1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
|
/*****************************************************************************
Copyright (c) 1994, 2016, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2017, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/********************************************************************//**
@file data/data0data.cc
SQL data field and tuple
Created 5/30/1994 Heikki Tuuri
*************************************************************************/
#include "ha_prototypes.h"
#include "data0data.h"
#include "rem0rec.h"
#include "rem0cmp.h"
#include "page0page.h"
#include "page0zip.h"
#include "dict0dict.h"
#include "btr0cur.h"
#include "row0upd.h"
#ifdef UNIV_DEBUG
/** Dummy variable to catch access to uninitialized fields. In the
debug version, dtuple_create() will make all fields of dtuple_t point
to data_error. */
byte data_error;
# ifndef UNIV_DEBUG_VALGRIND
/** this is used to fool the compiler in dtuple_validate */
ulint data_dummy;
# endif /* !UNIV_DEBUG_VALGRIND */
#endif /* UNIV_DEBUG */
/** Compare two data tuples.
@param[in] tuple1 first data tuple
@param[in] tuple2 second data tuple
@return positive, 0, negative if tuple1 is greater, equal, less, than tuple2,
respectively */
int
dtuple_coll_cmp(
const dtuple_t* tuple1,
const dtuple_t* tuple2)
{
ulint n_fields;
ulint i;
int cmp;
ut_ad(tuple1 != NULL);
ut_ad(tuple2 != NULL);
ut_ad(tuple1->magic_n == DATA_TUPLE_MAGIC_N);
ut_ad(tuple2->magic_n == DATA_TUPLE_MAGIC_N);
ut_ad(dtuple_check_typed(tuple1));
ut_ad(dtuple_check_typed(tuple2));
n_fields = dtuple_get_n_fields(tuple1);
cmp = (int) n_fields - (int) dtuple_get_n_fields(tuple2);
for (i = 0; cmp == 0 && i < n_fields; i++) {
const dfield_t* field1 = dtuple_get_nth_field(tuple1, i);
const dfield_t* field2 = dtuple_get_nth_field(tuple2, i);
cmp = cmp_dfield_dfield(field1, field2);
}
return(cmp);
}
/*********************************************************************//**
Sets number of fields used in a tuple. Normally this is set in
dtuple_create, but if you want later to set it smaller, you can use this. */
void
dtuple_set_n_fields(
/*================*/
dtuple_t* tuple, /*!< in: tuple */
ulint n_fields) /*!< in: number of fields */
{
ut_ad(tuple);
tuple->n_fields = n_fields;
tuple->n_fields_cmp = n_fields;
}
/**********************************************************//**
Checks that a data field is typed.
@return TRUE if ok */
static
ibool
dfield_check_typed_no_assert(
/*=========================*/
const dfield_t* field) /*!< in: data field */
{
if (dfield_get_type(field)->mtype > DATA_MTYPE_CURRENT_MAX
|| dfield_get_type(field)->mtype < DATA_MTYPE_CURRENT_MIN) {
ib::error() << "Data field type "
<< dfield_get_type(field)->mtype
<< ", len " << dfield_get_len(field);
return(FALSE);
}
return(TRUE);
}
/**********************************************************//**
Checks that a data tuple is typed.
@return TRUE if ok */
ibool
dtuple_check_typed_no_assert(
/*=========================*/
const dtuple_t* tuple) /*!< in: tuple */
{
const dfield_t* field;
ulint i;
if (dtuple_get_n_fields(tuple) > REC_MAX_N_FIELDS) {
ib::error() << "Index entry has "
<< dtuple_get_n_fields(tuple) << " fields";
dump:
fputs("InnoDB: Tuple contents: ", stderr);
dtuple_print(stderr, tuple);
putc('\n', stderr);
return(FALSE);
}
for (i = 0; i < dtuple_get_n_fields(tuple); i++) {
field = dtuple_get_nth_field(tuple, i);
if (!dfield_check_typed_no_assert(field)) {
goto dump;
}
}
return(TRUE);
}
#ifdef UNIV_DEBUG
/**********************************************************//**
Checks that a data field is typed. Asserts an error if not.
@return TRUE if ok */
ibool
dfield_check_typed(
/*===============*/
const dfield_t* field) /*!< in: data field */
{
if (dfield_get_type(field)->mtype > DATA_MTYPE_CURRENT_MAX
|| dfield_get_type(field)->mtype < DATA_MTYPE_CURRENT_MIN) {
ib::fatal() << "Data field type "
<< dfield_get_type(field)->mtype
<< ", len " << dfield_get_len(field);
}
return(TRUE);
}
/**********************************************************//**
Checks that a data tuple is typed. Asserts an error if not.
