOT the
	query thread) has spent in this function */

	trx = thr_get_trx(thr);

	do {
		/* Check that there is enough space in the log to accommodate
		possible log entries by this query step; if the operation can
		touch more than about 4 pages, checks must be made also within
		the query step! */

		log_free_check();

		/* Perform the actual query step: note that the query thread
		may change if, e.g., a subprocedure call is made */

		/*-------------------------*/
		next_thr = que_thr_step(thr);
		/*-------------------------*/

		trx_mutex_enter(trx);

		ut_a(next_thr == NULL || trx->error_state == DB_SUCCESS);

		if (next_thr != thr) {
			ut_a(next_thr == NULL);

			/* This can change next_thr to a non-NULL value
			if there was a lock wait that already completed. */

			que_thr_dec_refer_count(thr, &next_thr);

			if (next_thr != NULL) {

				thr = next_thr;
			}
		}

		ut_ad(trx == thr_get_trx(thr));

		trx_mutex_exit(trx);

	} while (next_thr != NULL);
}

/**********************************************************************//**
Run a query thread. Handles lock waits. */
void
que_run_threads(
/*============*/
	que_thr_t*	thr)	/*!< in: query thread */
{
	ut_ad(!trx_mutex_own(thr_get_trx(thr)));

loop:
	ut_a(thr_get_trx(thr)->error_state == DB_SUCCESS);

	que_run_threads_low(thr);

	switch (thr->state) {

	case QUE_THR_RUNNING:
		/* There probably was a lock wait, but it already ended
		before we came here: continue running thr */

		goto loop;

	case QUE_THR_LOCK_WAIT:
		lock_wait_suspend_thread(thr);

		trx_mutex_enter(thr_get_trx(thr));

		ut_a(thr_get_trx(thr)->id != 0);

		if (thr_get_trx(thr)->error_state != DB_SUCCESS) {
			/* thr was chosen as a deadlock victim or there was
			a lock wait timeout */

			que_thr_dec_refer_count(thr, NULL);
			trx_mutex_exit(thr_get_trx(thr));
			break;
		}

		trx_mutex_exit(thr_get_trx(thr));
		goto loop;

	case QUE_THR_COMPLETED:
	case QUE_THR_COMMAND_WAIT:
		/* Do nothing */
		break;

	default:
		ut_error;
	}
}

/*********************************************************************//**
Evaluate the given SQL.
@return error code or DB_SUCCESS */
dberr_t
que_eval_sql(
/*=========*/
	pars_info_t*	info,	/*!< in: info struct, or NULL */
	const char*	sql,	/*!< in: SQL string */
	bool		reserve_dict_mutex,
				/*!< in: whether to acquire/release
				dict_sys.mutex around call to pars_sql. */
	trx_t*		trx)	/*!< in: trx */
{
	que_thr_t*	thr;
	que_t*		graph;

	DBUG_ENTER("que_eval_sql");
	DBUG_PRINT("que_eval_sql", ("query: %s", sql));

	ut_a(trx->error_state == DB_SUCCESS);

	if (reserve_dict_mutex) {
		mutex_enter(&dict_sys.mutex);
	}

	graph = pars_sql(info, sql);

	if (reserve_dict_mutex) {
		mutex_exit(&dict_sys.mutex);
	}

	graph->trx = trx;
	trx->graph = NULL;

	graph->fork_type = QUE_FORK_MYSQL_INTERFACE;

	ut_a(thr = que_fork_start_command(graph));

	que_run_threads(thr);

	if (reserve_dict_mutex) {
		mutex_enter(&dict_sys.mutex);
	}

	que_graph_free(graph);

	if (reserve_dict_mutex) {
		mutex_exit(&dict_sys.mutex);
	}

	DBUG_RETURN(trx->error_state);
}