@return TRUE if ok */
ibool
dtuple_check_typed(
/*===============*/
const dtuple_t* tuple) /*!< in: tuple */
{
const dfield_t* field;
ulint i;
for (i = 0; i < dtuple_get_n_fields(tuple); i++) {
field = dtuple_get_nth_field(tuple, i);
ut_a(dfield_check_typed(field));
}
return(TRUE);
}
/**********************************************************//**
Validates the consistency of a tuple which must be complete, i.e,
all fields must have been set.
@return TRUE if ok */
ibool
dtuple_validate(
/*============*/
const dtuple_t* tuple) /*!< in: tuple */
{
const dfield_t* field;
ulint n_fields;
ulint len;
ulint i;
ut_ad(tuple->magic_n == DATA_TUPLE_MAGIC_N);
n_fields = dtuple_get_n_fields(tuple);
/* We dereference all the data of each field to test
for memory traps */
for (i = 0; i < n_fields; i++) {
field = dtuple_get_nth_field(tuple, i);
len = dfield_get_len(field);
if (!dfield_is_null(field)) {
const byte* data;
data = static_cast<const byte*>(dfield_get_data(field));
#ifndef UNIV_DEBUG_VALGRIND
ulint j;
for (j = 0; j < len; j++) {
data_dummy += *data; /* fool the compiler not
to optimize out this
code */
data++;
}
#endif /* !UNIV_DEBUG_VALGRIND */
UNIV_MEM_ASSERT_RW(data, len);
}
}
ut_a(dtuple_check_typed(tuple));
return(TRUE);
}
#endif /* UNIV_DEBUG */
/*************************************************************//**
Pretty prints a dfield value according to its data type. */
void
dfield_print(
/*=========*/
const dfield_t* dfield) /*!< in: dfield */
{
const byte* data;
ulint len;
ulint i;
len = dfield_get_len(dfield);
data = static_cast<const byte*>(dfield_get_data(dfield));
if (dfield_is_null(dfield)) {
fputs("NULL", stderr);
return;
}
switch (dtype_get_mtype(dfield_get_type(dfield))) {
case DATA_CHAR:
case DATA_VARCHAR:
for (i = 0; i < len; i++) {
int c = *data++;
putc(isprint(c) ? c : ' ', stderr);
}
if (dfield_is_ext(dfield)) {
fputs("(external)", stderr);
}
break;
case DATA_INT:
ut_a(len == 4); /* only works for 32-bit integers */
fprintf(stderr, "%d", (int) mach_read_from_4(data));
break;
default:
ut_error;
}
}
/*************************************************************//**
Pretty prints a dfield value according to its data type. Also the hex string
is printed if a string contains non-printable characters. */
void
dfield_print_also_hex(
/*==================*/
const dfield_t* dfield) /*!< in: dfield */
{
const byte* data;
ulint len;
ulint prtype;
ulint i;
ibool print_also_hex;
len = dfield_get_len(dfield);
data = static_cast<const byte*>(dfield_get_data(dfield));
if (dfield_is_null(dfield)) {
fputs("NULL", stderr);
return;
}
prtype = dtype_get_prtype(dfield_get_type(dfield));
switch (dtype_get_mtype(dfield_get_type(dfield))) {
ib_id_t id;
case DATA_INT:
switch (len) {
ulint val;
case 1:
val = mach_read_from_1(data);
if (!(prtype & DATA_UNSIGNED)) {
val &= ~0x80;
fprintf(stderr, "%ld", (long) val);
} else {
fprintf(stderr, "%lu", (ulong) val);
}
break;
case 2:
val = mach_read_from_2(data);
if (!(prtype & DATA_UNSIGNED)) {
val &= ~0x8000;
fprintf(stderr, "%ld", (long) val);
} else {
fprintf(stderr, "%lu", (ulong) val);
}
break;
case 3:
val = mach_read_from_3(data);
if (!(prtype & DATA_UNSIGNED)) {
val &= ~0x800000;
fprintf(stderr, "%ld", (long) val);
} else {
fprintf(stderr, "%lu", (ulong) val);
}
break;
case 4:
val = mach_read_from_4(data);
if (!(prtype & DATA_UNSIGNED)) {
val &= ~0x80000000;
fprintf(stderr, "%ld", (long) val);
} else {
fprintf(stderr, "%lu", (ulong) val);
}
break;
case 6:
id = mach_read_from_6(data);
fprintf(stderr, IB_ID_FMT, id);
break;
case 7:
id = mach_read_from_7(data);
fprintf(stderr, IB_ID_FMT, id);
break;
case 8:
id = mach_read_from_8(data);
fprintf(stderr, IB_ID_FMT, id);
break;
default:
goto print_hex;
}
break;
case DATA_SYS:
switch (prtype & DATA_SYS_PRTYPE_MASK) {
case DATA_TRX_ID:
id = mach_read_from_6(data);
fprintf(stderr, "trx_id " TRX_ID_FMT, id);
break;
case DATA_ROLL_PTR:
id = mach_read_from_7(data);
fprintf(stderr, "roll_ptr " TRX_ID_FMT, id);
break;
case DATA_ROW_ID:
id = mach_read_from_6(data);
fprintf(stderr, "row_id " TRX_ID_FMT, id);
break;
default:
goto print_hex;
}
break;
case DATA_CHAR:
case DATA_VARCHAR:
print_also_hex = FALSE;
for (i = 0; i < len; i++) {
int c = *data++;
if (!isprint(c)) {
print_also_hex = TRUE;
fprintf(stderr, "\\x%02x", (unsigned char) c);
} else {
putc(c, stderr);
}
}
if (dfield_is_ext(dfield)) {
fputs("(external)", stderr);
}
if (!print_also_hex) {
break;
}
data = static_cast<byte*>(dfield_get_data(dfield));
/* fall through */
case DATA_BINARY:
default:
print_hex:
fputs(" Hex: ",stderr);
for (i = 0; i < len; i++) {
fprintf(stderr, "%02lx", static_cast<ulong>(*data++));
}
if (dfield_is_ext(dfield)) {
fputs("(external)", stderr);
}
}
}
/*************************************************************//**
Print a dfield value using ut_print_buf. */
static
void
dfield_print_raw(
/*=============*/
FILE* f, /*!< in: output stream */
const dfield_t* dfield) /*!< in: dfield */
{
ulint len = dfield_get_len(dfield);
if (!dfield_is_null(dfield)) {
ulint print_len = ut_min(len, static_cast<ulint>(1000));
ut_print_buf(f, dfield_get_data(dfield), print_len);
if (len != print_len) {
fprintf(f, "(total %lu bytes%s)",
(ulong) len,
dfield_is_ext(dfield) ? ", external" : "");
}
} else {
fputs(" SQL NULL", f);
}
}
/**********************************************************//**
The following function prints the contents of a tuple. */
void
dtuple_print(
/*=========*/
FILE* f, /*!< in: output stream */
const dtuple_t* tuple) /*!< in: tuple */
{
ulint n_fields;
ulint i;
n_fields = dtuple_get_n_fields(tuple);
fprintf(f, "DATA TUPLE: %lu fields;\n", (ulong) n_fields);
for (i = 0; i < n_fields; i++) {
fprintf(f, " %lu:", (ulong) i);
dfield_print_raw(f, dtuple_get_nth_field(tuple, i));
putc(';', f);
putc('\n', f);
}
ut_ad(dtuple_validate(tuple));
}
/** Print the contents of a tuple.
@param[out] o output stream
@param[in] field array of data fields
@param[in] n number of data fields */
void
dfield_print(
std::ostream& o,
const dfield_t* field,
ulint n)
{
for (ulint i = 0; i < n; i++, field++) {
const void* data = dfield_get_data(field);
const ulint len = dfield_get_len(field);
if (i) {
o << ',';
}
if (dfield_is_null(field)) {
o << "NULL";
} else if (dfield_is_ext(field)) {
ulint local_len = len - BTR_EXTERN_FIELD_REF_SIZE;
ut_ad(len >= BTR_EXTERN_FIELD_REF_SIZE);
o << '['
<< local_len
<< '+' << BTR_EXTERN_FIELD_REF_SIZE << ']';
ut_print_buf(o, data, local_len);
ut_print_buf_hex(o, static_cast<const byte*>(data)
+ local_len,
BTR_EXTERN_FIELD_REF_SIZE);
} else {
o << '[' << len << ']';
ut_print_buf(o, data, len);
}
}
}
/** Print the contents of a tuple.
@param[out] o output stream
@param[in] tuple data tuple */
void
dtuple_print(
std::ostream& o,
const dtuple_t* tuple)
{
const ulint n = dtuple_get_n_fields(tuple);
o << "TUPLE (info_bits=" << dtuple_get_info_bits(tuple)
<< ", " << n << " fields): {";
dfield_print(o, tuple->fields, n);
o << "}";
}
/**************************************************************//**
Moves parts of long fields in entry to the big record vector so that
the size of tuple drops below the maximum record size allowed in the
database. Moves data only from those fields which are not necessary
to determine uniquely the insertion place of the tuple in the index.
@return own: created big record vector, NULL if we are not able to
shorten the entry enough, i.e., if there are too many fixed-length or
short fields in entry or the index is clustered */
big_rec_t*
dtuple_convert_big_rec(
/*===================*/
dict_index_t* index, /*!< in: index */
upd_t* upd, /*!< in/out: update vector */
dtuple_t* entry, /*!< in/out: index entry */
ulint* n_ext) /*!< in/out: number of
externally stored columns */
{
mem_heap_t* heap;
big_rec_t* vector;
dfield_t* dfield;
dict_field_t* ifield;
ulint size;
ulint n_fields;
ulint local_len;
ulint local_prefix_len;
if (!dict_index_is_clust(index)) {
return(NULL);
}
if (dict_table_get_format(index->table) < UNIV_FORMAT_B) {
/* up to MySQL 5.1: store a 768-byte prefix locally */
local_len = BTR_EXTERN_FIELD_REF_SIZE
+ DICT_ANTELOPE_MAX_INDEX_COL_LEN;
} else {
/* new-format table: do not store any BLOB prefix locally */
local_len = BTR_EXTERN_FIELD_REF_SIZE;
}
ut_a(dtuple_check_typed_no_assert(entry));
size = rec_get_converted_size(index, entry, *n_ext);
if (UNIV_UNLIKELY(size > 1000000000)) {
ib::warn() << "Tuple size is very big: " << size;
fputs("InnoDB: Tuple contents: ", stderr);
dtuple_print(stderr, entry);
putc('\n', stderr);
}
heap = mem_heap_create(size + dtuple_get_n_fields(entry)
* sizeof(big_rec_field_t) + 1000);
vector = big_rec_t::alloc(heap, dtuple_get_n_fields(entry));
/* Decide which fields to shorten: the algorithm is to look for
a variable-length field that yields the biggest savings when
stored externally */
n_fields = 0;
while (page_zip_rec_needs_ext(rec_get_converted_size(index, entry,
*n_ext),
dict_table_is_comp(index->table),
dict_index_get_n_fields(index),
dict_table_page_size(index->table))) {
ulint i;
ulint longest = 0;
ulint longest_i = ULINT_MAX;
byte* data;
for (i = dict_index_get_n_unique_in_tree(index);
i < dtuple_get_n_fields(entry); i++) {
ulint savings;
dfield = dtuple_get_nth_field(entry, i);
ifield = dict_index_get_nth_field(index, i);
/* Skip fixed-length, NULL, externally stored,
or short columns */
if (ifield->fixed_len
|| dfield_is_null(dfield)
|| dfield_is_ext(dfield)
|| dfield_get_len(dfield) <= local_len
|| dfield_get_len(dfield)
<= BTR_EXTERN_LOCAL_STORED_MAX_SIZE) {
goto skip_field;
}
savings = dfield_get_len(dfield) - local_len;
/* Check that there would be savings */
if (longest >= savings) {
goto skip_field;
}
/* In DYNAMIC and COMPRESSED format, store
locally any non-BLOB columns whose maximum
length does not exceed 256 bytes. This is
because there is no room for the "external
storage" flag when the maximum length is 255
bytes or less. This restriction trivially
holds in REDUNDANT and COMPACT format, because
there we always store locally columns whose
length is up to local_len == 788 bytes.
@see rec_init_offsets_comp_ordinary */
if (!DATA_BIG_COL(ifield->col)) {
goto skip_field;
}
longest_i = i;
longest = savings;
skip_field:
continue;
}
if (!longest) {
/* Cannot shorten more */
mem_heap_free(heap);
return(NULL);
}
/* Move data from field longest_i to big rec vector.
We store the first bytes locally to the record. Then
we can calculate all ordering fields in all indexes
from locally stored data. */
dfield = dtuple_get_nth_field(entry, longest_i);
ifield = dict_index_get_nth_field(index, longest_i);
local_prefix_len = local_len - BTR_EXTERN_FIELD_REF_SIZE;
vector->append(
big_rec_field_t(
longest_i,
dfield_get_len(dfield) - local_prefix_len,
static_cast<char*>(dfield_get_data(dfield))
+ local_prefix_len));
/* Allocate the locally stored part of the column. */
data = static_cast<byte*>(mem_heap_alloc(heap, local_len));
/* Copy the local prefix. */
memcpy(data, dfield_get_data(dfield), local_prefix_len);
/* Clear the extern field reference (BLOB pointer). */
memset(data + local_prefix_len, 0, BTR_EXTERN_FIELD_REF_SIZE);
#if 0
/* The following would fail the Valgrind checks in
page_cur_insert_rec_low() and page_cur_insert_rec_zip().
The BLOB pointers in the record will be initialized after
the record and the BLOBs have been written. */
UNIV_MEM_ALLOC(data + local_prefix_len,
BTR_EXTERN_FIELD_REF_SIZE);
#endif
dfield_set_data(dfield, data, local_len);
dfield_set_ext(dfield);
n_fields++;
(*n_ext)++;
ut_ad(n_fields < dtuple_get_n_fields(entry));
if (upd && !upd->is_modified(longest_i)) {
DEBUG_SYNC_C("ib_mv_nonupdated_column_offpage");
upd_field_t upd_field;
upd_field.field_no = unsigned(longest_i);
upd_field.orig_len = 0;
upd_field.exp = NULL;
upd_field.old_v_val = NULL;
dfield_copy(&upd_field.new_val,
dfield->clone(upd->heap));
upd->append(upd_field);
ut_ad(upd->is_modified(longest_i));
ut_ad(upd_field.new_val.len
>= BTR_EXTERN_FIELD_REF_SIZE);
ut_ad(upd_field.new_val.len == local_len);
ut_ad(upd_field.new_val.len == dfield_get_len(dfield));
}
}
ut_ad(n_fields == vector->n_fields);
return(vector);
}
/**************************************************************//**
Puts back to entry the data stored in vector. Note that to ensure the
fields in entry can accommodate the data, vector must have been created
from entry with dtuple_convert_big_rec. */
void
dtuple_convert_back_big_rec(
/*========================*/
dict_index_t* index MY_ATTRIBUTE((unused)), /*!< in: index */
dtuple_t* entry, /*!< in: entry whose data was put to vector */
big_rec_t* vector) /*!< in, own: big rec vector; it is
freed in this function */
{
big_rec_field_t* b = vector->fields;
const big_rec_field_t* const end = b + vector->n_fields;
for (; b < end; b++) {
dfield_t* dfield;
ulint local_len;
dfield = dtuple_get_nth_field(entry, b->field_no);
local_len = dfield_get_len(dfield);
ut_ad(dfield_is_ext(dfield));
ut_ad(local_len >= BTR_EXTERN_FIELD_REF_SIZE);
local_len -= BTR_EXTERN_FIELD_REF_SIZE;
/* Only in REDUNDANT and COMPACT format, we store
up to DICT_ANTELOPE_MAX_INDEX_COL_LEN (768) bytes
locally */
ut_ad(local_len <= DICT_ANTELOPE_MAX_INDEX_COL_LEN);
dfield_set_data(dfield,
(char*) b->data - local_len,
b->len + local_len);
}
mem_heap_free(vector->heap);
}
/** Allocate a big_rec_t object in the given memory heap, and for storing
n_fld number of fields.
@param[in] heap memory heap in which this object is allocated
@param[in] n_fld maximum number of fields that can be stored in
this object
@return the allocated object */
big_rec_t*
big_rec_t::alloc(
mem_heap_t* heap,
ulint n_fld)
{
big_rec_t* rec = static_cast<big_rec_t*>(
mem_heap_alloc(heap, sizeof(big_rec_t)));
new(rec) big_rec_t(n_fld);
rec->heap = heap;
rec->fields = static_cast<big_rec_field_t*>(
mem_heap_alloc(heap,
n_fld * sizeof(big_rec_field_t)));
rec->n_fields = 0;
return(rec);
}
/** Create a deep copy of this object
@param[in] heap the memory heap in which the clone will be
created.
@return the cloned object. */
dfield_t*
dfield_t::clone(
mem_heap_t* heap)
{
const ulint size = len == UNIV_SQL_NULL ? 0 : len;
dfield_t* obj = static_cast<dfield_t*>(
mem_heap_alloc(heap, sizeof(dfield_t) + size));
obj->ext = ext;
obj->len = len;
obj->type = type;
obj->spatial_status = spatial_status;
if (len != UNIV_SQL_NULL) {
obj->data = obj + 1;
memcpy(obj->data, data, len);
} else {
obj->data = 0;
}
return(obj);
}
|